UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison
This paper introduces UniSchedApi, an API-based solution that revolutionizes optimized university resource scheduling. The primary focus of the research is the detailed evaluation of two automatic resource allocation methods: Tabu Search (TS) and Genetic Algorithm (GA). The paper thoroughly explores...
- Autores:
-
La Cruz, Alexandra
Herrera, Luis
Cortes, Jeisson
García-León, Andrés Alberto
Severeyn, Erika
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/6043
- Acceso en línea:
- https://doi.org/10.32397/tesea.vol5.n2.633
https://hdl.handle.net/20.500.12313/6043
https://revistas.utb.edu.co/tesea/article/view/633
- Palabra clave:
- Recursos universitarios
Metodología universitarias - Comparación
Genetic Algorithms
Metaheuristic Algorithms
Optimization
Optimization algorithms
Scheduling problem
- Rights
- openAccess
- License
- © 2024 by the authors.
| id |
UNIBAGUE2_9ceba78bc589dfefeff791573f81980f |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/6043 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison |
| title |
UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison |
| spellingShingle |
UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison Recursos universitarios Metodología universitarias - Comparación Genetic Algorithms Metaheuristic Algorithms Optimization Optimization algorithms Scheduling problem |
| title_short |
UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison |
| title_full |
UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison |
| title_fullStr |
UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison |
| title_full_unstemmed |
UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison |
| title_sort |
UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison |
| dc.creator.fl_str_mv |
La Cruz, Alexandra Herrera, Luis Cortes, Jeisson García-León, Andrés Alberto Severeyn, Erika |
| dc.contributor.author.none.fl_str_mv |
La Cruz, Alexandra Herrera, Luis Cortes, Jeisson García-León, Andrés Alberto Severeyn, Erika |
| dc.subject.armarc.none.fl_str_mv |
Recursos universitarios Metodología universitarias - Comparación |
| topic |
Recursos universitarios Metodología universitarias - Comparación Genetic Algorithms Metaheuristic Algorithms Optimization Optimization algorithms Scheduling problem |
| dc.subject.proposal.eng.fl_str_mv |
Genetic Algorithms Metaheuristic Algorithms Optimization Optimization algorithms Scheduling problem |
| description |
This paper introduces UniSchedApi, an API-based solution that revolutionizes optimized university resource scheduling. The primary focus of the research is the detailed evaluation of two automatic resource allocation methods: Tabu Search (TS) and Genetic Algorithm (GA). The paper thoroughly explores how these methods address challenges associated with resource allocation in university environments, considering critical factors such as teacher availability, student time constraints, classroom features (including computers, projectors, TV’s, specialized laboratories, specialized equipment, etc.), among others. The evaluation is carried out meticulously, measuring the performance and memory resource usage of both algorithms, considering the comparison with the manual scheduling. The results reveal that the TS algorithm excels in terms of temporal efficiency and computational resource usage. Based on these findings, UniSchedApi implements GA and TS but uses TS as the default algorithm, ensuring more efficient and optimized management of academic resources. This research not only presents a practical solution with UniSchedApi but also provides a deep understanding of the methods for evaluating and selecting algorithms to address specific challenges in university resource allocation. These results lay the groundwork for future improvements in academic resource management. |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024-07-31 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-27T15:40:18Z |
| dc.date.available.none.fl_str_mv |
2025-11-27T15:40:18Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
La Cruz, A., Herrera, L., Cortes, J., García-León, A. A., & Severeyn, E. (2024). UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison. Transactions on Energy Systems and Engineering Applications, 5(2), 1–13. https://doi.org/10.32397/tesea.vol5.n2.633 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.32397/tesea.vol5.n2.633 |
| dc.identifier.issn.none.fl_str_mv |
27450120 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/6043 |
| dc.identifier.url.none.fl_str_mv |
https://revistas.utb.edu.co/tesea/article/view/633 |
| identifier_str_mv |
La Cruz, A., Herrera, L., Cortes, J., García-León, A. A., & Severeyn, E. (2024). UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison. Transactions on Energy Systems and Engineering Applications, 5(2), 1–13. https://doi.org/10.32397/tesea.vol5.n2.633 27450120 |
| url |
https://doi.org/10.32397/tesea.vol5.n2.633 https://hdl.handle.net/20.500.12313/6043 https://revistas.utb.edu.co/tesea/article/view/633 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.none.fl_str_mv |
13 |
| dc.relation.citationissue.none.fl_str_mv |
2 |
| dc.relation.citationstartpage.none.fl_str_mv |
1 |
| dc.relation.citationvolume.none.fl_str_mv |
5 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Transactions on Energy Systems and Engineering Applications |
| dc.relation.references.none.fl_str_mv |
A.R Mushi. Tabu search heuristic for university course timetabling problem.African Journal of Science and Technology,7(1), 2006. H. Raoofpanah and V. Ghezavati. Extended hybrid tabu search and simulated annealing algorithm for location-inventorymodel with multiple products, multiple distribution centers and multiple capacity levels.Production Engineering Researchand Development, 13:649–663, 2019 X. Deng, Y. Zhang, B. Kang, J. Wu, X. Sun, and Y. Deng. An application of genetic algorithm for university coursetimetabling problem. InProceedings of the 23rd Chinese Control and Decision Conference (CCDC 2011), pages 2119–2122,2011 Rhydian Lewis. A survey of metaheuristic-based techniques for university timetabling problems.OR Spectrum, 30:167–190,01 2008. Marieke Adriaen, Patrick De Causmaecker, and Piet Demeester. Tackling the university course timetabling problem withan aggregation approach. InProceedings of the 7th International Conference on the Practice and Theory of AutomatedTimetabling (PATAT 2006), pages 330–335, 2006 Ahmed A. Mahiba and Chitharanjan A. D. Durai. Genetic algorithm with search bank strategies for university coursetimetabling problem.Procedia Engineering, 38:253–263, 2012 Michael R. R. Lewis.Metaheuristics for University Course Timetabling. PhD thesis, Napier University, 2006. M. Joudaki, M. Imani, and N. Mazhari. Using improved memetic algorithm and local search to solve university coursetimetabling problem (ucttp). Doroud, Iran, 2010. Islamic Azad University. Robert Pellerin, Nathalie Perrier, and François Berthaut. A survey of hybrid metaheuristics for the resource-constrainedproject scheduling problem.European Journal of Operational Research, 280(2):395–416, 2020. Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! InInternational Conference onLearning Representations, 2019 P. Nandal, Ankit Satyawali, Dhananjay Sachdeva, and Abhinav Singh Tomar. Graph coloring based scheduling algorithm toautomatically generate college course timetable. In2021 11th International Conference on Cloud Computing, Data ScienceEngineering (Confluence), pages 210–214, 2021 Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. Constraint satisfaction problems: Algorithms and applications.European Journal of Operational Research, 119(3):557–581, 1999 Tadeusz Sawik.Scheduling in Supply Chains Using Mixed Integer Programming. Wiley, 2011. L. Buriol, P.M. França, and P. Moscato. A new memetic algorithm for the asymmetric traveling salesman problem.Journalof Heuristics, 10:483–506, 2004 Marek Mika, Grzegorz Waligóra, and Jan W ̨eglarz. Tabu search for multi-mode resource-constrained project scheduling withschedule-dependent setup times.European Journal of Operational Research, 187(3):1238–1250, 2008 Cuneyt Aladag and Gulay Hocaoglu. A tabu search algorithm to solve a course timetabling problem.Hacettepe Journal ofMathematics and Statistics, pages 53–64, 2007 Juan Frausto-Solís, Francisco Alonso-Pecina, and Jaime Mora-Vargas. An efficient simulated annealing algorithm forfeasible solutions of course timetabling. InProceedings of the 10th European Conference on Evolutionary Computation inCombinatorial Optimization (EvoCOP 2008), pages 675–685, 2008 Juan Soria-Alcaraz, Gabriela Ochoa, Jerry Swan, Miguel Carpio, Héctor Puga, and Edmund Burke. Effective learninghyper-heuristics for the course timetabling problem.European Journal of Operational Research, pages 77–86, 2014 S. Castillo-Rivera, J. De Antón, R. del Olmo, J. Pajares, and A. López-Paredes. Genetic algorithms for the scheduling inadditive manufacturing.International Journal of Production Management and Engineering, 8(2):59–63, 2020. Scheduling under Resource Constraints, pages 425–475. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007 S.N. Jat and S. Yang. A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling.Journalof Scheduling, 14:617–637, 2011 Fred Glover and Manuel Laguna.Tabu Search, pages 3261–3362. Springer New York, New York, NY, 2013 |
| dc.rights.none.fl_str_mv |
© 2024 by the authors. |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| rights_invalid_str_mv |
© 2024 by the authors. http://purl.org/coar/access_right/c_abf2 Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Tecnologica de Bolivar |
| dc.publisher.place.none.fl_str_mv |
Colombia |
| publisher.none.fl_str_mv |
Universidad Tecnologica de Bolivar |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/544d3d80-12f5-438e-afb9-707ceed692c9/download https://repositorio.unibague.edu.co/bitstreams/a4a08460-e3fc-4f96-b6ff-5e7d78d6102b/download https://repositorio.unibague.edu.co/bitstreams/3146ca6c-d4f0-4706-9f6b-ab0230276333/download https://repositorio.unibague.edu.co/bitstreams/39227c19-fb3c-4e89-89f2-8d35350e534c/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 365fa2bf301027ee24eb6325d2b04a90 b49840b95104148abe1263da8a80fbae 53cec786590ef944f8316d1dfe33e3ab |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059974386483200 |
| spelling |
La Cruz, Alexandra22803b00-0ef2-4c49-9bc4-ad26d39e15fc-1Herrera, Luis783a7ccc-7b26-4004-9bc4-6b510a880dc1-1Cortes, Jeisson6c7853e9-ae1d-4aa7-bcf8-b043f4eaa698-1García-León, Andrés Alberto3285d23e-12f4-4295-9c8c-93c8d8739484-1Severeyn, Erikac5e9527a-35c2-4407-b46b-1192d15b1c58-12025-11-27T15:40:18Z2025-11-27T15:40:18Z2024-07-31This paper introduces UniSchedApi, an API-based solution that revolutionizes optimized university resource scheduling. The primary focus of the research is the detailed evaluation of two automatic resource allocation methods: Tabu Search (TS) and Genetic Algorithm (GA). The paper thoroughly explores how these methods address challenges associated with resource allocation in university environments, considering critical factors such as teacher availability, student time constraints, classroom features (including computers, projectors, TV’s, specialized laboratories, specialized equipment, etc.), among others. The evaluation is carried out meticulously, measuring the performance and memory resource usage of both algorithms, considering the comparison with the manual scheduling. The results reveal that the TS algorithm excels in terms of temporal efficiency and computational resource usage. Based on these findings, UniSchedApi implements GA and TS but uses TS as the default algorithm, ensuring more efficient and optimized management of academic resources. This research not only presents a practical solution with UniSchedApi but also provides a deep understanding of the methods for evaluating and selecting algorithms to address specific challenges in university resource allocation. These results lay the groundwork for future improvements in academic resource management.application/pdfLa Cruz, A., Herrera, L., Cortes, J., García-León, A. A., & Severeyn, E. (2024). UniSchedApi: A comprehensive solution for university resource scheduling and methodology comparison. Transactions on Energy Systems and Engineering Applications, 5(2), 1–13. https://doi.org/10.32397/tesea.vol5.n2.633https://doi.org/10.32397/tesea.vol5.n2.63327450120https://hdl.handle.net/20.500.12313/6043https://revistas.utb.edu.co/tesea/article/view/633engUniversidad Tecnologica de BolivarColombia13215Transactions on Energy Systems and Engineering ApplicationsA.R Mushi. Tabu search heuristic for university course timetabling problem.African Journal of Science and Technology,7(1), 2006.H. Raoofpanah and V. Ghezavati. Extended hybrid tabu search and simulated annealing algorithm for location-inventorymodel with multiple products, multiple distribution centers and multiple capacity levels.Production Engineering Researchand Development, 13:649–663, 2019X. Deng, Y. Zhang, B. Kang, J. Wu, X. Sun, and Y. Deng. An application of genetic algorithm for university coursetimetabling problem. InProceedings of the 23rd Chinese Control and Decision Conference (CCDC 2011), pages 2119–2122,2011Rhydian Lewis. A survey of metaheuristic-based techniques for university timetabling problems.OR Spectrum, 30:167–190,01 2008.Marieke Adriaen, Patrick De Causmaecker, and Piet Demeester. Tackling the university course timetabling problem withan aggregation approach. InProceedings of the 7th International Conference on the Practice and Theory of AutomatedTimetabling (PATAT 2006), pages 330–335, 2006Ahmed A. Mahiba and Chitharanjan A. D. Durai. Genetic algorithm with search bank strategies for university coursetimetabling problem.Procedia Engineering, 38:253–263, 2012Michael R. R. Lewis.Metaheuristics for University Course Timetabling. PhD thesis, Napier University, 2006.M. Joudaki, M. Imani, and N. Mazhari. Using improved memetic algorithm and local search to solve university coursetimetabling problem (ucttp). Doroud, Iran, 2010. Islamic Azad University.Robert Pellerin, Nathalie Perrier, and François Berthaut. A survey of hybrid metaheuristics for the resource-constrainedproject scheduling problem.European Journal of Operational Research, 280(2):395–416, 2020.Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! InInternational Conference onLearning Representations, 2019P. Nandal, Ankit Satyawali, Dhananjay Sachdeva, and Abhinav Singh Tomar. Graph coloring based scheduling algorithm toautomatically generate college course timetable. In2021 11th International Conference on Cloud Computing, Data ScienceEngineering (Confluence), pages 210–214, 2021Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. Constraint satisfaction problems: Algorithms and applications.European Journal of Operational Research, 119(3):557–581, 1999Tadeusz Sawik.Scheduling in Supply Chains Using Mixed Integer Programming. Wiley, 2011.L. Buriol, P.M. França, and P. Moscato. A new memetic algorithm for the asymmetric traveling salesman problem.Journalof Heuristics, 10:483–506, 2004Marek Mika, Grzegorz Waligóra, and Jan W ̨eglarz. Tabu search for multi-mode resource-constrained project scheduling withschedule-dependent setup times.European Journal of Operational Research, 187(3):1238–1250, 2008Cuneyt Aladag and Gulay Hocaoglu. A tabu search algorithm to solve a course timetabling problem.Hacettepe Journal ofMathematics and Statistics, pages 53–64, 2007Juan Frausto-Solís, Francisco Alonso-Pecina, and Jaime Mora-Vargas. An efficient simulated annealing algorithm forfeasible solutions of course timetabling. InProceedings of the 10th European Conference on Evolutionary Computation inCombinatorial Optimization (EvoCOP 2008), pages 675–685, 2008Juan Soria-Alcaraz, Gabriela Ochoa, Jerry Swan, Miguel Carpio, Héctor Puga, and Edmund Burke. Effective learninghyper-heuristics for the course timetabling problem.European Journal of Operational Research, pages 77–86, 2014S. Castillo-Rivera, J. De Antón, R. del Olmo, J. Pajares, and A. López-Paredes. Genetic algorithms for the scheduling inadditive manufacturing.International Journal of Production Management and Engineering, 8(2):59–63, 2020.Scheduling under Resource Constraints, pages 425–475. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007S.N. Jat and S. Yang. A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling.Journalof Scheduling, 14:617–637, 2011Fred Glover and Manuel Laguna.Tabu Search, pages 3261–3362. Springer New York, New York, NY, 2013© 2024 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Recursos universitariosMetodología universitarias - ComparaciónGenetic AlgorithmsMetaheuristic AlgorithmsOptimizationOptimization algorithmsScheduling problemUniSchedApi: A comprehensive solution for university resource scheduling and methodology comparisonArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/544d3d80-12f5-438e-afb9-707ceed692c9/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf113653https://repositorio.unibague.edu.co/bitstreams/a4a08460-e3fc-4f96-b6ff-5e7d78d6102b/download365fa2bf301027ee24eb6325d2b04a90MD52TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain2245https://repositorio.unibague.edu.co/bitstreams/3146ca6c-d4f0-4706-9f6b-ab0230276333/downloadb49840b95104148abe1263da8a80fbaeMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg23267https://repositorio.unibague.edu.co/bitstreams/39227c19-fb3c-4e89-89f2-8d35350e534c/download53cec786590ef944f8316d1dfe33e3abMD5420.500.12313/6043oai:repositorio.unibague.edu.co:20.500.12313/60432025-11-28 03:02:42.876https://creativecommons.org/licenses/by/4.0/© 2024 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
