Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification
The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 struct...
- Autores:
-
Hernandez, Juan Sebastian Trujillo
Aragón-Muriel, Alberto
Corrales Quintero, Willinton
Castro Velásquez, Juan Camilo
Salazar-Camacho, Natalia Andrea
Pérez Alcázar, German Antonio
Tabares, Jesús Anselmo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/3824
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/3824
- Palabra clave:
- Catalytic activity
Esterification
Fe3O4 nanoparticles
Methylene blue
Mössbauer spectroscopy
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIBAGUE2_c33174807d519ea012685d8a84086f30 |
---|---|
oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/3824 |
network_acronym_str |
UNIBAGUE2 |
network_name_str |
Repositorio Universidad de Ibagué |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification |
title |
Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification |
spellingShingle |
Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification Catalytic activity Esterification Fe3O4 nanoparticles Methylene blue Mössbauer spectroscopy |
title_short |
Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification |
title_full |
Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification |
title_fullStr |
Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification |
title_full_unstemmed |
Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification |
title_sort |
Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification |
dc.creator.fl_str_mv |
Hernandez, Juan Sebastian Trujillo Aragón-Muriel, Alberto Corrales Quintero, Willinton Castro Velásquez, Juan Camilo Salazar-Camacho, Natalia Andrea Pérez Alcázar, German Antonio Tabares, Jesús Anselmo |
dc.contributor.author.none.fl_str_mv |
Hernandez, Juan Sebastian Trujillo Aragón-Muriel, Alberto Corrales Quintero, Willinton Castro Velásquez, Juan Camilo Salazar-Camacho, Natalia Andrea Pérez Alcázar, German Antonio Tabares, Jesús Anselmo |
dc.subject.proposal.eng.fl_str_mv |
Catalytic activity Esterification Fe3O4 nanoparticles Methylene blue Mössbauer spectroscopy |
topic |
Catalytic activity Esterification Fe3O4 nanoparticles Methylene blue Mössbauer spectroscopy |
description |
The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 structural phase present an acicular form confirmed by X-ray diffraction. Transmission electron microscopy results identified the acicular shape and agglomeration of the nanoparticles. Mössbauer spectroscopy showed that the spectrum is composed of five components at room temperature, a hyperfine magnetic field distribution (HMFD), two sextets, a doublet, and a singlet. The presence of the HMFD means that a particle size distribution is present. Fluorescence spectroscopy studied the CA of the nanoparticles with methylene blue and found adsorption/degradation properties of the dye. The catalytic activity of the nanoparticles was evaluated in the esterification reaction by comparing the results in the presence and absence of catalyst for the reaction with isobutanol and octanol, where it is observed that the selectivity for the products MIBP and MNOP is favored in the first three hours of reaction |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-16 |
dc.date.accessioned.none.fl_str_mv |
2023-10-06T23:13:34Z |
dc.date.available.none.fl_str_mv |
2023-10-06T23:13:34Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Hernandez, J.S.T.; Aragón-Muriel, A.; Corrales Quintero, W.; Castro Velásquez, J.C.; Salazar-Camacho, N.A.; Pérez Alcázar, G.A.; Tabares, J.A. Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/ Degradation of Methylene Blue and Esterification. Molecules 2022, 27, 8976. https://doi.org/10.3390/ molecules27248976 |
dc.identifier.issn.none.fl_str_mv |
14203049 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/3824 |
identifier_str_mv |
Hernandez, J.S.T.; Aragón-Muriel, A.; Corrales Quintero, W.; Castro Velásquez, J.C.; Salazar-Camacho, N.A.; Pérez Alcázar, G.A.; Tabares, J.A. Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/ Degradation of Methylene Blue and Esterification. Molecules 2022, 27, 8976. https://doi.org/10.3390/ molecules27248976 14203049 |
url |
https://hdl.handle.net/20.500.12313/3824 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
11 |
dc.relation.citationissue.none.fl_str_mv |
8976 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
27 |
dc.relation.ispartofjournal.none.fl_str_mv |
Molecules |
dc.relation.references.none.fl_str_mv |
Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Kadir, A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052 Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67 Andra, S.; Balu, S.K.; Jeevanandham, J.; Muthalagu, M.; Vidyavathy, M.; Chan, Y.S.; Danquah, M.K. Phytosynthesized Metal Oxide Nanoparticles for Pharmaceutical Applications. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 755–771 Radoń, A.; Łoński, Y.; Warski, T.; Babilas, R.; Tański, T.; Dudziak, M.; Łukowiec, D. Catalytic Activity of Non-Spherical Shaped Magnetite Nanoparticles in Degradation of Sudan I, Rhodamine B and Methylene Blue Dyes. Appl. Surf. Sci. 2019, 487, 1018–1025 Schwaminger, S.P.; Bauer, D.; Fraga-García, P.; Wagner, F.E.; Berensmeier, S. Oxidation of Magnetite Nanoparticles: Impact on Surface and Crystal Properties. CrystEngComm 2017, 19, 246–255 Bhole, R.; Gonsalves, D.; Murugesan, G.; Narasimhan, M.K.; Srinivasan, N.R.; Dave, N.; Varadavenkatesan, T.; Vinayagam, R.; Govarthanan, M.; Selvaraj, R. Superparamagnetic Spherical Magnetite Nanoparticles: Synthesis, Characterization and Catalytic Potential. Appl. Nanosci. 2022, 12, 1–12 Giraldo, L.; Erto, A.; Moreno-Piraján, J.C. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption 2013, 19, 465–475 Fato, F.P.; Li, D.W.; Zhao, L.J.; Qiu, K.; Long, Y.T. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega 2019, 4, 7543–7549 Mahdavi, S.; Jalali, M.; Afkhami, A. Removal of Heavy Metals from Aqueous Solutions Using Fe3O 4, ZnO, and CuO Nanoparticles. J. Nanopart. Res. 2012, 14, 846 Ali, S.M.; Galal, A.; Atta, N.F.; Shammakh, Y. Toxic Heavy Metal Ions Removal from Wastewater by Nano-Magnetite: Case Study Nile River Water. Egypt. J. Chem. 2017, 60, 601–612 Pirsaheb, M.; Moradi, N. A Systematic Review of the Sonophotocatalytic Process for the Decolorization of Dyes in Aqueous Solution: Synergistic Mechanisms, Degradation Pathways, and Process Optimization. J. Water Process Eng. 2021, 44, 102314 Panda, S.K.; Prasad, L. Fe3O4 Based Nanoparticles as a Catalyst in Degradation of Dyes: A Short Review. Int. J. Adv. Res. Sci. Commun. Technol. 2020, 11, 34–42 dos Santos-Durndell, V.C.; Peruzzolo, T.M.; Ucoski, G.M.; Ramos, L.P.; Nakagaki, S. Magnetically Recyclable Nanocatalysts Based on Magnetite: An Environmentally Friendly and Recyclable Catalyst for Esterification Reactions. Biofuel Res. J. 2018, 5, 806–812 Nizam, A.; Warrier, V.G.; Devasia, J.; Ganganagappa, N. Magnetic Iron Oxide Nanoparticles Immobilized on Microporous Molecular Sieves as Efficient Porous Catalyst for Photodegradation, Transesterification and Esterification Reactions. J. Porous Mater. 2022, 29, 119–129 Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. Mater. Interfaces 2013, 5, 1722–1731 Veisi, H.; Moradi, S.B.; Saljooqi, A.; Safarimehr, P. Silver Nanoparticle-Decorated on Tannic Acid-Modified Magnetite Nanoparticles (Fe3O4@TA/Ag) for Highly Active Catalytic Reduction of 4-Nitrophenol, Rhodamine B and Methylene Blue. Mater. Sci. Eng. C 2019, 100, 445–452 Trujillo Hernandez, J.S.; Aragón Muriel, A.; Tabares, J.A.; Pérez Alcázar, G.A.; Bolaños, A. Preparation of Fe3O4 nanoparticles and removal of methylene blue through adsorption. J. Phys. Conf. Ser. 2015, 614, 012007 Elazab, H.A.; El-Idreesy, T.T. Optimization of the Catalytic Performance of Pd/Fe3O4 Nanoparticles Prepared via Microwave-Assisted Synthesis for Pharmaceutical and Catalysis Applications. Biointerface Res. Appl. Chem. 2019, 9, 3794–3799 Johnson, C.E.; Johnson, J.A.; Hah, H.Y.; Cole, M.; Gray, S.; Kolesnichenko, V.; Kucheryavy, P.; Goloverda, G. Mössbauer studies of stoichiometry of Fe3O4: Characterization of nanoparticles for biomedical applications. Hyperfine Interact. 2016, 237, 27 Kamzin, A.S. Mössbauer Investigations of Fe and Fe3O4 Magnetic Nanoparticles for Hyperthermia Applications. Phys. Solid State 2016, 58, 532–539 Wareppam, B.; Kuzmann, E.; Garg, V.K.; Singh, L.H. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. J. Mater. Res. 2022, 37, 1–21 Hossain, M.; Hossain, M.; Begum, M.; Shahjahan, M.; Islam, M.; Saha, B. Magnetite (Fe3O4) Nanoparticles for Chromium Removal. Bangladesh J. Sci. Ind. Res. 2018, 53, 219–224 Arévalo, P.; Isasi, J.; Caballero, A.C.; Marco, J.F.; Martín-Hernández, F. Magnetic and Structural Studies of Fe3O4 Nanoparticles Synthesized via Coprecipitation and Dispersed in Different Surfactants. Ceram. Int. 2017, 43, 10333–10340 Giri, S.K.; Das, N.N.; Pradhan, G.C. Synthesis and Characterization of Magnetite Nanoparticles Using Waste Iron Ore Tailings for Adsorptive Removal of Dyes from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 43–49 Mikhaylova, M.; Kim, D.K.; Bobrysheva, N.; Osmolowsky, M.; Semenov, V.; Tsakalakos, T.; Muhammed, M. Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification. Langmuir 2004, 20, 2472–2477 Yang, C.; Dong, W.; Cui, G.; Zhao, Y.; Shi, X.; Xia, X.; Tang, B.; Wang, W. Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv. 2017, 7, 23699–23708 Chen, C.Y.; Liu, Y.R. Robust and Enhanced Photocatalytic Performance of Coupled CdSe/TiO2 Photocatalysts. Sci. Adv. Mater. 2015, 7, 1053–1057 Giovannetti, R.; Rommozzi, E.; D’Amato, C.A.; Zannotti, M. Kinetic Model for Simultaneous Adsorption/Photodegradation Process of Alizarin Red S in Water Solution by Nano-TiO2 under Visible Light. Catalysts 2016, 6, 84 Giovannetti, R.; D’ Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water. Sci. Rep. 2015, 5, 17801 Chen, C.Y.; Hsu, L.J. Kinetic study of self-assembly of Ni(II)-doped TiO2 nanocatalysts for the photodegradation of azo pollutants. RSC Adv. 2015, 5, 88266–88271 Woo, K.; Hong, J.; Choi, S.; Lee, H.; Ahn, J.; Kim, C.S.; Lee, S.W. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles. Chem. Mater 2004, 16, 2814–2818 Toby, B.H.; von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549 Varret, F.; (University of Le Mans, Le Mans, France); Greneche, J.-M.; (University of Le Mans, Le Mans, France). Unpublished work. 1994 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.place.none.fl_str_mv |
Suiza |
dc.source.none.fl_str_mv |
https://www.mdpi.com/1420-3049/27/24/8976 |
institution |
Universidad de Ibagué |
bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/d6ee1096-18d0-4694-9456-4bda5be93e6d/download https://repositorio.unibague.edu.co/bitstreams/35eb7671-7bd1-40c8-a5f6-96457129b078/download https://repositorio.unibague.edu.co/bitstreams/410eb52d-ca4a-4697-a40b-4949a8d0384c/download https://repositorio.unibague.edu.co/bitstreams/a694dda0-89ba-4204-943f-8926779b5e17/download |
bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 95cae3df1117f4837932bfec0fb01a4b 10ca2ffc1bc518145834f8acbd75cab9 d8ee3c4b9ea9ecf64878a525618b4209 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814204113434443776 |
spelling |
Hernandez, Juan Sebastian Trujillodfe2df24-96df-4878-bb6e-ae3d2ab377fd-1Aragón-Muriel, Alberto218f56c5-9bfa-4dc5-95bf-f69a592ca70f-1Corrales Quintero, Willintonc63679fc-6c99-4484-b50e-50be83f6f3f1-1Castro Velásquez, Juan Camilo456467a6-47bf-4f1a-bcf7-8eeab608a42a-1Salazar-Camacho, Natalia Andreafd7c28f0-484f-4ea3-b34d-c7f3f67a06a3-1Pérez Alcázar, German Antonio568fb5c3-c63b-4a92-885f-b909d8b9e974-1Tabares, Jesús Anselmod2493ba1-3da1-4060-bfae-5f9bb4b06235-12023-10-06T23:13:34Z2023-10-06T23:13:34Z2022-12-16The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 structural phase present an acicular form confirmed by X-ray diffraction. Transmission electron microscopy results identified the acicular shape and agglomeration of the nanoparticles. Mössbauer spectroscopy showed that the spectrum is composed of five components at room temperature, a hyperfine magnetic field distribution (HMFD), two sextets, a doublet, and a singlet. The presence of the HMFD means that a particle size distribution is present. Fluorescence spectroscopy studied the CA of the nanoparticles with methylene blue and found adsorption/degradation properties of the dye. The catalytic activity of the nanoparticles was evaluated in the esterification reaction by comparing the results in the presence and absence of catalyst for the reaction with isobutanol and octanol, where it is observed that the selectivity for the products MIBP and MNOP is favored in the first three hours of reactionapplication/pdfHernandez, J.S.T.; Aragón-Muriel, A.; Corrales Quintero, W.; Castro Velásquez, J.C.; Salazar-Camacho, N.A.; Pérez Alcázar, G.A.; Tabares, J.A. Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/ Degradation of Methylene Blue and Esterification. Molecules 2022, 27, 8976. https://doi.org/10.3390/ molecules2724897614203049https://hdl.handle.net/20.500.12313/3824engSuiza118976127MoleculesMohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Kadir, A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67Andra, S.; Balu, S.K.; Jeevanandham, J.; Muthalagu, M.; Vidyavathy, M.; Chan, Y.S.; Danquah, M.K. Phytosynthesized Metal Oxide Nanoparticles for Pharmaceutical Applications. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 755–771Radoń, A.; Łoński, Y.; Warski, T.; Babilas, R.; Tański, T.; Dudziak, M.; Łukowiec, D. Catalytic Activity of Non-Spherical Shaped Magnetite Nanoparticles in Degradation of Sudan I, Rhodamine B and Methylene Blue Dyes. Appl. Surf. Sci. 2019, 487, 1018–1025Schwaminger, S.P.; Bauer, D.; Fraga-García, P.; Wagner, F.E.; Berensmeier, S. Oxidation of Magnetite Nanoparticles: Impact on Surface and Crystal Properties. CrystEngComm 2017, 19, 246–255Bhole, R.; Gonsalves, D.; Murugesan, G.; Narasimhan, M.K.; Srinivasan, N.R.; Dave, N.; Varadavenkatesan, T.; Vinayagam, R.; Govarthanan, M.; Selvaraj, R. Superparamagnetic Spherical Magnetite Nanoparticles: Synthesis, Characterization and Catalytic Potential. Appl. Nanosci. 2022, 12, 1–12Giraldo, L.; Erto, A.; Moreno-Piraján, J.C. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption 2013, 19, 465–475Fato, F.P.; Li, D.W.; Zhao, L.J.; Qiu, K.; Long, Y.T. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega 2019, 4, 7543–7549Mahdavi, S.; Jalali, M.; Afkhami, A. Removal of Heavy Metals from Aqueous Solutions Using Fe3O 4, ZnO, and CuO Nanoparticles. J. Nanopart. Res. 2012, 14, 846Ali, S.M.; Galal, A.; Atta, N.F.; Shammakh, Y. Toxic Heavy Metal Ions Removal from Wastewater by Nano-Magnetite: Case Study Nile River Water. Egypt. J. Chem. 2017, 60, 601–612Pirsaheb, M.; Moradi, N. A Systematic Review of the Sonophotocatalytic Process for the Decolorization of Dyes in Aqueous Solution: Synergistic Mechanisms, Degradation Pathways, and Process Optimization. J. Water Process Eng. 2021, 44, 102314Panda, S.K.; Prasad, L. Fe3O4 Based Nanoparticles as a Catalyst in Degradation of Dyes: A Short Review. Int. J. Adv. Res. Sci. Commun. Technol. 2020, 11, 34–42dos Santos-Durndell, V.C.; Peruzzolo, T.M.; Ucoski, G.M.; Ramos, L.P.; Nakagaki, S. Magnetically Recyclable Nanocatalysts Based on Magnetite: An Environmentally Friendly and Recyclable Catalyst for Esterification Reactions. Biofuel Res. J. 2018, 5, 806–812Nizam, A.; Warrier, V.G.; Devasia, J.; Ganganagappa, N. Magnetic Iron Oxide Nanoparticles Immobilized on Microporous Molecular Sieves as Efficient Porous Catalyst for Photodegradation, Transesterification and Esterification Reactions. J. Porous Mater. 2022, 29, 119–129Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. Mater. Interfaces 2013, 5, 1722–1731Veisi, H.; Moradi, S.B.; Saljooqi, A.; Safarimehr, P. Silver Nanoparticle-Decorated on Tannic Acid-Modified Magnetite Nanoparticles (Fe3O4@TA/Ag) for Highly Active Catalytic Reduction of 4-Nitrophenol, Rhodamine B and Methylene Blue. Mater. Sci. Eng. C 2019, 100, 445–452Trujillo Hernandez, J.S.; Aragón Muriel, A.; Tabares, J.A.; Pérez Alcázar, G.A.; Bolaños, A. Preparation of Fe3O4 nanoparticles and removal of methylene blue through adsorption. J. Phys. Conf. Ser. 2015, 614, 012007Elazab, H.A.; El-Idreesy, T.T. Optimization of the Catalytic Performance of Pd/Fe3O4 Nanoparticles Prepared via Microwave-Assisted Synthesis for Pharmaceutical and Catalysis Applications. Biointerface Res. Appl. Chem. 2019, 9, 3794–3799Johnson, C.E.; Johnson, J.A.; Hah, H.Y.; Cole, M.; Gray, S.; Kolesnichenko, V.; Kucheryavy, P.; Goloverda, G. Mössbauer studies of stoichiometry of Fe3O4: Characterization of nanoparticles for biomedical applications. Hyperfine Interact. 2016, 237, 27Kamzin, A.S. Mössbauer Investigations of Fe and Fe3O4 Magnetic Nanoparticles for Hyperthermia Applications. Phys. Solid State 2016, 58, 532–539Wareppam, B.; Kuzmann, E.; Garg, V.K.; Singh, L.H. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. J. Mater. Res. 2022, 37, 1–21Hossain, M.; Hossain, M.; Begum, M.; Shahjahan, M.; Islam, M.; Saha, B. Magnetite (Fe3O4) Nanoparticles for Chromium Removal. Bangladesh J. Sci. Ind. Res. 2018, 53, 219–224Arévalo, P.; Isasi, J.; Caballero, A.C.; Marco, J.F.; Martín-Hernández, F. Magnetic and Structural Studies of Fe3O4 Nanoparticles Synthesized via Coprecipitation and Dispersed in Different Surfactants. Ceram. Int. 2017, 43, 10333–10340Giri, S.K.; Das, N.N.; Pradhan, G.C. Synthesis and Characterization of Magnetite Nanoparticles Using Waste Iron Ore Tailings for Adsorptive Removal of Dyes from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 43–49Mikhaylova, M.; Kim, D.K.; Bobrysheva, N.; Osmolowsky, M.; Semenov, V.; Tsakalakos, T.; Muhammed, M. Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification. Langmuir 2004, 20, 2472–2477Yang, C.; Dong, W.; Cui, G.; Zhao, Y.; Shi, X.; Xia, X.; Tang, B.; Wang, W. Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv. 2017, 7, 23699–23708Chen, C.Y.; Liu, Y.R. Robust and Enhanced Photocatalytic Performance of Coupled CdSe/TiO2 Photocatalysts. Sci. Adv. Mater. 2015, 7, 1053–1057Giovannetti, R.; Rommozzi, E.; D’Amato, C.A.; Zannotti, M. Kinetic Model for Simultaneous Adsorption/Photodegradation Process of Alizarin Red S in Water Solution by Nano-TiO2 under Visible Light. Catalysts 2016, 6, 84Giovannetti, R.; D’ Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water. Sci. Rep. 2015, 5, 17801Chen, C.Y.; Hsu, L.J. Kinetic study of self-assembly of Ni(II)-doped TiO2 nanocatalysts for the photodegradation of azo pollutants. RSC Adv. 2015, 5, 88266–88271Woo, K.; Hong, J.; Choi, S.; Lee, H.; Ahn, J.; Kim, C.S.; Lee, S.W. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles. Chem. Mater 2004, 16, 2814–2818Toby, B.H.; von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549Varret, F.; (University of Le Mans, Le Mans, France); Greneche, J.-M.; (University of Le Mans, Le Mans, France). Unpublished work. 1994This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/1420-3049/27/24/8976Catalytic activityEsterificationFe3O4 nanoparticlesMethylene blueMössbauer spectroscopyCharacterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/d6ee1096-18d0-4694-9456-4bda5be93e6d/download2fa3e590786b9c0f3ceba1b9656b7ac3MD52ORIGINALCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdfCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdfapplication/pdf86208https://repositorio.unibague.edu.co/bitstreams/35eb7671-7bd1-40c8-a5f6-96457129b078/download95cae3df1117f4837932bfec0fb01a4bMD51TEXTCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdf.txtCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdf.txtExtracted texttext/plain4643https://repositorio.unibague.edu.co/bitstreams/410eb52d-ca4a-4697-a40b-4949a8d0384c/download10ca2ffc1bc518145834f8acbd75cab9MD53THUMBNAILCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdf.jpgCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdf.jpgGenerated Thumbnailimage/jpeg13161https://repositorio.unibague.edu.co/bitstreams/a694dda0-89ba-4204-943f-8926779b5e17/downloadd8ee3c4b9ea9ecf64878a525618b4209MD5420.500.12313/3824oai:repositorio.unibague.edu.co:20.500.12313/38242023-10-07 03:00:33.886https://creativecommons.org/licenses/by-nc-nd/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |