A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature
We design and evaluate the performance of a one-dimensional photonic crystal (PhC) optical filter that comprises the integration of alternating layers of a barium titanate ferroelectric (Formula presented.) and an yttrium oxide dielectric (Formula presented.), with a critical high-temperature superc...
- Autores:
-
González, Luz E.
Segura-Gutierrez, Lina M.
Ordoñez, John E.
Zambrano, Gustavo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/3849
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/3849
- Palabra clave:
- Optical communications
Photonic crystal filters
Superconductors
Wavelength division multiplexing
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIBAGUE2_ba8c128e56370734af3a2108c1715589 |
---|---|
oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/3849 |
network_acronym_str |
UNIBAGUE2 |
network_name_str |
Repositorio Universidad de Ibagué |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature |
title |
A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature |
spellingShingle |
A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature Optical communications Photonic crystal filters Superconductors Wavelength division multiplexing |
title_short |
A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature |
title_full |
A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature |
title_fullStr |
A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature |
title_full_unstemmed |
A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature |
title_sort |
A multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperature |
dc.creator.fl_str_mv |
González, Luz E. Segura-Gutierrez, Lina M. Ordoñez, John E. Zambrano, Gustavo |
dc.contributor.author.none.fl_str_mv |
González, Luz E. Segura-Gutierrez, Lina M. Ordoñez, John E. Zambrano, Gustavo |
dc.subject.proposal.eng.fl_str_mv |
Optical communications Photonic crystal filters Superconductors Wavelength division multiplexing |
topic |
Optical communications Photonic crystal filters Superconductors Wavelength division multiplexing |
description |
We design and evaluate the performance of a one-dimensional photonic crystal (PhC) optical filter that comprises the integration of alternating layers of a barium titanate ferroelectric (Formula presented.) and an yttrium oxide dielectric (Formula presented.), with a critical high-temperature superconductor defect, yttrium–barium–copper oxide (Formula presented.), resulting in the (Formula presented.) (Formula presented.) multilayered nanostructure array. Here, we demonstrate that such a nanosystem allows for routing and switching optical signals at well-defined wavelengths, either in the visible or the near-infrared spectral regions—the latter as required in optical telecommunication channels. By tailoring the superconductor layer thickness, the multilayer period number N, the temperature and the direction of incident light, we provide a computational test-bed for the implementation of a PhC-optical filter that works for both wavelength-division multiplexing in the 300–800 nm region and for high-Q filtering in the 1300–1800 nm range. In particular, we show that the filter’s quality factor of resonances Q increases with the number of multilayers—it shows an exponential scaling with N (e.g., in the telecom C-band, (Formula presented.) for (Formula presented.)). In the telecom region, the light transmission slightly shifts towards longer wavelengths with increasing temperature; this occurs at an average rate of 0.25 nm/K in the range from 20 to 80 K, for (Formula presented.) at normal incidence. This rate can be enhanced, and the filter can thus be used for temperature sensing in the NIR range. Moreover, the filter works at cryogenic temperature environments (e.g., in outer space conditions) and can be integrated into either photonic and optoelectronic circuits or in devices for the transmission of information. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-07-12 |
dc.date.accessioned.none.fl_str_mv |
2023-10-17T21:45:18Z |
dc.date.available.none.fl_str_mv |
2023-10-17T21:45:18Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
González, L.E.; Segura-Gutierrez, L.M.; Ordoñez, J.E.; Zambrano, G.; Reina, J.H. A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics 2022, 9, 485. https://doi.org/10.3390/ photonics9070485 |
dc.identifier.issn.none.fl_str_mv |
23046732 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/3849 |
identifier_str_mv |
González, L.E.; Segura-Gutierrez, L.M.; Ordoñez, J.E.; Zambrano, G.; Reina, J.H. A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics 2022, 9, 485. https://doi.org/10.3390/ photonics9070485 23046732 |
url |
https://hdl.handle.net/20.500.12313/3849 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
13 |
dc.relation.citationissue.none.fl_str_mv |
485 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
9 |
dc.relation.ispartofjournal.none.fl_str_mv |
Photonics |
dc.relation.references.none.fl_str_mv |
Yablonovitch, E. Photonic crystals. J. Mod. Opt. 1994, 41, 173–194 Vinet, L.; Zhedanov, A. Photonic Crystals: Physics and Technology; Springer: Milan, Italy, 2008 McGurn, A. Nanophotonics; Springer International Publishing: Berlin/Heidelberg, Germany, 2018 Yoshino, K.; Shimoda, Y.; Kawagishi, Y.; Nakayama, K.; Ozaki, M. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 1999, 75, 932 Li, H.; Low, M.X.; Ako, R.T.; Bhaskaran, M.; Sriram, S.; Withayachumnankul, W.; Kuhlmey, B.T.; Atakaramians, S. Broadband Single-Mode Hybrid Photonic Crystal Waveguides for Terahertz Integration on a Chip. Adv. Mater. Technol. 2020, 5, 2000117 Clementi, M.; Iadanza, S.; Schulz, S.A.; Urbinati, G.; Gerace, D.; O’Faloain, L.; Galli, M. Thermo-Optically Induced Transparency on a photonic chip. Light Sci. Appl. 2021, 10, 240 Mbakop, F.K.; Tom, A.; Dadjé, A.; Vidal, A.K.C.; Djongyang, N. One-dimensional comparison of TiO2/SiO2 and Si/SiO2 photonic crystals filters for thermophotovoltaic applications in visible and infrared. Chin. J. Phys. 2020, 67, 124 Soltani, O.; Zaghdoudi, J.; Kanzari, M. Tunable filter properties in 1D linear graded magnetized cold plasma photonic crystals based on Octonacci quasi-periodic structure. Photonics Nanostruct.-Fundam. Appl 2020, 38, 100744 Sakata, R.; Ishizaki, K.; De Zoysa, M.; Fukuhara, S.; Inoue, T.; Tanaka, Y.; Iwata, K.; Hatsuda, R.; Yoshida, M.; Gelleta, J.; et al. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers. Nat. Commun. 2020, 11, 3487 Butler, S.M.; Singaravelu, P.K.J.; O’Faolain, L.; Hegarty, S.P. Long cavity photonic crystal laser in FDML operation using an akinetic reflective filter. Opt. Express 2020, 28, 38813 Shi, C.; Yuan, J.; Luo, X.; Shi, S.; Lu, S.; Yuan, P.; Xu, W.; Chen, Z.; Yu, H. Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide. Opt. Commun. 2020, 461, 125222 Baghbadorani, H.K.; Barvestani, J. Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes. Appl. Surf. Sci. 2021, 537, 147730 Mehaney, A.; Abadla, M.M.; Elsayed, H.A. 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. J. Mol. Liq. 2021, 322, 114978 Delgado-Sanchez, J.M.; Lillo-Bravo, I. Angular dependence of photonic crystal coupled to photovoltaic solar cell. Appl. Sci. 2020, 10, 1574 Zheng, W.; Luo, X.; Zhang, Y.; Ye, C.; Qin, A.; Cao, Y.; Hou, L. Efficient Low-Cost All-Flexible Microcavity Semitransparent Polymer Solar Cells Enabled by Polymer Flexible One-Dimensional Photonic Crystals. ACS Appl. Mater. Interfaces 2020, 12, 23190 Aly, A.H.; Ghany, S.E.A.; Kamal, B.M.; Vigneswaran, D. Theoretical studies of hybrid multifunctional (YBa2Cu3O7-X) photonic crystals within visible and infra-red regions. Ceram. Int. 2020, 46, 365 Zaky, Z.A.; Aly, A.H. Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers. J. Supercond. Nov. Magn. 2020, 33, 2983 González, L.E.; Ordoñez, J.E.; Zambrano, G.; Porras-Montenegro, N. YBa2Cu3O7/BaTiO3 1D Superconducting Photonic Crystal with Tunable Broadband Response in the Visible Range. J. Supercond. Nov. Magn. 2018, 31, 2003 González, L.E.; Ordoñez, J.E.; Carlos, A.; Melo, L.; Mendoza, E.; Reyes, D.; Zambrano, G.; Porras-Montenegro, N.; Granada, J.C.; Gómez, M.E.; et al. Experimental realisation of tunable ferroelectric/superconductor (BTO/YBCO)N/STO 1D photonic crystals in the whole visible spectrum. Sci. Rep. 2020, 10, 13083 Segal, N.; Keren-Zur, S.; Hendler, N.; Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics 2015, 9, 180 Schlafmann, K.R.; White, T.J. Retention and Deformation of the Blue Phases in Liquid Crystalline Elastomers. Nat. Commun. 2021, 12, 4916 Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Mult-mode Surface plasmon resonance absorber base don dat-type single-layer graphene. RSC Adv. 2022, 12, 7821 Soltani, O.; Francoeur, S.; Baraket, Z.; Kanzari, M. Tunable polychromatic filters based on semiconductor-superconductor-dielectric periodic and quasi-periodic hybrid photonic crystal. Opt. Mater. 2020, 111, 110690 Hao, J.; Gu, K.; Xia, L.; Liu, Y.; Yang, Z.; Yang, H. Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Commun. Nonlinear Sci. Numer. Simulat. 2020, 89, 105299 Ravanamma, R.; Reddy, K.M.; Krishnaiah, K.V.; Ravi, N. Structure and morphology of yttrium doped barium titanate ceramics for multi-layer capacitor applications. Mater. Today Proc. 2021, 46, 259 Yang, Q.; Deng, J.; Wang, G.; Deng, Q.; Zhao, J.; Dai, Y.; Duan, P.; Cui, M.; Kong, L.; Gao, H.; et al. The physical properties and microstructure of BiFeO3/YBCO heterostructures. Vacuum 2019, 167, 313–318 Chacón, M.; Bolaños, G.; Lopera, W.; Prieto, P. Tunneling Characteristics of Epitaxial YBa2Cu3O7-x/Y2O3/YBa2Cu3O7-x Planar Type Junctions. Phys. Supercond. 1997, 287, 711 Li, L. Ferroelectric/superconductor heterostructure. Mater. Sci. Eng. R Rep. 2000, 29, 153. [Google Scholar] [CrossRef] Macleod, H.A. Thin-Film Optical Filters; Taylor & Francis: Boca Ratón, FL, USA, 2018 Won, R. Is it crunch time? Nat. Photonics 2015, 9, 424 Macleod, H.A. Thin-Film Optical Filters; Taylor & Francis: Boca Ratón, FL, USA, 2018 Lian, J.; Vatansever, Z.; Noshad, M.; Brandt-Pearce, M. Indoor visible light communications, networking, and applications. J. Phys. Photonics 2019, 1, 012001 Haas, H.; Elmirghani, J.; White, I. Optical Wireless Communication. Philos. Trans. R. Soc. A 2020, 378, 20200051 Eriksson, T.A.; Hirano, T.; Puttnam, B.J.; Rademacher, G.; Luís, R.S.; Fujiwara, M.; Namiki, R.; Awaji, Y.; Takeoka, M.; Wada, N.; et al. Wavelength división multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels. Commun. Phys. 2019, 2, 9 Feng, C.; Ying, Z.; Zhao, Z.; Gu, J.; Pan, D.Z.; Chen, R.T. Wavelength división multiplexing (WDM) based integrated electronic-photonic switching network (EPSN) for high-speed data processing and transportation. Nanophotonics 2020, 9, 4579 Chhipa, M.K.; Radhouene, M.; Robinson, S.; Suthar, B. Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength división multiplexing application. Opt. Eng. 2017, 56, 015107 Sabne, A.; Panda, A.; More, V. Simplified Wavelength Division Multiplexing in Visible Light Communication by Using RGB LED as Frequency Selective Receiver. In Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; p. 45670 Zhang, H.; Lu, Y.; Duan, L.; Zhao, Z.; Shi, W.; Yao, J. Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter. Opt. Express 2014, 22, 24546 Minoli, D. Telecommunications Technology Handbook; Artech House: London, UK, 2003 Cavalcanti, S.B.; de Dios-Leyva, M.; Reyes-Gómez, E.; Oliveira, L.E. Photonic band structure and symmetry properties of electromagnetic modes in photonic crystals. Phys. Rev. E 2007, 75, 026607 Markos, P.; Soukoulis, C. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials; Princeton University Press: Princeton, NJ, USA, 2008 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.place.none.fl_str_mv |
Suiza |
dc.source.none.fl_str_mv |
https://www.mdpi.com/2304-6732/9/7/485 |
institution |
Universidad de Ibagué |
bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/cf83de76-06e9-4989-8a95-8e56c1459b23/download https://repositorio.unibague.edu.co/bitstreams/ce96b86d-38c3-4df8-8fcd-08e2c89301ab/download https://repositorio.unibague.edu.co/bitstreams/bf8bc24e-6d71-4631-aec0-f63bd41fdeac/download https://repositorio.unibague.edu.co/bitstreams/c16c8591-b790-426b-831c-b21efaac8331/download |
bitstream.checksum.fl_str_mv |
e1c06d85ae7b8b032bef47e42e4c08f9 de2c27b5396b062afb9e32ab0a6d21b6 2fa3e590786b9c0f3ceba1b9656b7ac3 0c0f1c75b4acaef30ade009fa2b749d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814204078926856192 |
spelling |
González, Luz E.250c4c70-d898-4764-a3db-f406da3b0f96-1Segura-Gutierrez, Lina M.d26c67a4-8430-4c9a-9e3d-af20e5bc3836-1Ordoñez, John E.1fbe21e4-fa8a-4178-a6b5-aef280bfa2a3-1Zambrano, Gustavo676d2066-6621-4afb-94d5-e4974db68220-12023-10-17T21:45:18Z2023-10-17T21:45:18Z2022-07-12We design and evaluate the performance of a one-dimensional photonic crystal (PhC) optical filter that comprises the integration of alternating layers of a barium titanate ferroelectric (Formula presented.) and an yttrium oxide dielectric (Formula presented.), with a critical high-temperature superconductor defect, yttrium–barium–copper oxide (Formula presented.), resulting in the (Formula presented.) (Formula presented.) multilayered nanostructure array. Here, we demonstrate that such a nanosystem allows for routing and switching optical signals at well-defined wavelengths, either in the visible or the near-infrared spectral regions—the latter as required in optical telecommunication channels. By tailoring the superconductor layer thickness, the multilayer period number N, the temperature and the direction of incident light, we provide a computational test-bed for the implementation of a PhC-optical filter that works for both wavelength-division multiplexing in the 300–800 nm region and for high-Q filtering in the 1300–1800 nm range. In particular, we show that the filter’s quality factor of resonances Q increases with the number of multilayers—it shows an exponential scaling with N (e.g., in the telecom C-band, (Formula presented.) for (Formula presented.)). In the telecom region, the light transmission slightly shifts towards longer wavelengths with increasing temperature; this occurs at an average rate of 0.25 nm/K in the range from 20 to 80 K, for (Formula presented.) at normal incidence. This rate can be enhanced, and the filter can thus be used for temperature sensing in the NIR range. Moreover, the filter works at cryogenic temperature environments (e.g., in outer space conditions) and can be integrated into either photonic and optoelectronic circuits or in devices for the transmission of information.application/pdfGonzález, L.E.; Segura-Gutierrez, L.M.; Ordoñez, J.E.; Zambrano, G.; Reina, J.H. A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. Photonics 2022, 9, 485. https://doi.org/10.3390/ photonics907048523046732https://hdl.handle.net/20.500.12313/3849engSuiza1348519PhotonicsYablonovitch, E. Photonic crystals. J. Mod. Opt. 1994, 41, 173–194Vinet, L.; Zhedanov, A. Photonic Crystals: Physics and Technology; Springer: Milan, Italy, 2008McGurn, A. Nanophotonics; Springer International Publishing: Berlin/Heidelberg, Germany, 2018Yoshino, K.; Shimoda, Y.; Kawagishi, Y.; Nakayama, K.; Ozaki, M. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 1999, 75, 932Li, H.; Low, M.X.; Ako, R.T.; Bhaskaran, M.; Sriram, S.; Withayachumnankul, W.; Kuhlmey, B.T.; Atakaramians, S. Broadband Single-Mode Hybrid Photonic Crystal Waveguides for Terahertz Integration on a Chip. Adv. Mater. Technol. 2020, 5, 2000117Clementi, M.; Iadanza, S.; Schulz, S.A.; Urbinati, G.; Gerace, D.; O’Faloain, L.; Galli, M. Thermo-Optically Induced Transparency on a photonic chip. Light Sci. Appl. 2021, 10, 240Mbakop, F.K.; Tom, A.; Dadjé, A.; Vidal, A.K.C.; Djongyang, N. One-dimensional comparison of TiO2/SiO2 and Si/SiO2 photonic crystals filters for thermophotovoltaic applications in visible and infrared. Chin. J. Phys. 2020, 67, 124Soltani, O.; Zaghdoudi, J.; Kanzari, M. Tunable filter properties in 1D linear graded magnetized cold plasma photonic crystals based on Octonacci quasi-periodic structure. Photonics Nanostruct.-Fundam. Appl 2020, 38, 100744Sakata, R.; Ishizaki, K.; De Zoysa, M.; Fukuhara, S.; Inoue, T.; Tanaka, Y.; Iwata, K.; Hatsuda, R.; Yoshida, M.; Gelleta, J.; et al. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers. Nat. Commun. 2020, 11, 3487Butler, S.M.; Singaravelu, P.K.J.; O’Faolain, L.; Hegarty, S.P. Long cavity photonic crystal laser in FDML operation using an akinetic reflective filter. Opt. Express 2020, 28, 38813Shi, C.; Yuan, J.; Luo, X.; Shi, S.; Lu, S.; Yuan, P.; Xu, W.; Chen, Z.; Yu, H. Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide. Opt. Commun. 2020, 461, 125222Baghbadorani, H.K.; Barvestani, J. Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes. Appl. Surf. Sci. 2021, 537, 147730Mehaney, A.; Abadla, M.M.; Elsayed, H.A. 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. J. Mol. Liq. 2021, 322, 114978Delgado-Sanchez, J.M.; Lillo-Bravo, I. Angular dependence of photonic crystal coupled to photovoltaic solar cell. Appl. Sci. 2020, 10, 1574Zheng, W.; Luo, X.; Zhang, Y.; Ye, C.; Qin, A.; Cao, Y.; Hou, L. Efficient Low-Cost All-Flexible Microcavity Semitransparent Polymer Solar Cells Enabled by Polymer Flexible One-Dimensional Photonic Crystals. ACS Appl. Mater. Interfaces 2020, 12, 23190Aly, A.H.; Ghany, S.E.A.; Kamal, B.M.; Vigneswaran, D. Theoretical studies of hybrid multifunctional (YBa2Cu3O7-X) photonic crystals within visible and infra-red regions. Ceram. Int. 2020, 46, 365Zaky, Z.A.; Aly, A.H. Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers. J. Supercond. Nov. Magn. 2020, 33, 2983González, L.E.; Ordoñez, J.E.; Zambrano, G.; Porras-Montenegro, N. YBa2Cu3O7/BaTiO3 1D Superconducting Photonic Crystal with Tunable Broadband Response in the Visible Range. J. Supercond. Nov. Magn. 2018, 31, 2003González, L.E.; Ordoñez, J.E.; Carlos, A.; Melo, L.; Mendoza, E.; Reyes, D.; Zambrano, G.; Porras-Montenegro, N.; Granada, J.C.; Gómez, M.E.; et al. Experimental realisation of tunable ferroelectric/superconductor (BTO/YBCO)N/STO 1D photonic crystals in the whole visible spectrum. Sci. Rep. 2020, 10, 13083Segal, N.; Keren-Zur, S.; Hendler, N.; Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics 2015, 9, 180Schlafmann, K.R.; White, T.J. Retention and Deformation of the Blue Phases in Liquid Crystalline Elastomers. Nat. Commun. 2021, 12, 4916Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Mult-mode Surface plasmon resonance absorber base don dat-type single-layer graphene. RSC Adv. 2022, 12, 7821Soltani, O.; Francoeur, S.; Baraket, Z.; Kanzari, M. Tunable polychromatic filters based on semiconductor-superconductor-dielectric periodic and quasi-periodic hybrid photonic crystal. Opt. Mater. 2020, 111, 110690Hao, J.; Gu, K.; Xia, L.; Liu, Y.; Yang, Z.; Yang, H. Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Commun. Nonlinear Sci. Numer. Simulat. 2020, 89, 105299Ravanamma, R.; Reddy, K.M.; Krishnaiah, K.V.; Ravi, N. Structure and morphology of yttrium doped barium titanate ceramics for multi-layer capacitor applications. Mater. Today Proc. 2021, 46, 259Yang, Q.; Deng, J.; Wang, G.; Deng, Q.; Zhao, J.; Dai, Y.; Duan, P.; Cui, M.; Kong, L.; Gao, H.; et al. The physical properties and microstructure of BiFeO3/YBCO heterostructures. Vacuum 2019, 167, 313–318Chacón, M.; Bolaños, G.; Lopera, W.; Prieto, P. Tunneling Characteristics of Epitaxial YBa2Cu3O7-x/Y2O3/YBa2Cu3O7-x Planar Type Junctions. Phys. Supercond. 1997, 287, 711Li, L. Ferroelectric/superconductor heterostructure. Mater. Sci. Eng. R Rep. 2000, 29, 153. [Google Scholar] [CrossRef] Macleod, H.A. Thin-Film Optical Filters; Taylor & Francis: Boca Ratón, FL, USA, 2018Won, R. Is it crunch time? Nat. Photonics 2015, 9, 424Macleod, H.A. Thin-Film Optical Filters; Taylor & Francis: Boca Ratón, FL, USA, 2018Lian, J.; Vatansever, Z.; Noshad, M.; Brandt-Pearce, M. Indoor visible light communications, networking, and applications. J. Phys. Photonics 2019, 1, 012001Haas, H.; Elmirghani, J.; White, I. Optical Wireless Communication. Philos. Trans. R. Soc. A 2020, 378, 20200051Eriksson, T.A.; Hirano, T.; Puttnam, B.J.; Rademacher, G.; Luís, R.S.; Fujiwara, M.; Namiki, R.; Awaji, Y.; Takeoka, M.; Wada, N.; et al. Wavelength división multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels. Commun. Phys. 2019, 2, 9Feng, C.; Ying, Z.; Zhao, Z.; Gu, J.; Pan, D.Z.; Chen, R.T. Wavelength división multiplexing (WDM) based integrated electronic-photonic switching network (EPSN) for high-speed data processing and transportation. Nanophotonics 2020, 9, 4579Chhipa, M.K.; Radhouene, M.; Robinson, S.; Suthar, B. Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength división multiplexing application. Opt. Eng. 2017, 56, 015107Sabne, A.; Panda, A.; More, V. Simplified Wavelength Division Multiplexing in Visible Light Communication by Using RGB LED as Frequency Selective Receiver. In Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; p. 45670Zhang, H.; Lu, Y.; Duan, L.; Zhao, Z.; Shi, W.; Yao, J. Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter. Opt. Express 2014, 22, 24546Minoli, D. Telecommunications Technology Handbook; Artech House: London, UK, 2003Cavalcanti, S.B.; de Dios-Leyva, M.; Reyes-Gómez, E.; Oliveira, L.E. Photonic band structure and symmetry properties of electromagnetic modes in photonic crystals. Phys. Rev. E 2007, 75, 026607Markos, P.; Soukoulis, C. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials; Princeton University Press: Princeton, NJ, USA, 2008This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/2304-6732/9/7/485Optical communicationsPhotonic crystal filtersSuperconductorsWavelength division multiplexingA multichannel superconductor-based photonic crystal optical filter tunable in the visible and telecom windows at cryogenic temperatureArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTA Multichannel Superconductor-Based Photonic CrystalOptical Filter Tunable in the Visible and Telecom Windowsat Cryogenic Temperature - photonics-09-00485.pdf.txtA Multichannel Superconductor-Based Photonic CrystalOptical Filter Tunable in the Visible and Telecom Windowsat Cryogenic Temperature - photonics-09-00485.pdf.txtExtracted texttext/plain2https://repositorio.unibague.edu.co/bitstreams/cf83de76-06e9-4989-8a95-8e56c1459b23/downloade1c06d85ae7b8b032bef47e42e4c08f9MD53THUMBNAILA Multichannel Superconductor-Based Photonic CrystalOptical Filter Tunable in the Visible and Telecom Windowsat Cryogenic Temperature - photonics-09-00485.pdf.jpgA Multichannel Superconductor-Based Photonic CrystalOptical Filter Tunable in the Visible and Telecom Windowsat Cryogenic Temperature - photonics-09-00485.pdf.jpgGenerated Thumbnailimage/jpeg14300https://repositorio.unibague.edu.co/bitstreams/ce96b86d-38c3-4df8-8fcd-08e2c89301ab/downloadde2c27b5396b062afb9e32ab0a6d21b6MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/bf8bc24e-6d71-4631-aec0-f63bd41fdeac/download2fa3e590786b9c0f3ceba1b9656b7ac3MD52ORIGINALA Multichannel Superconductor-Based Photonic CrystalOptical Filter Tunable in the Visible and Telecom Windowsat Cryogenic Temperature - photonics-09-00485.pdfA Multichannel Superconductor-Based Photonic CrystalOptical Filter Tunable in the Visible and Telecom Windowsat Cryogenic Temperature - photonics-09-00485.pdfapplication/pdf243882https://repositorio.unibague.edu.co/bitstreams/c16c8591-b790-426b-831c-b21efaac8331/download0c0f1c75b4acaef30ade009fa2b749d9MD5120.500.12313/3849oai:repositorio.unibague.edu.co:20.500.12313/38492023-10-18 03:00:18.27https://creativecommons.org/licenses/by-nc-nd/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |