Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals

UV–vis optical absorption measurements of the ethanol solvated quercetin molecule and the dihydrate triclinic quercetin crystal were performed, as well as the electronic structure of the ethanol solvated quercetin molecule and the properties of anhydrous and mono(di)hydrated quercetin crystals emplo...

Full description

Autores:
de Paula V.F., Jr
Guedes M.I.F
van Tilburg M.F
Vieira I.G.P.
Silva J.B
dos Santos R.C.R
Echeverry J.P
Costa G.
Silva B.P.
Maia F.F., Jr
Caetano E.W.S
Freire V.N
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/3872
Acceso en línea:
https://hdl.handle.net/20.500.12313/3872
Palabra clave:
DFT calculations
Ethanol solvated quercetin
Hydrated molecular crystals
Optoelectronic properties
Quercetin crystals
Relative stability
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_9860f78ee114ab78ec40e80d343469f2
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/3872
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals
title Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals
spellingShingle Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals
DFT calculations
Ethanol solvated quercetin
Hydrated molecular crystals
Optoelectronic properties
Quercetin crystals
Relative stability
title_short Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals
title_full Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals
title_fullStr Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals
title_full_unstemmed Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals
title_sort Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals
dc.creator.fl_str_mv de Paula V.F., Jr
Guedes M.I.F
van Tilburg M.F
Vieira I.G.P.
Silva J.B
dos Santos R.C.R
Echeverry J.P
Costa G.
Silva B.P.
Maia F.F., Jr
Caetano E.W.S
Freire V.N
dc.contributor.author.none.fl_str_mv de Paula V.F., Jr
Guedes M.I.F
van Tilburg M.F
Vieira I.G.P.
Silva J.B
dos Santos R.C.R
Echeverry J.P
Costa G.
Silva B.P.
Maia F.F., Jr
Caetano E.W.S
Freire V.N
dc.subject.proposal.eng.fl_str_mv DFT calculations
Ethanol solvated quercetin
Hydrated molecular crystals
Optoelectronic properties
Quercetin crystals
Relative stability
topic DFT calculations
Ethanol solvated quercetin
Hydrated molecular crystals
Optoelectronic properties
Quercetin crystals
Relative stability
description UV–vis optical absorption measurements of the ethanol solvated quercetin molecule and the dihydrate triclinic quercetin crystal were performed, as well as the electronic structure of the ethanol solvated quercetin molecule and the properties of anhydrous and mono(di)hydrated quercetin crystals employing Density Functional Theory (DFT) calculations with a dispersion correction scheme. Unit cell geometry optimization of the anhydrous crystal has elucidated the structure of the anhydrous quercetin crystal (space group P21/a, monoclinic). Anhydrous quercetin exhibits a direct bandgap of 2.17 ​eV with large valence band dispersion, suggesting a semiconductor behavior for hole transport. Monohydrate quercetin has an indirect gap of 1.84 ​eV, while the solid dihydrate form has a Kohn-Sham indirect electronic bandgap of 2.00 ​eV, smaller than the experimental optical absorption bandgap of 2.40 ​eV. Applying the Δ-sol gap correction scheme, the bandgaps increase by about 1 ​eV. There is a significant optical anisotropy for all quercetin systems in the solid state, especially for the anhydrous form.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-05-21
dc.date.accessioned.none.fl_str_mv 2023-10-23T16:51:13Z
dc.date.available.none.fl_str_mv 2023-10-23T16:51:13Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv de Paula, V. F., Guedes, M. I. F., van Tilburg, M. F., Vieira, I. G. P., Silva, J. B., dos Santos, R. C. R., Echeverry, J. P., Costa, G., Silva, B. P., Maia, F. F., Caetano, E. W. S., & Freire, V. N. (2022). Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals. Journal of Solid State Chemistry, 312. https://doi.org/10.1016/j.jssc.2022.123242
dc.identifier.issn.none.fl_str_mv 00224596
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/3872
identifier_str_mv de Paula, V. F., Guedes, M. I. F., van Tilburg, M. F., Vieira, I. G. P., Silva, J. B., dos Santos, R. C. R., Echeverry, J. P., Costa, G., Silva, B. P., Maia, F. F., Caetano, E. W. S., & Freire, V. N. (2022). Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals. Journal of Solid State Chemistry, 312. https://doi.org/10.1016/j.jssc.2022.123242
00224596
url https://hdl.handle.net/20.500.12313/3872
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 13
dc.relation.citationissue.none.fl_str_mv 123242
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 312
dc.relation.references.none.fl_str_mv A. Sharma, D. Kashyap, K. Sak, H.S. Tuli, A.K. Sharma Therapeutic charm of quercetin and its derivatives: a review of research and patents Pharm. Pat. Anal., 7 (1) (2018), pp. 15-32,
G. Quercetin D'Andrea A flavonol with multifaceted therapeutic applications? Fitoterapia, 106 (2015), pp. 256-271
W. Wang, C. Sun, L. Mao, P. Ma, F. Liu, J. Yang, Y. Gao The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review Trends Food Sci. Technol., 56 (2016), pp. 21-38
K. Vasisht, K. Chadha, M. Karan, Y. Bhalla, A.K. Jena, R. Chadha Enhancing biopharmaceutical parameters of bioflavonoid quercetin by cocrystallization CrystEngComm, 18 (8) (2016), pp. 1403-1415
X. Filip, I.-G. Grosu, M. Miclăuş, C. Filip NMR crystallography methods to probe complex hydrogen bonding networks: application to structure elucidation of anhydrous quercetin CrystEngComm, 15 (20) (2013), p. 4131
J. Sheng, G.M. Venkatesh, S.P. Duddu, D.J.W. Grant Dehydration behavior of eprosartan mesylate dihydrate J. Pharmacol. Sci., 88 (10) (1999), pp. 1021-1029
A. Raw Regulatory considerations of pharmaceutical solid polymorphism in abbreviated new drug applications (ANDAs) Adv. Drug Deliv. Rev., 56 (3) (2004), pp. 397-414,
L. Yu Amorphous pharmaceutical solids: preparation, characterization and stabilization Adv. Drug Deliv. Rev., 48 (1) (2001), pp. 27-42
O.O. Brovarets’, D.M. Hovorun Conformational diversity of the quercetin molecule: a quantum-chemical view J. Biomol. Struct. Dyn., 38 (10) (2020), pp. 2817-2836
O.O. Brovarets’, M. Hovorun D. A never-ending conformational story of the quercetin molecule: quantum-mechanical investigation of the O3′H and O4′H hydroxyl groups rotations Appl. Sci., 10 (3) (2020), p. 1147,
A. Be̅rziņš, D. Zvaniņa, A. Trimdale Detailed analysis of packing efficiency allows rationalization of solvate formation propensity for selected structurally similar organic molecules Cryst. Growth Des., 18 (4) (2018), pp. 2040-2045,
A. Kons, A. Be̅rziņš, A. Actiņš Polymorphs and hydrates of sequifenadine hydrochloride: crystallographic explanation of observed phase transitions and thermodynamic stability Cryst. Growth Des., 17 (3) (2017), pp. 1146-1158
M. Rossi, L.F. Rickles, W.A. Halpin The crystal and molecular structure of quercetin: a biologically active and naturally occurring flavonoid Bioorg. Chem., 14 (1) (1986), pp. 55-69
A.J. Smith, P. Kavuru, L. Wojtas, M.J. Zaworotko, R.D. Shytle Cocrystals of quercetin with improved solubility and oral bioavailability Mol. Pharm., 8 (5) (2011), pp. 1867-1876,
S. Olejniczak, M.J. Potrzebowski Solid state NMR studies and density functional theory (DFT) calculations of conformers of QuercetinElectronic supplementary information (ESI) available: TGA profiles for samples 1 and 2 and 13C NMR shielding parameters
G.S. Borghetti, J.P. Carini, S.B. Honorato, A.P. Ayala, J.C.F. Moreira, V.L. Bassani Physicochemical properties and thermal stability of quercetin hydrates in the solid state Thermochim. Acta, 539 (2012), pp. 109-114,
G.Z. Jin, Y. Yamagata, K. Tomita Structure of quercetin dihydrate Acta Crystallogr. Sect. C Cryst. Struct. Commun., 46 (2) (1990), pp. 310-313,
Y. Zheng, I.S. Haworth, Z. Zuo, M.S.S. Chow, A.H.L. Chow Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes J. Pharmacol. Sci., 94 (5) (2005), pp. 1079-1089
J. Azzi, A. Jraij, L. Auezova, S. Fourmentin, H. Greige-Gerges Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes Food Hydrocolloids, 81 (2018), pp. 328-340,
Z. Zhang, D. Li, C. Luo, C. Huang, R. Qiu, Z. Deng, H. Zhang Cocrystals of natural products: improving the dissolution performance of flavonoids using betaine Cryst. Growth Des., 19 (7) (2019), pp. 3851-3859
M. Veverka, T. Dubaj, J. Gallovič, V. Jorík, E. Veverková, M. Danihelová, P. Šimon Cocrystals of quercetin: synthesis, characterization, and screening of biological activity Monatsh. Chem., 146 (1) (2015), pp. 99-109
A.S. Sinha, A.R. Maguire, S.E. Lawrence Cocrystallization of nutraceuticals Cryst. Growth Des., 15 (2) (2015), pp. 984-1009
L. Zhang, D. Kong, H. Wang, L. Jiao, X. Zhao, J. Song, D. Yang, H. Yang, S. Yang, G. Du, et al. Cocrystal of apixaban–quercetin: improving solubility and bioavailability of drug combination of two poorly soluble drugs Molecules, 26 (9) (2021), p. 2677
X. Cai, Z. Fang, J. Dou, A. Yu, G. Zhai Bioavailability of quercetin: problems and promises Curr. Med. Chem., 20 (20) (2013), pp. 2572-2582
J. Zhao, J. Yang, Y. Xie Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview Int. J. Pharm., 570 (2019), p. 118642
A.M. Silva, B.P. Silva, F.A.M. Sales, V.N. Freire, E. Moreira, U.L. Fulco, E.L. Albuquerque, F.F. Maia Jr., E.W.S. Caetano Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior Phys. Rev. B, 86 (19) (2012), p. 195201
P.R. Tulip, S.J. Clark Structural and electronic properties of L-amino acids Phys. Rev. B, 71 (19) (2005), p. 195117
S. Datta, D.J.W. Grant Crystal structures of drugs: advances in determination, prediction and engineering Nat. Rev. Drug Discov., 3 (1) (2004), pp. 42-57
K. Honer, E. Kalfaoglu, C. Pico, J. McCann, J. Baltrusaitis Mechanosynthesis of magnesium and calcium salt–urea ionic cocrystal fertilizer materials for improved nitrogen management ACS Sustain. Chem. Eng., 5 (10) (2017), pp. 8546-8550
Z. Hao, A. Iqbal Some aspects of organic pigments Chem. Soc. Rev., 26 (3) (1997), p. 203
J. Mei, Y. Diao, A.L. Appleton, L. Fang, Z. Bao Integrated materials design of organic semiconductors for field-effect transistors J. Am. Chem. Soc., 135 (18) (2013), pp. 6724-6746
O. Ostroverkhova Organic optoelectronic materials: mechanisms and applications Chem. Rev., 116 (22) (2016), pp. 13279-13412
M.B. da Silva, T.S. Francisco, F.F. Maia Jr., E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, V.N. Freire Improved description of the structural and optoelectronic properties of DNA/RNA nucleobase anhydrous crystals: experiment and dispersion-corrected density functional theory calculations Phys. Rev. B, 96 (8) (2017), Article 085206
F.F. Maia Jr., V.N. Freire, E.W.S. Caetano, D.L. Azevedo, F.A.M. Sales, E.L. Albuquerque Anhydrous crystals of DNA bases are wide gap semiconductors J. Chem. Phys., 134 (17) (2011), p. 175101,
E.W.S. Caetano, J.R. Pinheiro, M. Zimmer, V.N. Freire, G.A. Farias, G.A. Bezerra, B.S. Cavada, J.R.L. Fernandez, J.R. Leite, M.C.F. De Oliveira, et al. Molecular signature in the photoluminescence of alpha-Glycine, L-alanine and L-asparagine crystals: detection, ab initio calculations, and bio-sensor applications AIP Conf. Proc., 772 (2005), pp. 1095-1096
J.S. Rodríguez, G. Costa, M.B. Da Silva, B.P. Silva, L.J. Honório, P. De Lima-Neto, R.C.R. Santos, E.W.S. Caetano, H.W.L. Alves, V.N. Freire Structural and optoelectronic properties of the α-, β-, and γ-Glycine polymorphs and the Glycine dihydrate crystal: a DFT study Cryst. Growth Des., 19 (9) (2019), pp. 5204-5217,
A.M. Silva, S.N. Costa, F.A.M. Sales, V.N. Freire, E.M. Bezerra, R.P. Santos, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano Vibrational spectroscopy and phonon-related properties of the l -aspartic acid anhydrous monoclinic crystal J. Phys. Chem., 119 (49) (2015), pp. 11791-11803
A.M. Silva, S.N. Costa, B.P. Silva, V.N. Freire, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano, F.F. Maia Jr. Assessing the role of water on the electronic structure and vibrational spectra of monohydrated L-aspartic acid crystals Cryst. Growth Des., 13 (11) (2013), pp. 4844-4851
J.R. Cândido-Júnior, F.A.M. Sales, S.N. Costa, P. de Lima-Neto, D.L. Azevedo, E.W.S. Caetano, E.L. Albuquerque, V.N. Freire Monoclinic and orthorhombic cysteine crystals are small gap insulators Chem. Phys. Lett., 512 (4–6) (2011), pp. 208-210,
E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, A.H. de Lima Costa, S.N. Costa, A.M. Silva, F.A.M. Sales, V.N. Freire Anhydrous proline crystals: structural optimization, optoelectronic properties, effective masses and frenkel exciton energy J. Phys. Chem. Solid., 121 (2018)
S.N. Costa, F.A.M. Sales, V.N. Freire, F.F. Maia, E.W.S. Caetano, L.O. Ladeira, E.L. Albuquerque, U.L. Fulco L-serine anhydrous crystals: structural, electronic, and optical properties by first-principles calculations, and optical absorption measurement Cryst. Growth Des., 13 (7) (2013), pp. 2793-2802
M.Z.S. Flores, V.N. Freire, R.P. Dos Santos, G.A. Farias, E.W.S. Caetano, M.C.F. De Oliveira, J.R.L. Fernandez, L.M.R. Scolfaro, M.J.B. Bezerra, T.M. Oliveira, et al. Optical absorption and electronic band structure first-principles calculations of α-Glycine crystals Phys. Rev. B Condens. Matter, 77 (11) (2008), p. 115104
M.B. Da Silva, A.M. Da Cunha, R.C.R. Santos, A. Valentini, E.W.S. Caetano, V.N. Freire Changing the gap type of solid state boric acid by heating: a dispersion-corrected density functional study of α-, β-, and γ-metaboric acid polymorphs New J. Chem., 41 (24) (2017),
M. Bezerra Da Silva, R.C.R. Santos, P.T.C. Freire, E.W.S. Caetano, V.N. Freire Vibrational properties of bulk boric acid 2A and 3T polymorphs and their two-dimensional layers: measurements and density functional theory calculations J. Phys. Chem., 122 (5) (2018)
M.B. Da Silva, R.C.R. Dos Santos, A.M. da Cunha, A. Valentini, O.D.L. Pessoa, E.W.S. Caetano, V.N. Freire Structural, electronic, and optical properties of bulk boric acid 2A and 3T polymorphs: experiment and density functional theory calculations Cryst. Growth Des., 16 (11) (2016), pp. 6631-6640
P. Klitou, C.M. Pask, L. Onoufriadi, I. Rosbottom, E. Simone Solid-state characterization and role of solvent molecules on the crystal structure, packing, and physiochemical properties of different quercetin solvates Cryst. Growth Des., 20 (10) (2020), pp. 6573-6584,
L.A. De Souza, W.M.G. Tavares, A.P.M. Lopes, M.M. Soeiro, W.B. De Almeida Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: epigallocatechin, kaempferol and quercetin Chem. Phys. Lett., 676 (2017), pp. 46-52
S. Antonczak Electronic description of four flavonoids revisited by DFT method J. Mol. Struct., 856 (1–3) (2008), pp. 38-45
N. Russo, M. Toscano, N. Uccella Semiempirical molecular modeling into quercetin reactive site: structural, conformational, and electronic features J. Agric. Food Chem., 48 (8) (2000), pp. 3232-3237,
M. Leopoldini, T. Marino, N. Russo, M. Toscano Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent Theor. Chem. Acc., 111 (2–6) (2004), pp. 210-216
J.P. Cornard, J.C. Merlin, A.C. Boudet, L. Vrielynck Structural study of quercetin by vibrational and electronic spectroscopies combined with semiempirical calculations Biospectroscopy, 3 (3) (1997), pp. 183-193,
M. Biler, D. Biedermann, K. Valentová, V. Křen, M. Kubala Quercetin and its analogues: optical and acido–basic properties Phys. Chem. Chem. Phys., 19 (39) (2017), pp. 26870-26879,
J. Ren, S. Meng, C.E. Lekka, E. Kaxiras Complexation of flavonoids with iron: structure and optical signatures J. Phys. Chem. B, 112 (6) (2008), pp. 1845-1850
C.E. Lekka, J. Ren, S. Meng, E. Kaxiras Structural, electronic, and optical properties of representative Cu−Flavonoid complexes J. Phys. Chem. B, 113 (18) (2009), pp. 6478-6483,
N. Baildya, N.N. Ghosh, A.P. Chattopadhyay Anti-corrosive properties of quercetin and its derivatives on Fe(111) surface: a quantum chemical approach SN Appl. Sci., 1 (7) (2019), p. 735
A. Bora, S. Avram, L. Crisan, L. Halip, R. Curpan, L. Pacureanu, I. Ciucanu Theoretical investigations of quercetin and its analogues as anticancer agents Rev. Roum. Chem., 60 (1–2) (2015), pp. 175-181
A. Bora, S. Avram, L. Crisan, L. Halip, R. Curpan, L. Pacureanu, I. Ciucanu Theoretical investigations of quercetin and its analogues as anticancer agents Rev. Roum. Chem., 60 (1–2) (2015), pp. 175-181
J.G.G. da Silva Filho, V.N.N. Freire, E.W.S.W.S. Caetano, L.O.O. Ladeira, U.L.L. Fulco, E.L.L. Albuquerque A comparative density functional theory study of electronic structure and optical properties of -aminobutyric acid and its cocrystals with oxalic and benzoic acid Chem. Phys. Lett., 587 (2013), pp. 20-24
N.S. Vila-Nova, S.M. Morais, M.J.C. Falcão, C.M.L. Bevilaqua, F.C.M. Rondon, M.E. Wilson, I.G.P. Vieira, H.F. Andrade Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds of dimorphandra gardneriana and platymiscium floribundum, native plants from caatinga biome Pesqui. Vet. Bras., 32 (11) (2012), pp. 1164-1168,
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. Gaussian 09 Gaussian, Inc., Wallingford CT (2009)
N.M. O’boyle, A.L. Tenderholt, K.M. Langner Cclib: a library for package-independent computational chemistry algorithms J. Comput. Chem., 29 (5) (2008), pp. 839-845,
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne First-principles simulation: ideas, illustrations and the CASTEP code J. Phys. Condens. Matter, 14 (11) (2002), pp. 2717-2744,
D.M. Ceperley, B.J. Alder Ground state of the electron gas by a stochastic method Phys. Rev. Lett., 45 (7) (1980), pp. 566-569,
J.P. Perdew, A. Zunger Self-interaction correction to density-functional approximations for many-electron systems Phys. Rev. B, 23 (10) (1981), pp. 5048-5079
J.P. Perdew, K. Burke, M. Ernzerhof Generalized gradient approximation made simple Phys. Rev. Lett., 77 (18) (1996), pp. 3865-3868,
A. Tkatchenko Current understanding of van der Waals effects in realistic materials Adv. Funct. Mater., 25 (13) (2015), pp. 2054-2061
J.S. Lin, A. Qteish, M.C. Payne, V. Heine Optimized and transferable nonlocal separable ab initio pseudopotentials Phys. Rev. B, 47 (8) (1993), pp. 4174-4180,
B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen Relaxation of crystals with the quasi-Newton method J. Comput. Phys., 131 (1997), pp. 233-240
H.J. Monkhorst, J.D. Pack Special points for brillouin-zone integrations Phys. Rev. B, 13 (12) (1976), pp. 5188-5192
J.D. Pack, H.J. Monkhorst Special points for brillouin-zone integrations”—a reply Phys. Rev. B, 16 (4) (1977), pp. 1748-1749
S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi Phonons and related crystal properties from density-functional perturbation theory Rev. Mod. Phys., 73 (2) (2001), pp. 515-562,
M.K.Y. Chan, G. Ceder Efficient band gap prediction for solids Phys. Rev. Lett., 105 (19) (2010), pp. 5-8
H.M. Rietveld A profile refinement method for nuclear and magnetic structures J. Appl. Crystallogr., 2 (2) (1969), pp. 65-71
P. Papan, J. Kantapan, P. Sangthong, P. Meepowpan, N. Dechsupa Iron (III)-Quercetin complex: synthesis, physicochemical characterization, and MRI cell tracking toward potential applications in regenerative medicine Contrast Media Mol. Imaging, 2020 (2020), pp. 1-22
Y.S. Murillo-Acevedo, L. Giraldo, P.S. Poon, J. Matos, J.C. Moreno-Piraján The cramer's rule for the parametrization of phenol and its hydroxylated byproducts: UV spectroscopy vs. High performance liquid chromatography Environ. Sci. Pollut. Res., 28 (6) (2021), pp. 6746-6757
H.P. Hendrickson, A.D. Kaufman, C.E. Lunte Electrochemistry of catechol-containing flavonoids J. Pharm. Biomed. Anal., 12 (3) (1994), pp. 325-334,
S. Domagała, P. Munshi, M. Ahmed, B. Guillot, C. Jelsch Structural analysis and multipole modelling of quercetin monohydrate – a quantitative and comparative study Acta Crystallogr. Sect. B Struct. Sci., 67 (1) (2011), pp. 63-78
P. Klitou, I. Rosbottom, E. Simone Synthonic modeling of quercetin and its hydrates: explaining crystallization behavior in terms of molecular conformation and crystal packing Cryst. Growth Des., 19 (8) (2019), pp. 4774-4783
K. Burke, L.O. Wagner DFT in a nutshell Int. J. Quant. Chem., 113 (2) (2013), pp. 96-101,
A.J. Garza, G.E. Scuseria Predicting band gaps with hybrid density functionals J. Phys. Chem. Lett., 7 (20) (2016), pp. 4165-4170
S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J.B. Neaton, L. Kronik Gap renormalization of molecular crystals from density-functional theory Phys. Rev. B, 88 (8) (2013), Article 081204,
J. Heyd, G.E. Scuseria Efficient hybrid density functional calculations in solids: assessment of the heyd–scuseria–ernzerhof screened Coulomb hybrid functional J. Chem. Phys., 121 (3) (2004), pp. 1187-1192,
W. Perger Calculation of band gaps in molecular crystals using hybrid functional theory Chem. Phys. Lett., 368 (3–4) (2003), pp. 319-323,
X. Leng, F. Jin, M. Wei, Y. Ma GW method and bethe-salpeter equation for calculating electronic excitations Wiley Interdiscip. Rev. Comput. Mol. Sci., 6 (5) (2016), pp. 532-550
K. Hummer, C. Ambrosch-Draxl Oligoacene exciton binding energies: their dependence on molecular size Phys. Rev. B, 71 (8) (2005), Article 081202
D. Moses, J. Wang, A.J. Heeger, N. Kirova, S. Brazovski Singlet exciton binding energy in poly(phenylene vinylene) Proc. Natl. Acad. Sci. Unit. States Am., 98 (24) (2001), pp. 13496-13500,
R.S. Mulliken Electronic population analysis on LCAO-MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories J. Chem. Phys., 23 (10) (1955), p. 1833
F.L. Hirshfeld Bonded-atom fragments for describing molecular charge densities Theor. Chim. Acta, 44 (2) (1977), pp. 129-138
M. Fox (second ed.), Optical Properties of Solids, First edit, Oxford University Press (2010),
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.none.fl_str_mv 1 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.place.none.fl_str_mv Estados Unidos
institution Universidad de Ibagué
dc.source.other.none.fl_str_mv Estados Unidos
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/d21b4889-f226-46b6-969f-cb7c21e8c8d3/download
https://repositorio.unibague.edu.co/bitstreams/4645668a-8692-428e-884c-6f346b5382fc/download
https://repositorio.unibague.edu.co/bitstreams/3c36bd0e-f6fc-4958-afd7-cc0e0b56f837/download
https://repositorio.unibague.edu.co/bitstreams/797f3ffe-abaf-4208-9438-eac0784d64f4/download
bitstream.checksum.fl_str_mv 10313ec88c944d81f8dfcf10116c3b06
2fa3e590786b9c0f3ceba1b9656b7ac3
5dbe86c1111d64f45ba435df98fdc825
3f46afbc06a2f458cf04a6541b728543
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814204149456175104
spelling de Paula V.F., Jrb75bdd3c-a46a-40e6-9613-dafd6c04df31-1Guedes M.I.F33c4ba1c-9b53-4766-8aa4-447bf11090d2-1van Tilburg M.Fa267af8b-436b-42f8-9172-15d5021ecb70-1Vieira I.G.P.35c3a70c-0a8a-4d3e-89f6-12873c5cf629-1Silva J.Ba0178073-3d0b-4828-9bc0-27805bd84904-1dos Santos R.C.R6e7e9908-6733-4f7b-9797-a3999b124008-1Echeverry J.Pd5f99fd0-040a-4cbc-b427-e9953bfc6b61-1Costa G.33996a41-5e80-47de-836f-d687c058bf9d-1Silva B.P.50441154-705b-41f9-8fe6-e437f653d405-1Maia F.F., Jr6efa5224-79d7-4cb8-9904-2eb2bbeb2603-1Caetano E.W.Sd96a83c7-6218-4290-a809-af08d579b8c2-1Freire V.N1119f4d9-2b49-44ff-b0b1-adc5c5374d84-12023-10-23T16:51:13Z2023-10-23T16:51:13Z2022-05-21UV–vis optical absorption measurements of the ethanol solvated quercetin molecule and the dihydrate triclinic quercetin crystal were performed, as well as the electronic structure of the ethanol solvated quercetin molecule and the properties of anhydrous and mono(di)hydrated quercetin crystals employing Density Functional Theory (DFT) calculations with a dispersion correction scheme. Unit cell geometry optimization of the anhydrous crystal has elucidated the structure of the anhydrous quercetin crystal (space group P21/a, monoclinic). Anhydrous quercetin exhibits a direct bandgap of 2.17 ​eV with large valence band dispersion, suggesting a semiconductor behavior for hole transport. Monohydrate quercetin has an indirect gap of 1.84 ​eV, while the solid dihydrate form has a Kohn-Sham indirect electronic bandgap of 2.00 ​eV, smaller than the experimental optical absorption bandgap of 2.40 ​eV. Applying the Δ-sol gap correction scheme, the bandgaps increase by about 1 ​eV. There is a significant optical anisotropy for all quercetin systems in the solid state, especially for the anhydrous form.1 páginasapplication/pdfde Paula, V. F., Guedes, M. I. F., van Tilburg, M. F., Vieira, I. G. P., Silva, J. B., dos Santos, R. C. R., Echeverry, J. P., Costa, G., Silva, B. P., Maia, F. F., Caetano, E. W. S., & Freire, V. N. (2022). Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals. Journal of Solid State Chemistry, 312. https://doi.org/10.1016/j.jssc.2022.12324200224596https://hdl.handle.net/20.500.12313/3872engEstados Unidos131232421312A. Sharma, D. Kashyap, K. Sak, H.S. Tuli, A.K. Sharma Therapeutic charm of quercetin and its derivatives: a review of research and patents Pharm. Pat. Anal., 7 (1) (2018), pp. 15-32,G. Quercetin D'Andrea A flavonol with multifaceted therapeutic applications? Fitoterapia, 106 (2015), pp. 256-271W. Wang, C. Sun, L. Mao, P. Ma, F. Liu, J. Yang, Y. Gao The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review Trends Food Sci. Technol., 56 (2016), pp. 21-38K. Vasisht, K. Chadha, M. Karan, Y. Bhalla, A.K. Jena, R. Chadha Enhancing biopharmaceutical parameters of bioflavonoid quercetin by cocrystallization CrystEngComm, 18 (8) (2016), pp. 1403-1415X. Filip, I.-G. Grosu, M. Miclăuş, C. Filip NMR crystallography methods to probe complex hydrogen bonding networks: application to structure elucidation of anhydrous quercetin CrystEngComm, 15 (20) (2013), p. 4131J. Sheng, G.M. Venkatesh, S.P. Duddu, D.J.W. Grant Dehydration behavior of eprosartan mesylate dihydrate J. Pharmacol. Sci., 88 (10) (1999), pp. 1021-1029A. Raw Regulatory considerations of pharmaceutical solid polymorphism in abbreviated new drug applications (ANDAs) Adv. Drug Deliv. Rev., 56 (3) (2004), pp. 397-414,L. Yu Amorphous pharmaceutical solids: preparation, characterization and stabilization Adv. Drug Deliv. Rev., 48 (1) (2001), pp. 27-42O.O. Brovarets’, D.M. Hovorun Conformational diversity of the quercetin molecule: a quantum-chemical view J. Biomol. Struct. Dyn., 38 (10) (2020), pp. 2817-2836O.O. Brovarets’, M. Hovorun D. A never-ending conformational story of the quercetin molecule: quantum-mechanical investigation of the O3′H and O4′H hydroxyl groups rotations Appl. Sci., 10 (3) (2020), p. 1147,A. Be̅rziņš, D. Zvaniņa, A. Trimdale Detailed analysis of packing efficiency allows rationalization of solvate formation propensity for selected structurally similar organic molecules Cryst. Growth Des., 18 (4) (2018), pp. 2040-2045,A. Kons, A. Be̅rziņš, A. Actiņš Polymorphs and hydrates of sequifenadine hydrochloride: crystallographic explanation of observed phase transitions and thermodynamic stability Cryst. Growth Des., 17 (3) (2017), pp. 1146-1158M. Rossi, L.F. Rickles, W.A. Halpin The crystal and molecular structure of quercetin: a biologically active and naturally occurring flavonoid Bioorg. Chem., 14 (1) (1986), pp. 55-69A.J. Smith, P. Kavuru, L. Wojtas, M.J. Zaworotko, R.D. Shytle Cocrystals of quercetin with improved solubility and oral bioavailability Mol. Pharm., 8 (5) (2011), pp. 1867-1876,S. Olejniczak, M.J. Potrzebowski Solid state NMR studies and density functional theory (DFT) calculations of conformers of QuercetinElectronic supplementary information (ESI) available: TGA profiles for samples 1 and 2 and 13C NMR shielding parametersG.S. Borghetti, J.P. Carini, S.B. Honorato, A.P. Ayala, J.C.F. Moreira, V.L. Bassani Physicochemical properties and thermal stability of quercetin hydrates in the solid state Thermochim. Acta, 539 (2012), pp. 109-114,G.Z. Jin, Y. Yamagata, K. Tomita Structure of quercetin dihydrate Acta Crystallogr. Sect. C Cryst. Struct. Commun., 46 (2) (1990), pp. 310-313,Y. Zheng, I.S. Haworth, Z. Zuo, M.S.S. Chow, A.H.L. Chow Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes J. Pharmacol. Sci., 94 (5) (2005), pp. 1079-1089J. Azzi, A. Jraij, L. Auezova, S. Fourmentin, H. Greige-Gerges Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes Food Hydrocolloids, 81 (2018), pp. 328-340,Z. Zhang, D. Li, C. Luo, C. Huang, R. Qiu, Z. Deng, H. Zhang Cocrystals of natural products: improving the dissolution performance of flavonoids using betaine Cryst. Growth Des., 19 (7) (2019), pp. 3851-3859M. Veverka, T. Dubaj, J. Gallovič, V. Jorík, E. Veverková, M. Danihelová, P. Šimon Cocrystals of quercetin: synthesis, characterization, and screening of biological activity Monatsh. Chem., 146 (1) (2015), pp. 99-109A.S. Sinha, A.R. Maguire, S.E. Lawrence Cocrystallization of nutraceuticals Cryst. Growth Des., 15 (2) (2015), pp. 984-1009L. Zhang, D. Kong, H. Wang, L. Jiao, X. Zhao, J. Song, D. Yang, H. Yang, S. Yang, G. Du, et al. Cocrystal of apixaban–quercetin: improving solubility and bioavailability of drug combination of two poorly soluble drugs Molecules, 26 (9) (2021), p. 2677X. Cai, Z. Fang, J. Dou, A. Yu, G. Zhai Bioavailability of quercetin: problems and promises Curr. Med. Chem., 20 (20) (2013), pp. 2572-2582J. Zhao, J. Yang, Y. Xie Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview Int. J. Pharm., 570 (2019), p. 118642A.M. Silva, B.P. Silva, F.A.M. Sales, V.N. Freire, E. Moreira, U.L. Fulco, E.L. Albuquerque, F.F. Maia Jr., E.W.S. Caetano Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior Phys. Rev. B, 86 (19) (2012), p. 195201P.R. Tulip, S.J. Clark Structural and electronic properties of L-amino acids Phys. Rev. B, 71 (19) (2005), p. 195117S. Datta, D.J.W. Grant Crystal structures of drugs: advances in determination, prediction and engineering Nat. Rev. Drug Discov., 3 (1) (2004), pp. 42-57K. Honer, E. Kalfaoglu, C. Pico, J. McCann, J. Baltrusaitis Mechanosynthesis of magnesium and calcium salt–urea ionic cocrystal fertilizer materials for improved nitrogen management ACS Sustain. Chem. Eng., 5 (10) (2017), pp. 8546-8550Z. Hao, A. Iqbal Some aspects of organic pigments Chem. Soc. Rev., 26 (3) (1997), p. 203J. Mei, Y. Diao, A.L. Appleton, L. Fang, Z. Bao Integrated materials design of organic semiconductors for field-effect transistors J. Am. Chem. Soc., 135 (18) (2013), pp. 6724-6746O. Ostroverkhova Organic optoelectronic materials: mechanisms and applications Chem. Rev., 116 (22) (2016), pp. 13279-13412M.B. da Silva, T.S. Francisco, F.F. Maia Jr., E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, V.N. Freire Improved description of the structural and optoelectronic properties of DNA/RNA nucleobase anhydrous crystals: experiment and dispersion-corrected density functional theory calculations Phys. Rev. B, 96 (8) (2017), Article 085206F.F. Maia Jr., V.N. Freire, E.W.S. Caetano, D.L. Azevedo, F.A.M. Sales, E.L. Albuquerque Anhydrous crystals of DNA bases are wide gap semiconductors J. Chem. Phys., 134 (17) (2011), p. 175101,E.W.S. Caetano, J.R. Pinheiro, M. Zimmer, V.N. Freire, G.A. Farias, G.A. Bezerra, B.S. Cavada, J.R.L. Fernandez, J.R. Leite, M.C.F. De Oliveira, et al. Molecular signature in the photoluminescence of alpha-Glycine, L-alanine and L-asparagine crystals: detection, ab initio calculations, and bio-sensor applications AIP Conf. Proc., 772 (2005), pp. 1095-1096J.S. Rodríguez, G. Costa, M.B. Da Silva, B.P. Silva, L.J. Honório, P. De Lima-Neto, R.C.R. Santos, E.W.S. Caetano, H.W.L. Alves, V.N. Freire Structural and optoelectronic properties of the α-, β-, and γ-Glycine polymorphs and the Glycine dihydrate crystal: a DFT study Cryst. Growth Des., 19 (9) (2019), pp. 5204-5217,A.M. Silva, S.N. Costa, F.A.M. Sales, V.N. Freire, E.M. Bezerra, R.P. Santos, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano Vibrational spectroscopy and phonon-related properties of the l -aspartic acid anhydrous monoclinic crystal J. Phys. Chem., 119 (49) (2015), pp. 11791-11803A.M. Silva, S.N. Costa, B.P. Silva, V.N. Freire, U.L. Fulco, E.L. Albuquerque, E.W.S. Caetano, F.F. Maia Jr. Assessing the role of water on the electronic structure and vibrational spectra of monohydrated L-aspartic acid crystals Cryst. Growth Des., 13 (11) (2013), pp. 4844-4851J.R. Cândido-Júnior, F.A.M. Sales, S.N. Costa, P. de Lima-Neto, D.L. Azevedo, E.W.S. Caetano, E.L. Albuquerque, V.N. Freire Monoclinic and orthorhombic cysteine crystals are small gap insulators Chem. Phys. Lett., 512 (4–6) (2011), pp. 208-210,E.W.S. Caetano, U.L. Fulco, E.L. Albuquerque, A.H. de Lima Costa, S.N. Costa, A.M. Silva, F.A.M. Sales, V.N. Freire Anhydrous proline crystals: structural optimization, optoelectronic properties, effective masses and frenkel exciton energy J. Phys. Chem. Solid., 121 (2018)S.N. Costa, F.A.M. Sales, V.N. Freire, F.F. Maia, E.W.S. Caetano, L.O. Ladeira, E.L. Albuquerque, U.L. Fulco L-serine anhydrous crystals: structural, electronic, and optical properties by first-principles calculations, and optical absorption measurement Cryst. Growth Des., 13 (7) (2013), pp. 2793-2802M.Z.S. Flores, V.N. Freire, R.P. Dos Santos, G.A. Farias, E.W.S. Caetano, M.C.F. De Oliveira, J.R.L. Fernandez, L.M.R. Scolfaro, M.J.B. Bezerra, T.M. Oliveira, et al. Optical absorption and electronic band structure first-principles calculations of α-Glycine crystals Phys. Rev. B Condens. Matter, 77 (11) (2008), p. 115104M.B. Da Silva, A.M. Da Cunha, R.C.R. Santos, A. Valentini, E.W.S. Caetano, V.N. Freire Changing the gap type of solid state boric acid by heating: a dispersion-corrected density functional study of α-, β-, and γ-metaboric acid polymorphs New J. Chem., 41 (24) (2017),M. Bezerra Da Silva, R.C.R. Santos, P.T.C. Freire, E.W.S. Caetano, V.N. Freire Vibrational properties of bulk boric acid 2A and 3T polymorphs and their two-dimensional layers: measurements and density functional theory calculations J. Phys. Chem., 122 (5) (2018)M.B. Da Silva, R.C.R. Dos Santos, A.M. da Cunha, A. Valentini, O.D.L. Pessoa, E.W.S. Caetano, V.N. Freire Structural, electronic, and optical properties of bulk boric acid 2A and 3T polymorphs: experiment and density functional theory calculations Cryst. Growth Des., 16 (11) (2016), pp. 6631-6640P. Klitou, C.M. Pask, L. Onoufriadi, I. Rosbottom, E. Simone Solid-state characterization and role of solvent molecules on the crystal structure, packing, and physiochemical properties of different quercetin solvates Cryst. Growth Des., 20 (10) (2020), pp. 6573-6584,L.A. De Souza, W.M.G. Tavares, A.P.M. Lopes, M.M. Soeiro, W.B. De Almeida Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: epigallocatechin, kaempferol and quercetin Chem. Phys. Lett., 676 (2017), pp. 46-52S. Antonczak Electronic description of four flavonoids revisited by DFT method J. Mol. Struct., 856 (1–3) (2008), pp. 38-45N. Russo, M. Toscano, N. Uccella Semiempirical molecular modeling into quercetin reactive site: structural, conformational, and electronic features J. Agric. Food Chem., 48 (8) (2000), pp. 3232-3237,M. Leopoldini, T. Marino, N. Russo, M. Toscano Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent Theor. Chem. Acc., 111 (2–6) (2004), pp. 210-216J.P. Cornard, J.C. Merlin, A.C. Boudet, L. Vrielynck Structural study of quercetin by vibrational and electronic spectroscopies combined with semiempirical calculations Biospectroscopy, 3 (3) (1997), pp. 183-193,M. Biler, D. Biedermann, K. Valentová, V. Křen, M. Kubala Quercetin and its analogues: optical and acido–basic properties Phys. Chem. Chem. Phys., 19 (39) (2017), pp. 26870-26879,J. Ren, S. Meng, C.E. Lekka, E. Kaxiras Complexation of flavonoids with iron: structure and optical signatures J. Phys. Chem. B, 112 (6) (2008), pp. 1845-1850C.E. Lekka, J. Ren, S. Meng, E. Kaxiras Structural, electronic, and optical properties of representative Cu−Flavonoid complexes J. Phys. Chem. B, 113 (18) (2009), pp. 6478-6483,N. Baildya, N.N. Ghosh, A.P. Chattopadhyay Anti-corrosive properties of quercetin and its derivatives on Fe(111) surface: a quantum chemical approach SN Appl. Sci., 1 (7) (2019), p. 735A. Bora, S. Avram, L. Crisan, L. Halip, R. Curpan, L. Pacureanu, I. Ciucanu Theoretical investigations of quercetin and its analogues as anticancer agents Rev. Roum. Chem., 60 (1–2) (2015), pp. 175-181A. Bora, S. Avram, L. Crisan, L. Halip, R. Curpan, L. Pacureanu, I. Ciucanu Theoretical investigations of quercetin and its analogues as anticancer agents Rev. Roum. Chem., 60 (1–2) (2015), pp. 175-181J.G.G. da Silva Filho, V.N.N. Freire, E.W.S.W.S. Caetano, L.O.O. Ladeira, U.L.L. Fulco, E.L.L. Albuquerque A comparative density functional theory study of electronic structure and optical properties of -aminobutyric acid and its cocrystals with oxalic and benzoic acid Chem. Phys. Lett., 587 (2013), pp. 20-24N.S. Vila-Nova, S.M. Morais, M.J.C. Falcão, C.M.L. Bevilaqua, F.C.M. Rondon, M.E. Wilson, I.G.P. Vieira, H.F. Andrade Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds of dimorphandra gardneriana and platymiscium floribundum, native plants from caatinga biome Pesqui. Vet. Bras., 32 (11) (2012), pp. 1164-1168,M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. Gaussian 09 Gaussian, Inc., Wallingford CT (2009)N.M. O’boyle, A.L. Tenderholt, K.M. Langner Cclib: a library for package-independent computational chemistry algorithms J. Comput. Chem., 29 (5) (2008), pp. 839-845,M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne First-principles simulation: ideas, illustrations and the CASTEP code J. Phys. Condens. Matter, 14 (11) (2002), pp. 2717-2744,D.M. Ceperley, B.J. Alder Ground state of the electron gas by a stochastic method Phys. Rev. Lett., 45 (7) (1980), pp. 566-569,J.P. Perdew, A. Zunger Self-interaction correction to density-functional approximations for many-electron systems Phys. Rev. B, 23 (10) (1981), pp. 5048-5079J.P. Perdew, K. Burke, M. Ernzerhof Generalized gradient approximation made simple Phys. Rev. Lett., 77 (18) (1996), pp. 3865-3868,A. Tkatchenko Current understanding of van der Waals effects in realistic materials Adv. Funct. Mater., 25 (13) (2015), pp. 2054-2061J.S. Lin, A. Qteish, M.C. Payne, V. Heine Optimized and transferable nonlocal separable ab initio pseudopotentials Phys. Rev. B, 47 (8) (1993), pp. 4174-4180,B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen Relaxation of crystals with the quasi-Newton method J. Comput. Phys., 131 (1997), pp. 233-240H.J. Monkhorst, J.D. Pack Special points for brillouin-zone integrations Phys. Rev. B, 13 (12) (1976), pp. 5188-5192J.D. Pack, H.J. Monkhorst Special points for brillouin-zone integrations”—a reply Phys. Rev. B, 16 (4) (1977), pp. 1748-1749S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi Phonons and related crystal properties from density-functional perturbation theory Rev. Mod. Phys., 73 (2) (2001), pp. 515-562,M.K.Y. Chan, G. Ceder Efficient band gap prediction for solids Phys. Rev. Lett., 105 (19) (2010), pp. 5-8H.M. Rietveld A profile refinement method for nuclear and magnetic structures J. Appl. Crystallogr., 2 (2) (1969), pp. 65-71P. Papan, J. Kantapan, P. Sangthong, P. Meepowpan, N. Dechsupa Iron (III)-Quercetin complex: synthesis, physicochemical characterization, and MRI cell tracking toward potential applications in regenerative medicine Contrast Media Mol. Imaging, 2020 (2020), pp. 1-22Y.S. Murillo-Acevedo, L. Giraldo, P.S. Poon, J. Matos, J.C. Moreno-Piraján The cramer's rule for the parametrization of phenol and its hydroxylated byproducts: UV spectroscopy vs. High performance liquid chromatography Environ. Sci. Pollut. Res., 28 (6) (2021), pp. 6746-6757H.P. Hendrickson, A.D. Kaufman, C.E. Lunte Electrochemistry of catechol-containing flavonoids J. Pharm. Biomed. Anal., 12 (3) (1994), pp. 325-334,S. Domagała, P. Munshi, M. Ahmed, B. Guillot, C. Jelsch Structural analysis and multipole modelling of quercetin monohydrate – a quantitative and comparative study Acta Crystallogr. Sect. B Struct. Sci., 67 (1) (2011), pp. 63-78P. Klitou, I. Rosbottom, E. Simone Synthonic modeling of quercetin and its hydrates: explaining crystallization behavior in terms of molecular conformation and crystal packing Cryst. Growth Des., 19 (8) (2019), pp. 4774-4783K. Burke, L.O. Wagner DFT in a nutshell Int. J. Quant. Chem., 113 (2) (2013), pp. 96-101,A.J. Garza, G.E. Scuseria Predicting band gaps with hybrid density functionals J. Phys. Chem. Lett., 7 (20) (2016), pp. 4165-4170S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J.B. Neaton, L. Kronik Gap renormalization of molecular crystals from density-functional theory Phys. Rev. B, 88 (8) (2013), Article 081204,J. Heyd, G.E. Scuseria Efficient hybrid density functional calculations in solids: assessment of the heyd–scuseria–ernzerhof screened Coulomb hybrid functional J. Chem. Phys., 121 (3) (2004), pp. 1187-1192,W. Perger Calculation of band gaps in molecular crystals using hybrid functional theory Chem. Phys. Lett., 368 (3–4) (2003), pp. 319-323,X. Leng, F. Jin, M. Wei, Y. Ma GW method and bethe-salpeter equation for calculating electronic excitations Wiley Interdiscip. Rev. Comput. Mol. Sci., 6 (5) (2016), pp. 532-550K. Hummer, C. Ambrosch-Draxl Oligoacene exciton binding energies: their dependence on molecular size Phys. Rev. B, 71 (8) (2005), Article 081202D. Moses, J. Wang, A.J. Heeger, N. Kirova, S. Brazovski Singlet exciton binding energy in poly(phenylene vinylene) Proc. Natl. Acad. Sci. Unit. States Am., 98 (24) (2001), pp. 13496-13500,R.S. Mulliken Electronic population analysis on LCAO-MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories J. Chem. Phys., 23 (10) (1955), p. 1833F.L. Hirshfeld Bonded-atom fragments for describing molecular charge densities Theor. Chim. Acta, 44 (2) (1977), pp. 129-138M. Fox (second ed.), Optical Properties of Solids, First edit, Oxford University Press (2010),info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/Estados UnidosDFT calculationsEthanol solvated quercetinHydrated molecular crystalsOptoelectronic propertiesQuercetin crystalsRelative stabilityOptical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystalsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationORIGINALOptical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydroushydrated quercetin crystals.pdfOptical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydroushydrated quercetin crystals.pdfapplication/pdf206813https://repositorio.unibague.edu.co/bitstreams/d21b4889-f226-46b6-969f-cb7c21e8c8d3/download10313ec88c944d81f8dfcf10116c3b06MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/4645668a-8692-428e-884c-6f346b5382fc/download2fa3e590786b9c0f3ceba1b9656b7ac3MD52TEXTOptical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydroushydrated quercetin crystals.pdf.txtOptical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydroushydrated quercetin crystals.pdf.txtExtracted texttext/plain5https://repositorio.unibague.edu.co/bitstreams/3c36bd0e-f6fc-4958-afd7-cc0e0b56f837/download5dbe86c1111d64f45ba435df98fdc825MD53THUMBNAILOptical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydroushydrated quercetin crystals.pdf.jpgOptical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydroushydrated quercetin crystals.pdf.jpgGenerated Thumbnailimage/jpeg9657https://repositorio.unibague.edu.co/bitstreams/797f3ffe-abaf-4208-9438-eac0784d64f4/download3f46afbc06a2f458cf04a6541b728543MD5420.500.12313/3872oai:repositorio.unibague.edu.co:20.500.12313/38722023-10-25 03:00:37.922https://creativecommons.org/licenses/by-nc-nd/4.0/https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=