Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification

The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 struct...

Full description

Autores:
Hernandez, Juan Sebastian Trujillo
Aragón-Muriel, Alberto
Corrales Quintero, Willinton
Castro Velásquez, Juan Camilo
Salazar-Camacho, Natalia Andrea
Pérez Alcázar, German Antonio
Tabares, Jesús Anselmo
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/3824
Acceso en línea:
https://hdl.handle.net/20.500.12313/3824
Palabra clave:
Catalytic activity
Esterification
Fe3O4 nanoparticles
Methylene blue
Mössbauer spectroscopy
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_c33174807d519ea012685d8a84086f30
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/3824
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification
title Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification
spellingShingle Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification
Catalytic activity
Esterification
Fe3O4 nanoparticles
Methylene blue
Mössbauer spectroscopy
title_short Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification
title_full Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification
title_fullStr Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification
title_full_unstemmed Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification
title_sort Characterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterification
dc.creator.fl_str_mv Hernandez, Juan Sebastian Trujillo
Aragón-Muriel, Alberto
Corrales Quintero, Willinton
Castro Velásquez, Juan Camilo
Salazar-Camacho, Natalia Andrea
Pérez Alcázar, German Antonio
Tabares, Jesús Anselmo
dc.contributor.author.none.fl_str_mv Hernandez, Juan Sebastian Trujillo
Aragón-Muriel, Alberto
Corrales Quintero, Willinton
Castro Velásquez, Juan Camilo
Salazar-Camacho, Natalia Andrea
Pérez Alcázar, German Antonio
Tabares, Jesús Anselmo
dc.subject.proposal.eng.fl_str_mv Catalytic activity
Esterification
Fe3O4 nanoparticles
Methylene blue
Mössbauer spectroscopy
topic Catalytic activity
Esterification
Fe3O4 nanoparticles
Methylene blue
Mössbauer spectroscopy
description The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 structural phase present an acicular form confirmed by X-ray diffraction. Transmission electron microscopy results identified the acicular shape and agglomeration of the nanoparticles. Mössbauer spectroscopy showed that the spectrum is composed of five components at room temperature, a hyperfine magnetic field distribution (HMFD), two sextets, a doublet, and a singlet. The presence of the HMFD means that a particle size distribution is present. Fluorescence spectroscopy studied the CA of the nanoparticles with methylene blue and found adsorption/degradation properties of the dye. The catalytic activity of the nanoparticles was evaluated in the esterification reaction by comparing the results in the presence and absence of catalyst for the reaction with isobutanol and octanol, where it is observed that the selectivity for the products MIBP and MNOP is favored in the first three hours of reaction
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-16
dc.date.accessioned.none.fl_str_mv 2023-10-06T23:13:34Z
dc.date.available.none.fl_str_mv 2023-10-06T23:13:34Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Hernandez, J.S.T.; Aragón-Muriel, A.; Corrales Quintero, W.; Castro Velásquez, J.C.; Salazar-Camacho, N.A.; Pérez Alcázar, G.A.; Tabares, J.A. Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/ Degradation of Methylene Blue and Esterification. Molecules 2022, 27, 8976. https://doi.org/10.3390/ molecules27248976
dc.identifier.issn.none.fl_str_mv 14203049
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/3824
identifier_str_mv Hernandez, J.S.T.; Aragón-Muriel, A.; Corrales Quintero, W.; Castro Velásquez, J.C.; Salazar-Camacho, N.A.; Pérez Alcázar, G.A.; Tabares, J.A. Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/ Degradation of Methylene Blue and Esterification. Molecules 2022, 27, 8976. https://doi.org/10.3390/ molecules27248976
14203049
url https://hdl.handle.net/20.500.12313/3824
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 11
dc.relation.citationissue.none.fl_str_mv 8976
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 27
dc.relation.ispartofjournal.none.fl_str_mv Molecules
dc.relation.references.none.fl_str_mv Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Kadir, A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052
Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67
Andra, S.; Balu, S.K.; Jeevanandham, J.; Muthalagu, M.; Vidyavathy, M.; Chan, Y.S.; Danquah, M.K. Phytosynthesized Metal Oxide Nanoparticles for Pharmaceutical Applications. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 755–771
Radoń, A.; Łoński, Y.; Warski, T.; Babilas, R.; Tański, T.; Dudziak, M.; Łukowiec, D. Catalytic Activity of Non-Spherical Shaped Magnetite Nanoparticles in Degradation of Sudan I, Rhodamine B and Methylene Blue Dyes. Appl. Surf. Sci. 2019, 487, 1018–1025
Schwaminger, S.P.; Bauer, D.; Fraga-García, P.; Wagner, F.E.; Berensmeier, S. Oxidation of Magnetite Nanoparticles: Impact on Surface and Crystal Properties. CrystEngComm 2017, 19, 246–255
Bhole, R.; Gonsalves, D.; Murugesan, G.; Narasimhan, M.K.; Srinivasan, N.R.; Dave, N.; Varadavenkatesan, T.; Vinayagam, R.; Govarthanan, M.; Selvaraj, R. Superparamagnetic Spherical Magnetite Nanoparticles: Synthesis, Characterization and Catalytic Potential. Appl. Nanosci. 2022, 12, 1–12
Giraldo, L.; Erto, A.; Moreno-Piraján, J.C. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption 2013, 19, 465–475
Fato, F.P.; Li, D.W.; Zhao, L.J.; Qiu, K.; Long, Y.T. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega 2019, 4, 7543–7549
Mahdavi, S.; Jalali, M.; Afkhami, A. Removal of Heavy Metals from Aqueous Solutions Using Fe3O 4, ZnO, and CuO Nanoparticles. J. Nanopart. Res. 2012, 14, 846
Ali, S.M.; Galal, A.; Atta, N.F.; Shammakh, Y. Toxic Heavy Metal Ions Removal from Wastewater by Nano-Magnetite: Case Study Nile River Water. Egypt. J. Chem. 2017, 60, 601–612
Pirsaheb, M.; Moradi, N. A Systematic Review of the Sonophotocatalytic Process for the Decolorization of Dyes in Aqueous Solution: Synergistic Mechanisms, Degradation Pathways, and Process Optimization. J. Water Process Eng. 2021, 44, 102314
Panda, S.K.; Prasad, L. Fe3O4 Based Nanoparticles as a Catalyst in Degradation of Dyes: A Short Review. Int. J. Adv. Res. Sci. Commun. Technol. 2020, 11, 34–42
dos Santos-Durndell, V.C.; Peruzzolo, T.M.; Ucoski, G.M.; Ramos, L.P.; Nakagaki, S. Magnetically Recyclable Nanocatalysts Based on Magnetite: An Environmentally Friendly and Recyclable Catalyst for Esterification Reactions. Biofuel Res. J. 2018, 5, 806–812
Nizam, A.; Warrier, V.G.; Devasia, J.; Ganganagappa, N. Magnetic Iron Oxide Nanoparticles Immobilized on Microporous Molecular Sieves as Efficient Porous Catalyst for Photodegradation, Transesterification and Esterification Reactions. J. Porous Mater. 2022, 29, 119–129
Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. Mater. Interfaces 2013, 5, 1722–1731
Veisi, H.; Moradi, S.B.; Saljooqi, A.; Safarimehr, P. Silver Nanoparticle-Decorated on Tannic Acid-Modified Magnetite Nanoparticles (Fe3O4@TA/Ag) for Highly Active Catalytic Reduction of 4-Nitrophenol, Rhodamine B and Methylene Blue. Mater. Sci. Eng. C 2019, 100, 445–452
Trujillo Hernandez, J.S.; Aragón Muriel, A.; Tabares, J.A.; Pérez Alcázar, G.A.; Bolaños, A. Preparation of Fe3O4 nanoparticles and removal of methylene blue through adsorption. J. Phys. Conf. Ser. 2015, 614, 012007
Elazab, H.A.; El-Idreesy, T.T. Optimization of the Catalytic Performance of Pd/Fe3O4 Nanoparticles Prepared via Microwave-Assisted Synthesis for Pharmaceutical and Catalysis Applications. Biointerface Res. Appl. Chem. 2019, 9, 3794–3799
Johnson, C.E.; Johnson, J.A.; Hah, H.Y.; Cole, M.; Gray, S.; Kolesnichenko, V.; Kucheryavy, P.; Goloverda, G. Mössbauer studies of stoichiometry of Fe3O4: Characterization of nanoparticles for biomedical applications. Hyperfine Interact. 2016, 237, 27
Kamzin, A.S. Mössbauer Investigations of Fe and Fe3O4 Magnetic Nanoparticles for Hyperthermia Applications. Phys. Solid State 2016, 58, 532–539
Wareppam, B.; Kuzmann, E.; Garg, V.K.; Singh, L.H. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. J. Mater. Res. 2022, 37, 1–21
Hossain, M.; Hossain, M.; Begum, M.; Shahjahan, M.; Islam, M.; Saha, B. Magnetite (Fe3O4) Nanoparticles for Chromium Removal. Bangladesh J. Sci. Ind. Res. 2018, 53, 219–224
Arévalo, P.; Isasi, J.; Caballero, A.C.; Marco, J.F.; Martín-Hernández, F. Magnetic and Structural Studies of Fe3O4 Nanoparticles Synthesized via Coprecipitation and Dispersed in Different Surfactants. Ceram. Int. 2017, 43, 10333–10340
Giri, S.K.; Das, N.N.; Pradhan, G.C. Synthesis and Characterization of Magnetite Nanoparticles Using Waste Iron Ore Tailings for Adsorptive Removal of Dyes from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 43–49
Mikhaylova, M.; Kim, D.K.; Bobrysheva, N.; Osmolowsky, M.; Semenov, V.; Tsakalakos, T.; Muhammed, M. Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification. Langmuir 2004, 20, 2472–2477
Yang, C.; Dong, W.; Cui, G.; Zhao, Y.; Shi, X.; Xia, X.; Tang, B.; Wang, W. Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv. 2017, 7, 23699–23708
Chen, C.Y.; Liu, Y.R. Robust and Enhanced Photocatalytic Performance of Coupled CdSe/TiO2 Photocatalysts. Sci. Adv. Mater. 2015, 7, 1053–1057
Giovannetti, R.; Rommozzi, E.; D’Amato, C.A.; Zannotti, M. Kinetic Model for Simultaneous Adsorption/Photodegradation Process of Alizarin Red S in Water Solution by Nano-TiO2 under Visible Light. Catalysts 2016, 6, 84
Giovannetti, R.; D’ Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water. Sci. Rep. 2015, 5, 17801
Chen, C.Y.; Hsu, L.J. Kinetic study of self-assembly of Ni(II)-doped TiO2 nanocatalysts for the photodegradation of azo pollutants. RSC Adv. 2015, 5, 88266–88271
Woo, K.; Hong, J.; Choi, S.; Lee, H.; Ahn, J.; Kim, C.S.; Lee, S.W. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles. Chem. Mater 2004, 16, 2814–2818
Toby, B.H.; von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549
Varret, F.; (University of Le Mans, Le Mans, France); Greneche, J.-M.; (University of Le Mans, Le Mans, France). Unpublished work. 1994
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.place.none.fl_str_mv Suiza
dc.source.none.fl_str_mv https://www.mdpi.com/1420-3049/27/24/8976
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/d6ee1096-18d0-4694-9456-4bda5be93e6d/download
https://repositorio.unibague.edu.co/bitstreams/35eb7671-7bd1-40c8-a5f6-96457129b078/download
https://repositorio.unibague.edu.co/bitstreams/410eb52d-ca4a-4697-a40b-4949a8d0384c/download
https://repositorio.unibague.edu.co/bitstreams/a694dda0-89ba-4204-943f-8926779b5e17/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
95cae3df1117f4837932bfec0fb01a4b
10ca2ffc1bc518145834f8acbd75cab9
d8ee3c4b9ea9ecf64878a525618b4209
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814204113434443776
spelling Hernandez, Juan Sebastian Trujillodfe2df24-96df-4878-bb6e-ae3d2ab377fd-1Aragón-Muriel, Alberto218f56c5-9bfa-4dc5-95bf-f69a592ca70f-1Corrales Quintero, Willintonc63679fc-6c99-4484-b50e-50be83f6f3f1-1Castro Velásquez, Juan Camilo456467a6-47bf-4f1a-bcf7-8eeab608a42a-1Salazar-Camacho, Natalia Andreafd7c28f0-484f-4ea3-b34d-c7f3f67a06a3-1Pérez Alcázar, German Antonio568fb5c3-c63b-4a92-885f-b909d8b9e974-1Tabares, Jesús Anselmod2493ba1-3da1-4060-bfae-5f9bb4b06235-12023-10-06T23:13:34Z2023-10-06T23:13:34Z2022-12-16The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 structural phase present an acicular form confirmed by X-ray diffraction. Transmission electron microscopy results identified the acicular shape and agglomeration of the nanoparticles. Mössbauer spectroscopy showed that the spectrum is composed of five components at room temperature, a hyperfine magnetic field distribution (HMFD), two sextets, a doublet, and a singlet. The presence of the HMFD means that a particle size distribution is present. Fluorescence spectroscopy studied the CA of the nanoparticles with methylene blue and found adsorption/degradation properties of the dye. The catalytic activity of the nanoparticles was evaluated in the esterification reaction by comparing the results in the presence and absence of catalyst for the reaction with isobutanol and octanol, where it is observed that the selectivity for the products MIBP and MNOP is favored in the first three hours of reactionapplication/pdfHernandez, J.S.T.; Aragón-Muriel, A.; Corrales Quintero, W.; Castro Velásquez, J.C.; Salazar-Camacho, N.A.; Pérez Alcázar, G.A.; Tabares, J.A. Characterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/ Degradation of Methylene Blue and Esterification. Molecules 2022, 27, 8976. https://doi.org/10.3390/ molecules2724897614203049https://hdl.handle.net/20.500.12313/3824engSuiza118976127MoleculesMohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Kadir, A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials 2019, 12, 3052Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67Andra, S.; Balu, S.K.; Jeevanandham, J.; Muthalagu, M.; Vidyavathy, M.; Chan, Y.S.; Danquah, M.K. Phytosynthesized Metal Oxide Nanoparticles for Pharmaceutical Applications. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 755–771Radoń, A.; Łoński, Y.; Warski, T.; Babilas, R.; Tański, T.; Dudziak, M.; Łukowiec, D. Catalytic Activity of Non-Spherical Shaped Magnetite Nanoparticles in Degradation of Sudan I, Rhodamine B and Methylene Blue Dyes. Appl. Surf. Sci. 2019, 487, 1018–1025Schwaminger, S.P.; Bauer, D.; Fraga-García, P.; Wagner, F.E.; Berensmeier, S. Oxidation of Magnetite Nanoparticles: Impact on Surface and Crystal Properties. CrystEngComm 2017, 19, 246–255Bhole, R.; Gonsalves, D.; Murugesan, G.; Narasimhan, M.K.; Srinivasan, N.R.; Dave, N.; Varadavenkatesan, T.; Vinayagam, R.; Govarthanan, M.; Selvaraj, R. Superparamagnetic Spherical Magnetite Nanoparticles: Synthesis, Characterization and Catalytic Potential. Appl. Nanosci. 2022, 12, 1–12Giraldo, L.; Erto, A.; Moreno-Piraján, J.C. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption 2013, 19, 465–475Fato, F.P.; Li, D.W.; Zhao, L.J.; Qiu, K.; Long, Y.T. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega 2019, 4, 7543–7549Mahdavi, S.; Jalali, M.; Afkhami, A. Removal of Heavy Metals from Aqueous Solutions Using Fe3O 4, ZnO, and CuO Nanoparticles. J. Nanopart. Res. 2012, 14, 846Ali, S.M.; Galal, A.; Atta, N.F.; Shammakh, Y. Toxic Heavy Metal Ions Removal from Wastewater by Nano-Magnetite: Case Study Nile River Water. Egypt. J. Chem. 2017, 60, 601–612Pirsaheb, M.; Moradi, N. A Systematic Review of the Sonophotocatalytic Process for the Decolorization of Dyes in Aqueous Solution: Synergistic Mechanisms, Degradation Pathways, and Process Optimization. J. Water Process Eng. 2021, 44, 102314Panda, S.K.; Prasad, L. Fe3O4 Based Nanoparticles as a Catalyst in Degradation of Dyes: A Short Review. Int. J. Adv. Res. Sci. Commun. Technol. 2020, 11, 34–42dos Santos-Durndell, V.C.; Peruzzolo, T.M.; Ucoski, G.M.; Ramos, L.P.; Nakagaki, S. Magnetically Recyclable Nanocatalysts Based on Magnetite: An Environmentally Friendly and Recyclable Catalyst for Esterification Reactions. Biofuel Res. J. 2018, 5, 806–812Nizam, A.; Warrier, V.G.; Devasia, J.; Ganganagappa, N. Magnetic Iron Oxide Nanoparticles Immobilized on Microporous Molecular Sieves as Efficient Porous Catalyst for Photodegradation, Transesterification and Esterification Reactions. J. Porous Mater. 2022, 29, 119–129Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. Mater. Interfaces 2013, 5, 1722–1731Veisi, H.; Moradi, S.B.; Saljooqi, A.; Safarimehr, P. Silver Nanoparticle-Decorated on Tannic Acid-Modified Magnetite Nanoparticles (Fe3O4@TA/Ag) for Highly Active Catalytic Reduction of 4-Nitrophenol, Rhodamine B and Methylene Blue. Mater. Sci. Eng. C 2019, 100, 445–452Trujillo Hernandez, J.S.; Aragón Muriel, A.; Tabares, J.A.; Pérez Alcázar, G.A.; Bolaños, A. Preparation of Fe3O4 nanoparticles and removal of methylene blue through adsorption. J. Phys. Conf. Ser. 2015, 614, 012007Elazab, H.A.; El-Idreesy, T.T. Optimization of the Catalytic Performance of Pd/Fe3O4 Nanoparticles Prepared via Microwave-Assisted Synthesis for Pharmaceutical and Catalysis Applications. Biointerface Res. Appl. Chem. 2019, 9, 3794–3799Johnson, C.E.; Johnson, J.A.; Hah, H.Y.; Cole, M.; Gray, S.; Kolesnichenko, V.; Kucheryavy, P.; Goloverda, G. Mössbauer studies of stoichiometry of Fe3O4: Characterization of nanoparticles for biomedical applications. Hyperfine Interact. 2016, 237, 27Kamzin, A.S. Mössbauer Investigations of Fe and Fe3O4 Magnetic Nanoparticles for Hyperthermia Applications. Phys. Solid State 2016, 58, 532–539Wareppam, B.; Kuzmann, E.; Garg, V.K.; Singh, L.H. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. J. Mater. Res. 2022, 37, 1–21Hossain, M.; Hossain, M.; Begum, M.; Shahjahan, M.; Islam, M.; Saha, B. Magnetite (Fe3O4) Nanoparticles for Chromium Removal. Bangladesh J. Sci. Ind. Res. 2018, 53, 219–224Arévalo, P.; Isasi, J.; Caballero, A.C.; Marco, J.F.; Martín-Hernández, F. Magnetic and Structural Studies of Fe3O4 Nanoparticles Synthesized via Coprecipitation and Dispersed in Different Surfactants. Ceram. Int. 2017, 43, 10333–10340Giri, S.K.; Das, N.N.; Pradhan, G.C. Synthesis and Characterization of Magnetite Nanoparticles Using Waste Iron Ore Tailings for Adsorptive Removal of Dyes from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 43–49Mikhaylova, M.; Kim, D.K.; Bobrysheva, N.; Osmolowsky, M.; Semenov, V.; Tsakalakos, T.; Muhammed, M. Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification. Langmuir 2004, 20, 2472–2477Yang, C.; Dong, W.; Cui, G.; Zhao, Y.; Shi, X.; Xia, X.; Tang, B.; Wang, W. Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv. 2017, 7, 23699–23708Chen, C.Y.; Liu, Y.R. Robust and Enhanced Photocatalytic Performance of Coupled CdSe/TiO2 Photocatalysts. Sci. Adv. Mater. 2015, 7, 1053–1057Giovannetti, R.; Rommozzi, E.; D’Amato, C.A.; Zannotti, M. Kinetic Model for Simultaneous Adsorption/Photodegradation Process of Alizarin Red S in Water Solution by Nano-TiO2 under Visible Light. Catalysts 2016, 6, 84Giovannetti, R.; D’ Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water. Sci. Rep. 2015, 5, 17801Chen, C.Y.; Hsu, L.J. Kinetic study of self-assembly of Ni(II)-doped TiO2 nanocatalysts for the photodegradation of azo pollutants. RSC Adv. 2015, 5, 88266–88271Woo, K.; Hong, J.; Choi, S.; Lee, H.; Ahn, J.; Kim, C.S.; Lee, S.W. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles. Chem. Mater 2004, 16, 2814–2818Toby, B.H.; von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549Varret, F.; (University of Le Mans, Le Mans, France); Greneche, J.-M.; (University of Le Mans, Le Mans, France). Unpublished work. 1994This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/1420-3049/27/24/8976Catalytic activityEsterificationFe3O4 nanoparticlesMethylene blueMössbauer spectroscopyCharacterization of Fe3O4 nanoparticles for applications in catalytic activity in the adsorption/degradation of methylene blue and esterificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/d6ee1096-18d0-4694-9456-4bda5be93e6d/download2fa3e590786b9c0f3ceba1b9656b7ac3MD52ORIGINALCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdfCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdfapplication/pdf86208https://repositorio.unibague.edu.co/bitstreams/35eb7671-7bd1-40c8-a5f6-96457129b078/download95cae3df1117f4837932bfec0fb01a4bMD51TEXTCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdf.txtCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdf.txtExtracted texttext/plain4643https://repositorio.unibague.edu.co/bitstreams/410eb52d-ca4a-4697-a40b-4949a8d0384c/download10ca2ffc1bc518145834f8acbd75cab9MD53THUMBNAILCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdf.jpgCharacterization of Fe3O4 Nanoparticles for Applications in Catalytic Activity in the Adsorption_Degradation of Methylene Blue and Esterification - molecules-27-08976.pdf.jpgGenerated Thumbnailimage/jpeg13161https://repositorio.unibague.edu.co/bitstreams/a694dda0-89ba-4204-943f-8926779b5e17/downloadd8ee3c4b9ea9ecf64878a525618b4209MD5420.500.12313/3824oai:repositorio.unibague.edu.co:20.500.12313/38242023-10-07 03:00:33.886https://creativecommons.org/licenses/by-nc-nd/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=