Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties
This work presents the formation of monoclinic γ-aminobutyric acid (GABA) crystals grown from an aqueous ethanol solution with the dimensions 4 × 1 × 0.6 mm3. The structural properties of the grown crystal were evaluated via X-ray diffraction analysis of the powder and single crystal, which con...
- Autores:
-
Silva, José Barbosa
Echeverry, Juan Pablo
dos Santos, Regina Claudia Rodrigues
de Paula, Valdir Ferreira
Guedes, Maria Izabel Florindo
e Silva, Bruno Poti
Valentini, Antoninho
Caetano, Ewerton Wagner Santos
Freire, Valder Nogueira
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/3841
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/3841
- Palabra clave:
- DFT calculations
GABA polymorphs Crystals
Optical properties
Structural properties
γ-amino butyric acid (GABA) crystal
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIBAGUE2_ccfe4818fbe90a233416a6f4de5e4919 |
---|---|
oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/3841 |
network_acronym_str |
UNIBAGUE2 |
network_name_str |
Repositorio Universidad de Ibagué |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties |
title |
Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties |
spellingShingle |
Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties DFT calculations GABA polymorphs Crystals Optical properties Structural properties γ-amino butyric acid (GABA) crystal |
title_short |
Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties |
title_full |
Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties |
title_fullStr |
Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties |
title_full_unstemmed |
Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties |
title_sort |
Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties |
dc.creator.fl_str_mv |
Silva, José Barbosa Echeverry, Juan Pablo dos Santos, Regina Claudia Rodrigues de Paula, Valdir Ferreira Guedes, Maria Izabel Florindo e Silva, Bruno Poti Valentini, Antoninho Caetano, Ewerton Wagner Santos Freire, Valder Nogueira |
dc.contributor.author.none.fl_str_mv |
Silva, José Barbosa Echeverry, Juan Pablo dos Santos, Regina Claudia Rodrigues de Paula, Valdir Ferreira Guedes, Maria Izabel Florindo e Silva, Bruno Poti Valentini, Antoninho Caetano, Ewerton Wagner Santos Freire, Valder Nogueira |
dc.subject.proposal.eng.fl_str_mv |
DFT calculations GABA polymorphs Crystals Optical properties Structural properties γ-amino butyric acid (GABA) crystal |
topic |
DFT calculations GABA polymorphs Crystals Optical properties Structural properties γ-amino butyric acid (GABA) crystal |
description |
This work presents the formation of monoclinic γ-aminobutyric acid (GABA) crystals grown from an aqueous ethanol solution with the dimensions 4 × 1 × 0.6 mm3. The structural properties of the grown crystal were evaluated via X-ray diffraction analysis of the powder and single crystal, which confirmed a monoclinic crystal system with space group P21/c. Thermal stability and the melting point of the synthesized GABA crystal were investigated using TG-DSC measurements. We also characterized experimentally monoclinic and molecular GABA solvated in water, obtaining its optical absorption spectrum in the UV-VIS region. Time-dependent DFT calculations were performed for the GABA molecule in the neutral and zwitterion forms to understand their optical absorption features. Structural, electronic, and optical properties of four γ-aminobutyric acid (GABA) crystal polymorphs (monoclinic, tetragonal, hexagonal, and monohydrate) were achieved through DFT calculations employing a dispersion corrected exchange-correlation functional. Differences in the electronic and optical properties between polymorphs are discussed. We predict the GABA monoclinic crystal to be an indirect gap semiconductor with a gap value of 5.02 eV, in good agreement with our experimental measurements. Considering the other three polymorphs, their fundamental gap values range from 4.6 eV to 5.16 eV (being direct for all of them, except the monohydrate). The absorption spectra calculations reveal a significant optical anisotropy for all GABA crystals, with the highest optical absorption for the monoclinic structure in the 5–6 eV energy range |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-17T21:00:05Z |
dc.date.available.none.fl_str_mv |
2023-10-17T21:00:05Z |
dc.date.issued.none.fl_str_mv |
2023-02-08 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
José Barbosa Silva, Juan Pablo Echeverry, Regina Claudia Rodrigues dos Santos, Valdir Ferreira de Paula, Maria Izabel Florindo Guedes, Bruno Poti e Silva, Antoninho Valentini, Ewerton Wagner Santos Caetano, Valder Nogueira Freire, Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties, Journal of Solid State Chemistry, Volume 321, 2023, 123900, ISSN 0022-4596, https://doi.org/10.1016/j.jssc.2023.123900. (https://www.sciencedirect.com/science/article/pii/S0022459623000683) |
dc.identifier.issn.none.fl_str_mv |
00224596 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/3841 |
identifier_str_mv |
José Barbosa Silva, Juan Pablo Echeverry, Regina Claudia Rodrigues dos Santos, Valdir Ferreira de Paula, Maria Izabel Florindo Guedes, Bruno Poti e Silva, Antoninho Valentini, Ewerton Wagner Santos Caetano, Valder Nogueira Freire, Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties, Journal of Solid State Chemistry, Volume 321, 2023, 123900, ISSN 0022-4596, https://doi.org/10.1016/j.jssc.2023.123900. (https://www.sciencedirect.com/science/article/pii/S0022459623000683) 00224596 |
url |
https://hdl.handle.net/20.500.12313/3841 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
12 |
dc.relation.citationissue.none.fl_str_mv |
123900 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
321 |
dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Solid State Chemistry |
dc.relation.references.none.fl_str_mv |
T.G. Smart, F.A. Stephenson A half century of γ-aminobutyric acid Brain Neurosci Adv, 3 (2019), Article 239821281985824, 10.1177/2398212819858249 M.C. Gravielle Activation-induced regulation of GABAA receptors: is there a link with the molecular basis of benzodiazepine tolerance? Pharmacol. Res., 109 (2016), pp. 92-100, 10.1016/j.phrs.2015.12.030 G. Johnston GABAA receptor channel pharmacology Curr. Pharmaceut. Des., 11 (15) (2005), pp. 1867-1885, 10.2174/1381612054021024 M. Cozzolino, V. Bazzurro, E. Gatta, P. Bianchini, E. Angeli, M. Robello, A. Diaspro Precise 3D modulation of electro-optical parameters during neurotransmitter uncaging experiments with neurons in vitro Sci. Rep., 10 (1) (2020), Article 13380, 10.1038/s41598-020-70217-5 S. Blanco, J.C. López, S. Mata, J.L. Alonso Conformations of γ-aminobutyric acid (GABA): the role of the N→π∗ interaction Angew. Chem. Int. Ed., 49 (48) (2010), pp. 9187-9192, 10.1002/anie.201002535 K. Tanaka, H. Akutsu, Y. Ozaki, Y. Kyogoku, K. Tomita Molecular conformations of γ-aminobutyric acid and γ-Amino-β-Hydroxybutyric acid in aqueous solution Bull. Chem. Soc. Jpn., 51 (9) (1978), pp. 2654-2658, 10.1246/bcsj.51.2654 C. Cheng, Z. Zhu, S. Li, G. Ren, J. Zhang, H. Cong, Y. Peng, J. Han, C. Chang, H. Zhao Broadband terahertz recognizing conformational characteristics of a significant neurotransmitter γ-aminobutyric acid RSC Adv., 9 (35) (2019), pp. 20240-20247, 10.1039/C9RA02971K A.J. Dobson, R.E. Gerkin γ-Aminobutyric acid: a novel tetragonal phase Acta Crystallogr. C, 52 (12) (1996), pp. 3075-3078, 10.1107/S0108270196010001 H.-P. Weber, B.M. Craven, R.K. McMullan The neutron structure of and thermal motion in γ-aminobutyric acid (GABA) at 122 K Acta Crystallogr. B, 39 (3) (1983), pp. 360-366, 10.1107/S0108768183002542 K. Tomita, H. Higashi, T. Fujiwara Crystal and molecular structure of ω-amino acids, ω-amino sulfonic acids and their derivatives. IV. The crystal and molecular structure of γ-aminobutyric acid (GABA), a nervous inhibitory transmitter Bull. Chem. Soc. Jpn., 46 (7) (1973), pp. 2199-2204, 10.1246/bcsj.46.2199 E.J.C. de Vries, D.C. Levendis, H.A. Reece A hexagonal solvate of the neurotransmitter γ-aminobutyric acid CrystEngComm, 13 (10) (2011), p. 3334, 10.1039/c0ce00803f F.P.A. Fabbiani, G. Buth, D.C. Levendis, A.J. Cruz-Cabeza Pharmaceutical hydrates under ambient conditions from high-pressure seeds: a case study of GABA monohydrate Chem. Commun., 50 (15) (2014), pp. 1817-1819, 10.1039/C3CC48466A E.G. Steward, R.B. Player, D. Warner The crystal structure of γ-aminobutyric acid hydrochloride: a refinement Acta Crystallogr. B, 29 (12) (1973), pp. 2825-2826, 10.1107/S0567740873007594 F.P.A. Fabbiani, D.R. Allan, W.G. Marshall, S. Parsons, C.R. Pulham, R.I. Smith High-pressure recrystallisation—a route to new polymorphs and solvates of acetamide and parabanic acid J. Cryst. Growth, 275 (1–2) (2005), pp. 185-192, 10.1016/j.jcrysgro.2004.10.083 N. Qiao, M. Li, W. Schlindwein, N. Malek, A. Davies, G. Trappitt Pharmaceutical cocrystals: an overview Int. J. Pharm., 419 (1–2) (2011), pp. 1-11, 10.1016/j.ijpharm.2011.07.037 A.S. Sinha, A.R. Maguire, S.E. Lawrence Cocrystallization of nutraceuticals Cryst. Growth Des., 15 (2) (2015), pp. 984-1009, 10.1021/cg501009c D.M. Suresh, D. Sajan, K.P. Laladas, I.H. Joe, V.S. Jayakumar, V.K. Vaidyan, V.S. Jayakumar Vibrational spectra of γ-aminobutyric acid AIP Conference Proceedings, AIP (2008), pp. 95-97, 10.1063/1.3046239 C.M. da Silva, J.G. Silva Filho, G.S. Pinheiro, R.C. Vilela, F.E.A. Melo, J.A. Lima, P.T.C. Freire Raman spectroscopy of γ-aminobutyric acid under high pressure Vib. Spectrosc., 92 (2017), pp. 162-168, 10.1016/j.vibspec.2017.06.011 Y. Du, J. Xue, Q. Cai, Q. Zhang Spectroscopic investigation on structure and PH dependent cocrystal formation between gamma-aminobutyric acid and benzoic acid Spectrochim. Acta Mol. Biomol. Spectrosc., 191 (2018), pp. 377-381, 10.1016/j.saa.2017.10.036 E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, A.H. de Lima Costa, S.N. Costa, A.M. Silva, F.A.M. Sales, V.N. Freire Anhydrous proline crystals: structural optimization, optoelectronic properties, effective masses and Frenkel exciton energy J. Phys. Chem. Solid., 121 (2018), 10.1016/j.jpcs.2018.05.006 J.S. Rodríguez, G. Costa, M.B. da Silva, B.P. Silva, L.J. Honório, P. de Lima-Neto, R.C.R. Santos, E.W.S. Caetano, H.W.L. Alves, V.N. Freire Structural and optoelectronic properties of the α-, β-, and γ-Glycine polymorphs and the Glycine dihydrate crystal: a DFT study Cryst. Growth Des., 19 (9) (2019), pp. 5204-5217, 10.1021/acs.cgd.9b00593 S.N. Costa, F.A.M. Sales, V.N. Freire, F.F. Maia, E.W.S. Caetano, L.O. Ladeira, E.L. Albuquerque, U.L. Fulco L-serine anhydrous crystals: structural, electronic, and optical properties by first-principles calculations, and optical absorption measurement Cryst. Growth Des., 13 (7) (2013), pp. 2793-2802, 10.1021/cg400111w F.F. Maia Jr., V.N. Freire, E.W.S. Caetano, D.L. Azevedo, F.A.M. Sales, E.L. Albuquerque Anhydrous crystals of DNA bases are wide gap semiconductors J. Chem. Phys., 134 (17) (2011), Article 175101, 10.1063/1.3584680 J.R. Cândido-Júnior, F.A.M. Sales, S.N. Costa, P. de Lima-Neto, D.L. Azevedo, E.W.S. Caetano, E.L. Albuquerque, V.N. Freire Monoclinic and orthorhombic cysteine crystals are small gap insulators Chem. Phys. Lett., 512 (4–6) (2011), pp. 208-210, 10.1016/j.cplett.2011.07.028 A.M. Silva, B.P. Silva, F.A.M. Sales, V.N. Freire, E. Moreira, U.L. Fulco, E.L. Albuquerque, F.F. Maia, E.W.S. Caetano Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior Phys. Rev. B, 86 (19) (2012), Article 195201, 10.1103/PhysRevB.86.195201 M.B. da Silva, T.S. Francisco, F.F. Maia, E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, V.N. Freire Improved description of the structural and optoelectronic properties of DNA/RNA nucleobase anhydrous crystals: experiment and dispersion-corrected density functional theory calculations Phys. Rev. B, 96 (8) (2017), Article 085206, 10.1103/PhysRevB.96.085206 E.W.S. Caetano, J.R. Pinheiro, M. Zimmer, V.N. Freire, G.A. Farias, G.A. Bezerra, B.S. Cavada, J.R.L. Fernandez, J.R. Leite, M.C.F. de Oliveira, J.A. Pinheiro, J.L. de Lima Filho, H.W. Leite Alves Molecular signature in the photoluminescence of alpha-Glycine, L-alanine and L-asparagine crystals: detection, ab initio calculations, and bio-sensor applications AIP Conf. Proc., 772 (2005), pp. 1095-1096, 10.1063/1.1994494 V.F. de Paula, M.I.F. Guedes, M.F. van Tilburg, I.G.P. Vieira, J.B. Silva, R.C.R. dos Santos, J.P. Echeverry, G. Costa, B.P. Silva, F.F. Maia, E.W.S. Caetano, V.N. Freire Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals J. Solid State Chem., 312 (2022), Article 123242, 10.1016/j.jssc.2022.123242 M.Z.S. Flores, V.N. Freire, R.P. dos Santos, G.A. Farias, E.W.S. Caetano, M.C.F. de Oliveira, J.R.L. Fernandez, L.M.R. Scolfaro, M.J.B. Bezerra, T.M. Oliveira, G.A. Bezerra, B.S. Cavada, H.W. Leite Alves Optical absorption and electronic band structure first-principles calculations of α-Glycine crystals Phys. Rev. B Condens. Matter, 77 (11) (2008), Article 115104, 10.1103/PhysRevB.77.115104 A.M. Silva, S.N. Costa, B.P. Silva, V.N. Freire, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano, F.F. Maia Jr. Assessing the role of water on the electronic structure and vibrational spectra of monohydrated L-aspartic acid crystals Cryst. Growth Des., 13 (11) (2013), pp. 4844-4851, 10.1021/cg401016v G. Zanatta, C. Gottfried, A.M.M. Silva, E.W.S.W.S. Caetano, F.A.M.A.M. Sales, V.N.N. Freire L-asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations J. Chem. Phys., 140 (12) (2014), Article 124511, 10.1063/1.4869179 G. Zanatta, M.B. da Silva, A. da Silva, R.C.R. dos Santos, F.A.M. Sales, C. Gottfried, S. Caetano, V.N. Freire First-generation antipsychotic haloperidol: optical absorption measurement and structural, electronic, and optical properties of its anhydrous monoclinic crystal by first-principle approaches New J. Chem., 42 (16) (2018), pp. 13629-13640, 10.1039/C8NJ01548A P.R. Tulip, S.J. Clark Lattice dynamical and dielectric properties of L-amino acids Phys. Rev. B, 74 (6) (2006), Article 064301, 10.1103/PhysRevB.74.064301 A.M. Silva, S.N. Costa, F.A.M. Sales, V.N. Freire, E.M. Bezerra, R.P. Santos, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano Vibrational spectroscopy and phonon-related properties of the l -aspartic acid anhydrous monoclinic crystal J. Phys. Chem. A, 119 (49) (2015), pp. 11791-11803, 10.1021/acs.jpca.5b08784 J. Hoja, H.-Y. Ko, M.A. Neumann, R. Car, R.A. DiStasio, A. Tkatchenko Reliable and practical computational description of molecular crystal polymorphs Sci. Adv., 5 (1) (2019), 10.1126/sciadv.aau3338 T. Todorova, B. Delley Molecular crystals: a test system for weak bonding J. Phys. Chem. C, 114 (48) (2010), pp. 20523-20530, 10.1021/jp1049759 D.C. Sorescu, B.M. Rice Theoretical predictions of energetic molecular crystals at ambient and hydrostatic compression conditions using dispersion corrections to conventional density functionals (DFT-D) J. Phys. Chem. C, 114 (14) (2010), pp. 6734-6748, 10.1021/jp100379a R. Podeszwa, B.M. Rice, K. Szalewicz Predicting structure of molecular crystals from first principles Phys. Rev. Lett., 101 (11) (2008), Article 115503, 10.1103/PhysRevLett.101.115503 J. Hoja, A.M. Reilly, A. Tkatchenko First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure Wiley Interdiscip. Rev. Comput. Mol. Sci., 7 (1) (2017), p. e1294, 10.1002/wcms.1294 L. Kronik, A. Tkatchenko Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond Acc. Chem. Res., 47 (11) (2014), pp. 3208-3216, 10.1021/ar500144s A.M. Reilly, A. Tkatchenko Understanding the role of vibrations, exact exchange, and many-body van Der Waals interactions in the cohesive properties of molecular crystals J. Chem. Phys., 139 (2) (2013), Article 024705, 10.1063/1.4812819 M. Wenger, J. Bernstein Designing a cocrystal of γ-amino butyric acid Angew. Chem. Int. Ed., 45 (47) (2006), pp. 7966-7969, 10.1002/anie.200603241 J.G.G. da Silva Filho, V.N.N. Freire, E.W.S.W.S. Caetano, L.O.O. Ladeira, U.L.L. Fulco, E.L.L. Albuquerque A comparative density functional theory study of electronic structure and optical properties of gamma-aminobutyric acid and its cocrystals with oxalic and benzoic acid Chem. Phys. Lett., 587 (2013), pp. 20-24, 10.1016/j.cplett.2013.09.051 Q. Gao, Q. Duan, D. Wang, Y. Zhang, C. Zheng Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies J. Agric. Food Chem., 61 (8) (2013), pp. 1914-1919, 10.1021/jf304749v APEX4 Data Collection Software, Bruker AXS, Inc., Madison, Wisconsin, USA (2021) SAINT Data Reduction Software, Bruker AXS, Inc., Madison, Wisconsin, USA (2019) G.M. Sheldrick SADABS, Software for Empirical Absorption Corrections University of Göttingen, Germany, Germany (1996) L. Krause, R. Herbst-Irmer, G.M. Sheldrick, D. Stalke Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination J. Appl. Crystallogr., 48 (1) (2015), pp. 3-10, 10.1107/S1600576714022985 O.v. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann OLEX2 : a complete structure solution, refinement and analysis program J. Appl. Crystallogr., 42 (2) (2009), pp. 339-341, 10.1107/S0021889808042726 G.M. Sheldrick Shelxt – integrated space-group and crystal-structure determination Acta Crystallogr A Found Adv, 71 (1) (2015), pp. 3-8, 10.1107/S2053273314026370 G.M. Sheldrick Crystal structure refinement with SHELXL Acta Crystallogr C Struct Chem, 71 (1) (2015), pp. 3-8, 10.1107/S2053229614024218 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. v Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. v Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox Gaussian16 Revision C.01 (2016) Y. Zhao, D.G. Truhlar The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function Theor. Chem. Acc., 120 (1–3) (2008), pp. 215-241, 10.1007/s00214-007-0310-x S. Miertuš, E. Scrocco, J. Tomasi Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects Chem. Phys., 55 (1) (1981), pp. 117-129, 10.1016/0301-0104(81)85090-2 E.K.U. Gross, W. Kohn Time-dependent density-functional theory Adv. Quant. Chem., 21 (1990), pp. 255-291, 10.1016/S0065-3276(08)60600-0 E. Runge, E.K.U. Gross Density-functional theory for time-dependent systems Phys. Rev. Lett., 52 (12) (1984), pp. 997-1000, 10.1103/PhysRevLett.52.997 L. Petit, P. Maldivi, C. Adamo Predictions of optical excitations in transition-metal complexes with time dependent-density functional theory: influence of basis sets J. Chem. Theor. Comput., 1 (5) (2005), pp. 953-962, 10.1021/ct0500500 N.M. O’boyle, A.L. Tenderholt, K.M. Langner Cclib: a library for package-independent computational Chemistry algorithms J. Comput. Chem., 29 (5) (2008), pp. 839-845, 10.1002/jcc.20823 R. Dennington, T.A. Keith, J.M. Millam GaussView Version 6 (2019) S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne First principles methods using CASTEP Zeitschrift fur Kristallographie, 220 (5–6) (2005), pp. 567-570, 10.1524/zkri.220.5.567.65075 M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne First-principles simulation: ideas, illustrations and the CASTEP code J. Phys. Condens. Matter, 14 (11) (2002), pp. 2717-2744, 10.1088/0953-8984/14/11/301 D.M. Ceperley, B.J. Alder Ground state of the electron gas by a stochastic method Phys. Rev. Lett., 45 (7) (1980), pp. 566-569, 10.1103/PhysRevLett.45.566 J.P. Perdew, K. Burke, M. Ernzerhof Generalized gradient approximation made simple Phys. Rev. Lett., 77 (18) (1996), pp. 3865-3868, 10.1103/PhysRevLett.77.3865 A. Tkatchenko, M. Scheffler Accurate molecular van Der Waals interactions from ground-state electron density and free-atom reference data Phys. Rev. Lett., 102 (7) (2009), pp. 6-9, 10.1103/PhysRevLett.102.073005 J. Antony, S. Grimme Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules Phys. Chem. Chem. Phys., 8 (45) (2006), pp. 5287-5293, 10.1039/b612585a D. Hamann, M. Schlüter, C. Chiang Norm-conserving pseudopotentials Phys. Rev. Lett., 43 (20) (1979), pp. 1494-1497, 10.1103/PhysRevLett.43.1494 O. Karalti, X. Su, W.A. Al-Saidi, K.D. Jordan Correcting density functionals for dispersion interactions using pseudopotentials Chem. Phys. Lett., 591 (2014), pp. 133-136, 10.1016/j.cplett.2013.11.024 B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, M. Cote, S.G. Louie, M.L. Cohen Relaxation of crystals with the quasi-Newton method J. Comput. Phys., 131 (1) (1997), pp. 233-240, 10.1006/jcph.1996.5612 H.J. Monkhorst, J.D. Pack Special points for brillouin-zone integrations Phys. Rev. B, 13 (12) (1976), pp. 5188-5192, 10.1103/PhysRevB.16.1748 E. Dichi, M. Sghaier, B. Fraisse, F. Bonhomme Physico-chemical characterization of gamma-amino n-butyric acid nanoparticles Chem. Pharm. Bull. (Tokyo), 59 (6) (2011), pp. 703-709, 10.1248/cpb.59.703 S.K. Owusu-Ware, B.Z. Chowdhry, S.A. Leharne, M.D. Antonijevic Novel analytical approaches for the study of mobility and relaxation phenomena in positional isomers of GABA Phys. Chem. Chem. Phys., 15 (46) (2013), Article 20046, 10.1039/c3cp52670d I. Mandal, S. Prasad, R. Swaminathan, R. Venkatramani Charge transfer transitions originating from charged amino acids account for 300-800 Nm UV-visible electronic absorption spectra in proteins Biophys. J., 112 (3) (2017), pp. 190a-191a, 10.1016/j.bpj.2016.11.1057 G. Venkatesan, V. Kathiravan, S. Pari Optical and electrical properties of Glycine manganese chloride crystal Phys. B Condens. Matter, 515 (2017), pp. 99-103, 10.1016/j.physb.2017.03.023 G.A. Serdaroğlu Computational study on relationship between quantum chemical parameters and reactivity of the zwitterionic GABA and its agonists: solvent effect Indian Journal of Chemistry - Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 56 (2017), pp. 1143-1153 M. Fox Optical Properties of Solids (second ed.), Oxford University Press (2010), 10.1119/1.1691372 Vol. first ed. J.P. Perdew Density functional theory and the band gap problem Int. J. Quant. Chem., 28 (S19) (2009), pp. 497-523, 10.1002/qua.560280846 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.place.none.fl_str_mv |
Estados Unidos |
dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0022459623000683?via%3Dihub |
institution |
Universidad de Ibagué |
bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/a59b6338-f460-4f47-84f6-4f2dba0d199a/download https://repositorio.unibague.edu.co/bitstreams/c7e8e9b8-0d59-4f78-bf82-f99a695b143c/download https://repositorio.unibague.edu.co/bitstreams/e77628ed-f810-4367-a875-26d12ceb48f4/download https://repositorio.unibague.edu.co/bitstreams/d4ab3ea4-cd38-4193-a885-4515025d38c3/download |
bitstream.checksum.fl_str_mv |
33691dab8ed141c29310f8e3c512a017 5551dbb9eb54d4ef0958f79030b327ba 2fa3e590786b9c0f3ceba1b9656b7ac3 36e735a8bd9540a019d66e55dbddd60d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814204134098731008 |
spelling |
Silva, José Barbosa1186c35e-7dd9-4893-b2e1-375817264c0a-1Echeverry, Juan Pabloaf6d8bd9-5a7e-4795-a334-dc74437662ae-1dos Santos, Regina Claudia Rodrigues27561c00-f9d6-41d0-beb6-ab4fcf0698d0-1de Paula, Valdir Ferreira5f0d5253-12a3-4b02-8390-9956f1681580-1Guedes, Maria Izabel Florindoe018e616-a1a9-4f25-8e52-437bbac96177-1e Silva, Bruno Poti354d758e-42c8-4da1-93b2-d465ff94b97e-1Valentini, Antoninho439fda90-ff24-4a06-968a-cfd843f55cf3-1Caetano, Ewerton Wagner Santos4bff1a71-3459-4dcd-af32-8c55cd1a6a4f-1Freire, Valder Nogueira71347990-b65a-45e1-be9b-b8e0372b1ab5-12023-10-17T21:00:05Z2023-10-17T21:00:05Z2023-02-08This work presents the formation of monoclinic γ-aminobutyric acid (GABA) crystals grown from an aqueous ethanol solution with the dimensions 4 × 1 × 0.6 mm3. The structural properties of the grown crystal were evaluated via X-ray diffraction analysis of the powder and single crystal, which confirmed a monoclinic crystal system with space group P21/c. Thermal stability and the melting point of the synthesized GABA crystal were investigated using TG-DSC measurements. We also characterized experimentally monoclinic and molecular GABA solvated in water, obtaining its optical absorption spectrum in the UV-VIS region. Time-dependent DFT calculations were performed for the GABA molecule in the neutral and zwitterion forms to understand their optical absorption features. Structural, electronic, and optical properties of four γ-aminobutyric acid (GABA) crystal polymorphs (monoclinic, tetragonal, hexagonal, and monohydrate) were achieved through DFT calculations employing a dispersion corrected exchange-correlation functional. Differences in the electronic and optical properties between polymorphs are discussed. We predict the GABA monoclinic crystal to be an indirect gap semiconductor with a gap value of 5.02 eV, in good agreement with our experimental measurements. Considering the other three polymorphs, their fundamental gap values range from 4.6 eV to 5.16 eV (being direct for all of them, except the monohydrate). The absorption spectra calculations reveal a significant optical anisotropy for all GABA crystals, with the highest optical absorption for the monoclinic structure in the 5–6 eV energy rangeapplication/pdfJosé Barbosa Silva, Juan Pablo Echeverry, Regina Claudia Rodrigues dos Santos, Valdir Ferreira de Paula, Maria Izabel Florindo Guedes, Bruno Poti e Silva, Antoninho Valentini, Ewerton Wagner Santos Caetano, Valder Nogueira Freire, Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties, Journal of Solid State Chemistry, Volume 321, 2023, 123900, ISSN 0022-4596, https://doi.org/10.1016/j.jssc.2023.123900. (https://www.sciencedirect.com/science/article/pii/S0022459623000683)00224596https://hdl.handle.net/20.500.12313/3841engEstados Unidos121239001321Journal of Solid State ChemistryT.G. Smart, F.A. Stephenson A half century of γ-aminobutyric acid Brain Neurosci Adv, 3 (2019), Article 239821281985824, 10.1177/2398212819858249M.C. Gravielle Activation-induced regulation of GABAA receptors: is there a link with the molecular basis of benzodiazepine tolerance? Pharmacol. Res., 109 (2016), pp. 92-100, 10.1016/j.phrs.2015.12.030G. Johnston GABAA receptor channel pharmacology Curr. Pharmaceut. Des., 11 (15) (2005), pp. 1867-1885, 10.2174/1381612054021024M. Cozzolino, V. Bazzurro, E. Gatta, P. Bianchini, E. Angeli, M. Robello, A. Diaspro Precise 3D modulation of electro-optical parameters during neurotransmitter uncaging experiments with neurons in vitro Sci. Rep., 10 (1) (2020), Article 13380, 10.1038/s41598-020-70217-5S. Blanco, J.C. López, S. Mata, J.L. Alonso Conformations of γ-aminobutyric acid (GABA): the role of the N→π∗ interaction Angew. Chem. Int. Ed., 49 (48) (2010), pp. 9187-9192, 10.1002/anie.201002535K. Tanaka, H. Akutsu, Y. Ozaki, Y. Kyogoku, K. Tomita Molecular conformations of γ-aminobutyric acid and γ-Amino-β-Hydroxybutyric acid in aqueous solution Bull. Chem. Soc. Jpn., 51 (9) (1978), pp. 2654-2658, 10.1246/bcsj.51.2654C. Cheng, Z. Zhu, S. Li, G. Ren, J. Zhang, H. Cong, Y. Peng, J. Han, C. Chang, H. Zhao Broadband terahertz recognizing conformational characteristics of a significant neurotransmitter γ-aminobutyric acid RSC Adv., 9 (35) (2019), pp. 20240-20247, 10.1039/C9RA02971KA.J. Dobson, R.E. Gerkin γ-Aminobutyric acid: a novel tetragonal phase Acta Crystallogr. C, 52 (12) (1996), pp. 3075-3078, 10.1107/S0108270196010001H.-P. Weber, B.M. Craven, R.K. McMullan The neutron structure of and thermal motion in γ-aminobutyric acid (GABA) at 122 K Acta Crystallogr. B, 39 (3) (1983), pp. 360-366, 10.1107/S0108768183002542K. Tomita, H. Higashi, T. Fujiwara Crystal and molecular structure of ω-amino acids, ω-amino sulfonic acids and their derivatives. IV. The crystal and molecular structure of γ-aminobutyric acid (GABA), a nervous inhibitory transmitter Bull. Chem. Soc. Jpn., 46 (7) (1973), pp. 2199-2204, 10.1246/bcsj.46.2199E.J.C. de Vries, D.C. Levendis, H.A. Reece A hexagonal solvate of the neurotransmitter γ-aminobutyric acid CrystEngComm, 13 (10) (2011), p. 3334, 10.1039/c0ce00803fF.P.A. Fabbiani, G. Buth, D.C. Levendis, A.J. Cruz-Cabeza Pharmaceutical hydrates under ambient conditions from high-pressure seeds: a case study of GABA monohydrate Chem. Commun., 50 (15) (2014), pp. 1817-1819, 10.1039/C3CC48466AE.G. Steward, R.B. Player, D. Warner The crystal structure of γ-aminobutyric acid hydrochloride: a refinement Acta Crystallogr. B, 29 (12) (1973), pp. 2825-2826, 10.1107/S0567740873007594F.P.A. Fabbiani, D.R. Allan, W.G. Marshall, S. Parsons, C.R. Pulham, R.I. Smith High-pressure recrystallisation—a route to new polymorphs and solvates of acetamide and parabanic acid J. Cryst. Growth, 275 (1–2) (2005), pp. 185-192, 10.1016/j.jcrysgro.2004.10.083N. Qiao, M. Li, W. Schlindwein, N. Malek, A. Davies, G. Trappitt Pharmaceutical cocrystals: an overview Int. J. Pharm., 419 (1–2) (2011), pp. 1-11, 10.1016/j.ijpharm.2011.07.037A.S. Sinha, A.R. Maguire, S.E. Lawrence Cocrystallization of nutraceuticals Cryst. Growth Des., 15 (2) (2015), pp. 984-1009, 10.1021/cg501009cD.M. Suresh, D. Sajan, K.P. Laladas, I.H. Joe, V.S. Jayakumar, V.K. Vaidyan, V.S. Jayakumar Vibrational spectra of γ-aminobutyric acid AIP Conference Proceedings, AIP (2008), pp. 95-97, 10.1063/1.3046239C.M. da Silva, J.G. Silva Filho, G.S. Pinheiro, R.C. Vilela, F.E.A. Melo, J.A. Lima, P.T.C. Freire Raman spectroscopy of γ-aminobutyric acid under high pressure Vib. Spectrosc., 92 (2017), pp. 162-168, 10.1016/j.vibspec.2017.06.011Y. Du, J. Xue, Q. Cai, Q. Zhang Spectroscopic investigation on structure and PH dependent cocrystal formation between gamma-aminobutyric acid and benzoic acid Spectrochim. Acta Mol. Biomol. Spectrosc., 191 (2018), pp. 377-381, 10.1016/j.saa.2017.10.036E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, A.H. de Lima Costa, S.N. Costa, A.M. Silva, F.A.M. Sales, V.N. Freire Anhydrous proline crystals: structural optimization, optoelectronic properties, effective masses and Frenkel exciton energy J. Phys. Chem. Solid., 121 (2018), 10.1016/j.jpcs.2018.05.006J.S. Rodríguez, G. Costa, M.B. da Silva, B.P. Silva, L.J. Honório, P. de Lima-Neto, R.C.R. Santos, E.W.S. Caetano, H.W.L. Alves, V.N. Freire Structural and optoelectronic properties of the α-, β-, and γ-Glycine polymorphs and the Glycine dihydrate crystal: a DFT study Cryst. Growth Des., 19 (9) (2019), pp. 5204-5217, 10.1021/acs.cgd.9b00593S.N. Costa, F.A.M. Sales, V.N. Freire, F.F. Maia, E.W.S. Caetano, L.O. Ladeira, E.L. Albuquerque, U.L. Fulco L-serine anhydrous crystals: structural, electronic, and optical properties by first-principles calculations, and optical absorption measurement Cryst. Growth Des., 13 (7) (2013), pp. 2793-2802, 10.1021/cg400111wF.F. Maia Jr., V.N. Freire, E.W.S. Caetano, D.L. Azevedo, F.A.M. Sales, E.L. Albuquerque Anhydrous crystals of DNA bases are wide gap semiconductors J. Chem. Phys., 134 (17) (2011), Article 175101, 10.1063/1.3584680J.R. Cândido-Júnior, F.A.M. Sales, S.N. Costa, P. de Lima-Neto, D.L. Azevedo, E.W.S. Caetano, E.L. Albuquerque, V.N. Freire Monoclinic and orthorhombic cysteine crystals are small gap insulators Chem. Phys. Lett., 512 (4–6) (2011), pp. 208-210, 10.1016/j.cplett.2011.07.028A.M. Silva, B.P. Silva, F.A.M. Sales, V.N. Freire, E. Moreira, U.L. Fulco, E.L. Albuquerque, F.F. Maia, E.W.S. Caetano Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior Phys. Rev. B, 86 (19) (2012), Article 195201, 10.1103/PhysRevB.86.195201M.B. da Silva, T.S. Francisco, F.F. Maia, E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, V.N. Freire Improved description of the structural and optoelectronic properties of DNA/RNA nucleobase anhydrous crystals: experiment and dispersion-corrected density functional theory calculations Phys. Rev. B, 96 (8) (2017), Article 085206, 10.1103/PhysRevB.96.085206E.W.S. Caetano, J.R. Pinheiro, M. Zimmer, V.N. Freire, G.A. Farias, G.A. Bezerra, B.S. Cavada, J.R.L. Fernandez, J.R. Leite, M.C.F. de Oliveira, J.A. Pinheiro, J.L. de Lima Filho, H.W. Leite Alves Molecular signature in the photoluminescence of alpha-Glycine, L-alanine and L-asparagine crystals: detection, ab initio calculations, and bio-sensor applications AIP Conf. Proc., 772 (2005), pp. 1095-1096, 10.1063/1.1994494V.F. de Paula, M.I.F. Guedes, M.F. van Tilburg, I.G.P. Vieira, J.B. Silva, R.C.R. dos Santos, J.P. Echeverry, G. Costa, B.P. Silva, F.F. Maia, E.W.S. Caetano, V.N. Freire Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals J. Solid State Chem., 312 (2022), Article 123242, 10.1016/j.jssc.2022.123242M.Z.S. Flores, V.N. Freire, R.P. dos Santos, G.A. Farias, E.W.S. Caetano, M.C.F. de Oliveira, J.R.L. Fernandez, L.M.R. Scolfaro, M.J.B. Bezerra, T.M. Oliveira, G.A. Bezerra, B.S. Cavada, H.W. Leite Alves Optical absorption and electronic band structure first-principles calculations of α-Glycine crystals Phys. Rev. B Condens. Matter, 77 (11) (2008), Article 115104, 10.1103/PhysRevB.77.115104A.M. Silva, S.N. Costa, B.P. Silva, V.N. Freire, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano, F.F. Maia Jr. Assessing the role of water on the electronic structure and vibrational spectra of monohydrated L-aspartic acid crystals Cryst. Growth Des., 13 (11) (2013), pp. 4844-4851, 10.1021/cg401016vG. Zanatta, C. Gottfried, A.M.M. Silva, E.W.S.W.S. Caetano, F.A.M.A.M. Sales, V.N.N. Freire L-asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations J. Chem. Phys., 140 (12) (2014), Article 124511, 10.1063/1.4869179G. Zanatta, M.B. da Silva, A. da Silva, R.C.R. dos Santos, F.A.M. Sales, C. Gottfried, S. Caetano, V.N. Freire First-generation antipsychotic haloperidol: optical absorption measurement and structural, electronic, and optical properties of its anhydrous monoclinic crystal by first-principle approaches New J. Chem., 42 (16) (2018), pp. 13629-13640, 10.1039/C8NJ01548AP.R. Tulip, S.J. Clark Lattice dynamical and dielectric properties of L-amino acids Phys. Rev. B, 74 (6) (2006), Article 064301, 10.1103/PhysRevB.74.064301A.M. Silva, S.N. Costa, F.A.M. Sales, V.N. Freire, E.M. Bezerra, R.P. Santos, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano Vibrational spectroscopy and phonon-related properties of the l -aspartic acid anhydrous monoclinic crystal J. Phys. Chem. A, 119 (49) (2015), pp. 11791-11803, 10.1021/acs.jpca.5b08784J. Hoja, H.-Y. Ko, M.A. Neumann, R. Car, R.A. DiStasio, A. Tkatchenko Reliable and practical computational description of molecular crystal polymorphs Sci. Adv., 5 (1) (2019), 10.1126/sciadv.aau3338T. Todorova, B. Delley Molecular crystals: a test system for weak bonding J. Phys. Chem. C, 114 (48) (2010), pp. 20523-20530, 10.1021/jp1049759D.C. Sorescu, B.M. Rice Theoretical predictions of energetic molecular crystals at ambient and hydrostatic compression conditions using dispersion corrections to conventional density functionals (DFT-D) J. Phys. Chem. C, 114 (14) (2010), pp. 6734-6748, 10.1021/jp100379aR. Podeszwa, B.M. Rice, K. Szalewicz Predicting structure of molecular crystals from first principles Phys. Rev. Lett., 101 (11) (2008), Article 115503, 10.1103/PhysRevLett.101.115503J. Hoja, A.M. Reilly, A. Tkatchenko First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure Wiley Interdiscip. Rev. Comput. Mol. Sci., 7 (1) (2017), p. e1294, 10.1002/wcms.1294L. Kronik, A. Tkatchenko Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond Acc. Chem. Res., 47 (11) (2014), pp. 3208-3216, 10.1021/ar500144sA.M. Reilly, A. Tkatchenko Understanding the role of vibrations, exact exchange, and many-body van Der Waals interactions in the cohesive properties of molecular crystals J. Chem. Phys., 139 (2) (2013), Article 024705, 10.1063/1.4812819M. Wenger, J. Bernstein Designing a cocrystal of γ-amino butyric acid Angew. Chem. Int. Ed., 45 (47) (2006), pp. 7966-7969, 10.1002/anie.200603241J.G.G. da Silva Filho, V.N.N. Freire, E.W.S.W.S. Caetano, L.O.O. Ladeira, U.L.L. Fulco, E.L.L. Albuquerque A comparative density functional theory study of electronic structure and optical properties of gamma-aminobutyric acid and its cocrystals with oxalic and benzoic acid Chem. Phys. Lett., 587 (2013), pp. 20-24, 10.1016/j.cplett.2013.09.051Q. Gao, Q. Duan, D. Wang, Y. Zhang, C. Zheng Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies J. Agric. Food Chem., 61 (8) (2013), pp. 1914-1919, 10.1021/jf304749vAPEX4 Data Collection Software, Bruker AXS, Inc., Madison, Wisconsin, USA (2021)SAINT Data Reduction Software, Bruker AXS, Inc., Madison, Wisconsin, USA (2019)G.M. Sheldrick SADABS, Software for Empirical Absorption Corrections University of Göttingen, Germany, Germany (1996)L. Krause, R. Herbst-Irmer, G.M. Sheldrick, D. Stalke Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination J. Appl. Crystallogr., 48 (1) (2015), pp. 3-10, 10.1107/S1600576714022985O.v. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann OLEX2 : a complete structure solution, refinement and analysis program J. Appl. Crystallogr., 42 (2) (2009), pp. 339-341, 10.1107/S0021889808042726G.M. Sheldrick Shelxt – integrated space-group and crystal-structure determination Acta Crystallogr A Found Adv, 71 (1) (2015), pp. 3-8, 10.1107/S2053273314026370G.M. Sheldrick Crystal structure refinement with SHELXL Acta Crystallogr C Struct Chem, 71 (1) (2015), pp. 3-8, 10.1107/S2053229614024218M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. v Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. v Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox Gaussian16 Revision C.01 (2016)Y. Zhao, D.G. Truhlar The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function Theor. Chem. Acc., 120 (1–3) (2008), pp. 215-241, 10.1007/s00214-007-0310-xS. Miertuš, E. Scrocco, J. Tomasi Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects Chem. Phys., 55 (1) (1981), pp. 117-129, 10.1016/0301-0104(81)85090-2E.K.U. Gross, W. Kohn Time-dependent density-functional theory Adv. Quant. Chem., 21 (1990), pp. 255-291, 10.1016/S0065-3276(08)60600-0E. Runge, E.K.U. Gross Density-functional theory for time-dependent systems Phys. Rev. Lett., 52 (12) (1984), pp. 997-1000, 10.1103/PhysRevLett.52.997L. Petit, P. Maldivi, C. Adamo Predictions of optical excitations in transition-metal complexes with time dependent-density functional theory: influence of basis sets J. Chem. Theor. Comput., 1 (5) (2005), pp. 953-962, 10.1021/ct0500500N.M. O’boyle, A.L. Tenderholt, K.M. Langner Cclib: a library for package-independent computational Chemistry algorithms J. Comput. Chem., 29 (5) (2008), pp. 839-845, 10.1002/jcc.20823R. Dennington, T.A. Keith, J.M. Millam GaussView Version 6 (2019)S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne First principles methods using CASTEP Zeitschrift fur Kristallographie, 220 (5–6) (2005), pp. 567-570, 10.1524/zkri.220.5.567.65075M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne First-principles simulation: ideas, illustrations and the CASTEP code J. Phys. Condens. Matter, 14 (11) (2002), pp. 2717-2744, 10.1088/0953-8984/14/11/301D.M. Ceperley, B.J. Alder Ground state of the electron gas by a stochastic method Phys. Rev. Lett., 45 (7) (1980), pp. 566-569, 10.1103/PhysRevLett.45.566J.P. Perdew, K. Burke, M. Ernzerhof Generalized gradient approximation made simple Phys. Rev. Lett., 77 (18) (1996), pp. 3865-3868, 10.1103/PhysRevLett.77.3865A. Tkatchenko, M. Scheffler Accurate molecular van Der Waals interactions from ground-state electron density and free-atom reference data Phys. Rev. Lett., 102 (7) (2009), pp. 6-9, 10.1103/PhysRevLett.102.073005J. Antony, S. Grimme Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules Phys. Chem. Chem. Phys., 8 (45) (2006), pp. 5287-5293, 10.1039/b612585aD. Hamann, M. Schlüter, C. Chiang Norm-conserving pseudopotentials Phys. Rev. Lett., 43 (20) (1979), pp. 1494-1497, 10.1103/PhysRevLett.43.1494O. Karalti, X. Su, W.A. Al-Saidi, K.D. Jordan Correcting density functionals for dispersion interactions using pseudopotentials Chem. Phys. Lett., 591 (2014), pp. 133-136, 10.1016/j.cplett.2013.11.024B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, M. Cote, S.G. Louie, M.L. Cohen Relaxation of crystals with the quasi-Newton method J. Comput. Phys., 131 (1) (1997), pp. 233-240, 10.1006/jcph.1996.5612H.J. Monkhorst, J.D. Pack Special points for brillouin-zone integrations Phys. Rev. B, 13 (12) (1976), pp. 5188-5192, 10.1103/PhysRevB.16.1748E. Dichi, M. Sghaier, B. Fraisse, F. Bonhomme Physico-chemical characterization of gamma-amino n-butyric acid nanoparticles Chem. Pharm. Bull. (Tokyo), 59 (6) (2011), pp. 703-709, 10.1248/cpb.59.703S.K. Owusu-Ware, B.Z. Chowdhry, S.A. Leharne, M.D. Antonijevic Novel analytical approaches for the study of mobility and relaxation phenomena in positional isomers of GABA Phys. Chem. Chem. Phys., 15 (46) (2013), Article 20046, 10.1039/c3cp52670dI. Mandal, S. Prasad, R. Swaminathan, R. Venkatramani Charge transfer transitions originating from charged amino acids account for 300-800 Nm UV-visible electronic absorption spectra in proteins Biophys. J., 112 (3) (2017), pp. 190a-191a, 10.1016/j.bpj.2016.11.1057G. Venkatesan, V. Kathiravan, S. Pari Optical and electrical properties of Glycine manganese chloride crystal Phys. B Condens. Matter, 515 (2017), pp. 99-103, 10.1016/j.physb.2017.03.023G.A. Serdaroğlu Computational study on relationship between quantum chemical parameters and reactivity of the zwitterionic GABA and its agonists: solvent effect Indian Journal of Chemistry - Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 56 (2017), pp. 1143-1153M. Fox Optical Properties of Solids (second ed.), Oxford University Press (2010), 10.1119/1.1691372 Vol. first ed.J.P. Perdew Density functional theory and the band gap problem Int. J. Quant. Chem., 28 (S19) (2009), pp. 497-523, 10.1002/qua.560280846All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.sciencedirect.com/science/article/pii/S0022459623000683?via%3DihubDFT calculationsGABA polymorphs CrystalsOptical propertiesStructural propertiesγ-amino butyric acid (GABA) crystalMolecular γ-amino butyric acid and its crystals: Structural, electronic and optical propertiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTMolecular γ-amino butyric acid and its crystals Structural, electronic and optical properties - 1-s2.0-S0022459623000683-main.pdf.txtMolecular γ-amino butyric acid and its crystals Structural, electronic and optical properties - 1-s2.0-S0022459623000683-main.pdf.txtExtracted texttext/plain4984https://repositorio.unibague.edu.co/bitstreams/a59b6338-f460-4f47-84f6-4f2dba0d199a/download33691dab8ed141c29310f8e3c512a017MD53THUMBNAILMolecular γ-amino butyric acid and its crystals Structural, electronic and optical properties - 1-s2.0-S0022459623000683-main.pdf.jpgMolecular γ-amino butyric acid and its crystals Structural, electronic and optical properties - 1-s2.0-S0022459623000683-main.pdf.jpgGenerated Thumbnailimage/jpeg11733https://repositorio.unibague.edu.co/bitstreams/c7e8e9b8-0d59-4f78-bf82-f99a695b143c/download5551dbb9eb54d4ef0958f79030b327baMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/e77628ed-f810-4367-a875-26d12ceb48f4/download2fa3e590786b9c0f3ceba1b9656b7ac3MD52ORIGINALMolecular γ-amino butyric acid and its crystals Structural, electronic and optical properties - 1-s2.0-S0022459623000683-main.pdfMolecular γ-amino butyric acid and its crystals Structural, electronic and optical properties - 1-s2.0-S0022459623000683-main.pdfapplication/pdf127430https://repositorio.unibague.edu.co/bitstreams/d4ab3ea4-cd38-4193-a885-4515025d38c3/download36e735a8bd9540a019d66e55dbddd60dMD5120.500.12313/3841oai:repositorio.unibague.edu.co:20.500.12313/38412023-10-18 03:00:44.242https://creativecommons.org/licenses/by-nc-nd/4.0/All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |