Mechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plant

Aluminium alloy (AA2024-T4) is a material commonly used in the aerospace industry, where it forms part of the fuselage of aircraft and spacecraft thanks to its good machinability and strength/weight ratio. These characteristics allowed it to be applied in the construction of the structure of a pilot...

Full description

Autores:
Urrego, Luis Fabian
García-Beltrán, Olimpo
Arzola, Nelson
Araque, Oscar
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/3876
Acceso en línea:
https://hdl.handle.net/20.500.12313/3876
Palabra clave:
Crack
Fatigue
Geometric factor
Support vector regression
Pilot plant
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_8e08c449887330f868160a1f24df7a07
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/3876
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Mechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plant
title Mechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plant
spellingShingle Mechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plant
Crack
Fatigue
Geometric factor
Support vector regression
Pilot plant
title_short Mechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plant
title_full Mechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plant
title_fullStr Mechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plant
title_full_unstemmed Mechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plant
title_sort Mechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plant
dc.creator.fl_str_mv Urrego, Luis Fabian
García-Beltrán, Olimpo
Arzola, Nelson
Araque, Oscar
dc.contributor.author.none.fl_str_mv Urrego, Luis Fabian
García-Beltrán, Olimpo
Arzola, Nelson
Araque, Oscar
dc.subject.proposal.eng.fl_str_mv Crack
Fatigue
Geometric factor
Support vector regression
Pilot plant
topic Crack
Fatigue
Geometric factor
Support vector regression
Pilot plant
description Aluminium alloy (AA2024-T4) is a material commonly used in the aerospace industry, where it forms part of the fuselage of aircraft and spacecraft thanks to its good machinability and strength/weight ratio. These characteristics allowed it to be applied in the construction of the structure of a pilot plant to produce biological extracts and nano-encapsulated bioproducts for the phytosanitary control of diseases associated with microorganisms in crops of Theobroma cacao L. (Cacao). The mechanical design of the bolted support joints for this structure implies knowing the performance under fatigue conditions of the AA2024-T4 material since the use of bolts entails the placement of circular stress concentrators in the AA2024-T4 sheet. The geometric correction constant (Y) is a dimensionless numerical scalar used to correct the stress intensity factor (SIF) at the crack tip during propagation. This factor allows the stress concentration to be modified as a function of the specimen dimensions. In this work, four compact tension specimens were modeled in AA2024-T4, and each one was modified by introducing a second circular stress concentrator varying its size between 15 mm, 20 mm, 25 mm, and 30 mm, respectively. Applying a cyclic load of 1000N, a load ratio R=-1 and a computational model with tetrahedral elements, it was determined that the highest SIF corresponds to the specimen with a 30 mm concentrator with a value close to 460 MPa.mm0.5. Where the crack propagation had a maximum length of 53 mm. Using these simulation data, it was possible to process each one and obtain a mathematical model that calculates the geometric correction constant (Y). The calculated data using the new model was shown to have a direct relationship with the behavior obtained from the simulation.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-26T22:15:43Z
dc.date.available.none.fl_str_mv 2023-10-26T22:15:43Z
dc.date.issued.none.fl_str_mv 2023-06-16
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Urrego LF, García-Beltrán O, Arzola N, Araque O. Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant. Metals. 2023;13(6):1134. https://doi.org/10.3390/met13061134.
dc.identifier.issn.none.fl_str_mv 2075-4701
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/3876
identifier_str_mv Urrego LF, García-Beltrán O, Arzola N, Araque O. Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant. Metals. 2023;13(6):1134. https://doi.org/10.3390/met13061134.
2075-4701
url https://hdl.handle.net/20.500.12313/3876
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationedition.none.fl_str_mv 1134
dc.relation.citationendpage.none.fl_str_mv 1134
dc.relation.citationissue.none.fl_str_mv 6
dc.relation.citationvolume.none.fl_str_mv 13
dc.relation.ispartofjournal.none.fl_str_mv Metals
dc.relation.references.none.fl_str_mv Sanchez-Capa, M.; Viteri-Sanchez, S.; Burbano-Cachiguango, A. New Characteristics in the Fermentation Process of Cocoa (Theobroma cacao L.) ‘Super Á rbol’ in La Joya de los. Sustainability 2022, 14, 7564.
Gómez, E.H.; Campo, I.; Rosario, E.; Tapachula, K.C. Factores socieconómicos y parasitológicos que limitan la producción del cacao en Chiapas, México Socioeconomic and parasitological factors that limits cocoa production in Chiapas, Mexico, 2015. Rev. Mex. Fitopatol. 2015, 33, 232–246.
Chitiva-Chitiva, L.C.; Ladino-Vargas, C.; Cuca-Suárez, L.E.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Antifungal Activity of Chemical Constituents from Phytopathogen Fungi of Cocoa. Molecules 2021, 26, 3256.
Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Maldonado, M.E.; Bruni, R. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environ. Toxicol. Pharmacol. 2009, 27, 39–48.
Guerrero, R.; Risco, G.; Cevallos, O.; Villamar, R.; Peñaherrera, S. Extractos vegetales: Una alternativa para el control de enfermedades en el cultivo de cacao (Theobroma cacao). Ing. Innovación 2020, 8, 2326.
Nairn, J.A. Direct comparison of anisotropic damage mechanics to fracture mechanics of explicit cracks. Eng. Fract. Mech. 2018, 203, 197–207.
Mecholsky, J.J. Fracture mechanics principles. Dent. Mater. 1995, 11, 111–112.
Taylor, D.; Cornetti, P.; Pugno, N. The fracture mechanics of finite crack extension. Eng. Fract. Mech. 2005, 72, 1021–1038.
Atzori, B.; Lazzarin, P.; Meneghetti, G. Fracture mechanics and notch sensitivity. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 257–267.
Smith, S.M.; Scattergood, R.O. Crack-Shape Effects for Indentation Fracture Toughness Measurements. J. Am. Ceram. Soc. 1992, 75, 305–315.
Newman, J.C., Jr.; Raju, I. An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 1981, 15, 185–192.
Nix, K.J.; Lindley, T.C. The Application of Fracture Mechanics to Fretting Fatigue. Fatigue Fract. Eng. Mater. Struct. 1985, 8, 143–160.
Clarke, S.M.; Griebsch, J.H.; Simpson, T.W. Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses. J. Mech. Des. 2004, 127, 1077–1087
Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222
Heydari, M.H.; Choupani, N. A New Comparative Method to Evaluate the Fracture Properties of Laminated Composite. Int. J. Eng. 2014, 27, 991–1004.
El-Desouky, A.R. Mixed Mode Crack Propagation of Zirconia/Nickel Functionally Graded Materials. Int. J. Eng. 2013, 26, 885–894.
Guo, K.; Gou, G.; Lv, H.; Shan, M. Jointing of CFRP/5083 Aluminum Alloy by Induction Brazing: Processing, Connecting Mechanism, and Fatigue Performance. Coatings 2022, 12, 1559.
USA Department of Defense. MIL-HDBK-2097, Military Handbook: Acquisition of Support Equipment and Associated Integrated Logistics Support; USA Department of Defense: Washington, DC, USA, 1997.
Haji, Z. Low cycle fatigue behavior of aluminum alloys AA2024-T6 and AA7020-T6. Diyala J. Eng. Sci. 2010, 127–137.
Meggiolaro, M. Statistical evaluation of strain-life fatigue crack initiation predictions. Int. J. Fatigue 2004, 26, 463–476.
Faisal, B.M.; Abass, A.T.; Hammadi, A.F. Fatigue Life Estimation of Aluminum Alloy 2024-T4 and Fiber Glass-Polyester Composite Material. Int. Res. J. Eng. Technol. 2016, 2016, 1760–1764. Available online: www.irjet.net (accessed on 10 April 2023).
Yang, G.; Gao, Z.L.; Xu, F.; Wang, X.G. An Experiment of Fatigue Crack Growth under Different R-Ratio for 2024-T4 Aluminum Alloy. Appl. Mech. Mater. 2011, 66–68, 1477–1482.
Hudson, M.; Scardina, J. Effect of stress ratio on fatigue crack growth in 7075-T6 Al alloy sheet. Natl. Symp. Fract. Mech. 1967.
Wei, R.P. Fatigue-crack propagation in a high-strength. Int. J. Fract. Mech. 1968, 4, 159–168.
ANSYS. Meshing Guide; Finite Elem. Simulations Using ANSYS; Ansys: Canonsburg, PA, USA, 2015; Volume 15317, pp. 407–424.
Araque, O.; Arzola, N. Weld Magnification Factor Approach in Cruciform Joints Considering Post Welding Cooling Medium and Weld Size. Materials 2018, 11, 81.
Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004.
Demir, S.; Toktamiş, Ö. On the adaptive Nadaraya-Watson kernel regression estimators. Hacet. J. Math. Stat. 2010, 39, 429–437.
Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; Applied Pr. New York; CRC Press: Boca Raton, FL, USA, 1996.
Chu, C.-Y.; Henderson, D.J.; Parmeter, C.F. On discrete Epanechnikov kernel functions. Comput. Stat. Data Anal. 2017, 116, 79–105.
Alshoaibi, A.M. Computational Simulation of 3D Fatigue Crack Growth under Mixed-Mode Loading. Appl. Sci. 2021, 11, 5953.
Rahmatabadi, D.; Pahlavani, M.; Bayati, A.; Hashemi, R.; Marzbanrad, J. Evaluation of fracture toughness and rupture energy absorption capacity of as-rolled LZ71 and LZ91 Mg alloy sheet. Mater. Res. Express 2018, 6, 036517.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.none.fl_str_mv 16 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.place.none.fl_str_mv Basilea, Suiza
dc.source.none.fl_str_mv https://www.mdpi.com/2075-4701/13/6/1134
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/8e6ce70c-10ff-4bb0-86e0-859a18abcca0/download
https://repositorio.unibague.edu.co/bitstreams/bfa589f1-ea4d-4bfd-bf1a-369af1eabc73/download
https://repositorio.unibague.edu.co/bitstreams/4652223a-4df2-499f-af3d-2830cb4f697a/download
https://repositorio.unibague.edu.co/bitstreams/e284dae9-1087-419e-be06-c4bf85125243/download
https://repositorio.unibague.edu.co/bitstreams/64315522-2366-496f-803e-c3b8cd90a7db/download
bitstream.checksum.fl_str_mv c61950554e9ac958401c4f369ff75d61
fc53e43e3b7594781e66e6458182e6b8
5dbe86c1111d64f45ba435df98fdc825
518e9b7458281ed52cbf9814964d4be2
2fa3e590786b9c0f3ceba1b9656b7ac3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808492252760113152
spelling Urrego, Luis Fabian4d32823e-6312-4810-b6db-612534a1c190-1García-Beltrán, Olimpodfe2bbe7-81d5-415c-9be6-6469a5a40c75-1Arzola, Nelson98a2f36b-b5ae-4397-93f0-cf08f3f4ad9c-1Araque, Oscaredc2c29e-176c-4dde-a414-bf83fddfa5d1-12023-10-26T22:15:43Z2023-10-26T22:15:43Z2023-06-16Aluminium alloy (AA2024-T4) is a material commonly used in the aerospace industry, where it forms part of the fuselage of aircraft and spacecraft thanks to its good machinability and strength/weight ratio. These characteristics allowed it to be applied in the construction of the structure of a pilot plant to produce biological extracts and nano-encapsulated bioproducts for the phytosanitary control of diseases associated with microorganisms in crops of Theobroma cacao L. (Cacao). The mechanical design of the bolted support joints for this structure implies knowing the performance under fatigue conditions of the AA2024-T4 material since the use of bolts entails the placement of circular stress concentrators in the AA2024-T4 sheet. The geometric correction constant (Y) is a dimensionless numerical scalar used to correct the stress intensity factor (SIF) at the crack tip during propagation. This factor allows the stress concentration to be modified as a function of the specimen dimensions. In this work, four compact tension specimens were modeled in AA2024-T4, and each one was modified by introducing a second circular stress concentrator varying its size between 15 mm, 20 mm, 25 mm, and 30 mm, respectively. Applying a cyclic load of 1000N, a load ratio R=-1 and a computational model with tetrahedral elements, it was determined that the highest SIF corresponds to the specimen with a 30 mm concentrator with a value close to 460 MPa.mm0.5. Where the crack propagation had a maximum length of 53 mm. Using these simulation data, it was possible to process each one and obtain a mathematical model that calculates the geometric correction constant (Y). The calculated data using the new model was shown to have a direct relationship with the behavior obtained from the simulation.16 páginasapplication/pdfUrrego LF, García-Beltrán O, Arzola N, Araque O. Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant. Metals. 2023;13(6):1134. https://doi.org/10.3390/met13061134.2075-4701https://hdl.handle.net/20.500.12313/3876engBasilea, Suiza11341134613MetalsSanchez-Capa, M.; Viteri-Sanchez, S.; Burbano-Cachiguango, A. New Characteristics in the Fermentation Process of Cocoa (Theobroma cacao L.) ‘Super Á rbol’ in La Joya de los. Sustainability 2022, 14, 7564.Gómez, E.H.; Campo, I.; Rosario, E.; Tapachula, K.C. Factores socieconómicos y parasitológicos que limitan la producción del cacao en Chiapas, México Socioeconomic and parasitological factors that limits cocoa production in Chiapas, Mexico, 2015. Rev. Mex. Fitopatol. 2015, 33, 232–246.Chitiva-Chitiva, L.C.; Ladino-Vargas, C.; Cuca-Suárez, L.E.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Antifungal Activity of Chemical Constituents from Phytopathogen Fungi of Cocoa. Molecules 2021, 26, 3256.Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Maldonado, M.E.; Bruni, R. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environ. Toxicol. Pharmacol. 2009, 27, 39–48.Guerrero, R.; Risco, G.; Cevallos, O.; Villamar, R.; Peñaherrera, S. Extractos vegetales: Una alternativa para el control de enfermedades en el cultivo de cacao (Theobroma cacao). Ing. Innovación 2020, 8, 2326.Nairn, J.A. Direct comparison of anisotropic damage mechanics to fracture mechanics of explicit cracks. Eng. Fract. Mech. 2018, 203, 197–207.Mecholsky, J.J. Fracture mechanics principles. Dent. Mater. 1995, 11, 111–112.Taylor, D.; Cornetti, P.; Pugno, N. The fracture mechanics of finite crack extension. Eng. Fract. Mech. 2005, 72, 1021–1038.Atzori, B.; Lazzarin, P.; Meneghetti, G. Fracture mechanics and notch sensitivity. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 257–267.Smith, S.M.; Scattergood, R.O. Crack-Shape Effects for Indentation Fracture Toughness Measurements. J. Am. Ceram. Soc. 1992, 75, 305–315.Newman, J.C., Jr.; Raju, I. An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 1981, 15, 185–192.Nix, K.J.; Lindley, T.C. The Application of Fracture Mechanics to Fretting Fatigue. Fatigue Fract. Eng. Mater. Struct. 1985, 8, 143–160.Clarke, S.M.; Griebsch, J.H.; Simpson, T.W. Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses. J. Mech. Des. 2004, 127, 1077–1087Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222Heydari, M.H.; Choupani, N. A New Comparative Method to Evaluate the Fracture Properties of Laminated Composite. Int. J. Eng. 2014, 27, 991–1004.El-Desouky, A.R. Mixed Mode Crack Propagation of Zirconia/Nickel Functionally Graded Materials. Int. J. Eng. 2013, 26, 885–894.Guo, K.; Gou, G.; Lv, H.; Shan, M. Jointing of CFRP/5083 Aluminum Alloy by Induction Brazing: Processing, Connecting Mechanism, and Fatigue Performance. Coatings 2022, 12, 1559.USA Department of Defense. MIL-HDBK-2097, Military Handbook: Acquisition of Support Equipment and Associated Integrated Logistics Support; USA Department of Defense: Washington, DC, USA, 1997.Haji, Z. Low cycle fatigue behavior of aluminum alloys AA2024-T6 and AA7020-T6. Diyala J. Eng. Sci. 2010, 127–137.Meggiolaro, M. Statistical evaluation of strain-life fatigue crack initiation predictions. Int. J. Fatigue 2004, 26, 463–476.Faisal, B.M.; Abass, A.T.; Hammadi, A.F. Fatigue Life Estimation of Aluminum Alloy 2024-T4 and Fiber Glass-Polyester Composite Material. Int. Res. J. Eng. Technol. 2016, 2016, 1760–1764. Available online: www.irjet.net (accessed on 10 April 2023).Yang, G.; Gao, Z.L.; Xu, F.; Wang, X.G. An Experiment of Fatigue Crack Growth under Different R-Ratio for 2024-T4 Aluminum Alloy. Appl. Mech. Mater. 2011, 66–68, 1477–1482.Hudson, M.; Scardina, J. Effect of stress ratio on fatigue crack growth in 7075-T6 Al alloy sheet. Natl. Symp. Fract. Mech. 1967.Wei, R.P. Fatigue-crack propagation in a high-strength. Int. J. Fract. Mech. 1968, 4, 159–168.ANSYS. Meshing Guide; Finite Elem. Simulations Using ANSYS; Ansys: Canonsburg, PA, USA, 2015; Volume 15317, pp. 407–424.Araque, O.; Arzola, N. Weld Magnification Factor Approach in Cruciform Joints Considering Post Welding Cooling Medium and Weld Size. Materials 2018, 11, 81.Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004.Demir, S.; Toktamiş, Ö. On the adaptive Nadaraya-Watson kernel regression estimators. Hacet. J. Math. Stat. 2010, 39, 429–437.Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; Applied Pr. New York; CRC Press: Boca Raton, FL, USA, 1996.Chu, C.-Y.; Henderson, D.J.; Parmeter, C.F. On discrete Epanechnikov kernel functions. Comput. Stat. Data Anal. 2017, 116, 79–105.Alshoaibi, A.M. Computational Simulation of 3D Fatigue Crack Growth under Mixed-Mode Loading. Appl. Sci. 2021, 11, 5953.Rahmatabadi, D.; Pahlavani, M.; Bayati, A.; Hashemi, R.; Marzbanrad, J. Evaluation of fracture toughness and rupture energy absorption capacity of as-rolled LZ71 and LZ91 Mg alloy sheet. Mater. Res. Express 2018, 6, 036517.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/2075-4701/13/6/1134CrackFatigueGeometric factorSupport vector regressionPilot plantMechanical fracture of aluminium alloy (AA 2024-T4), used in the manufacture of a bioproducts plantArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationORIGINALmetals.pdfmetals.pdfapplication/pdf144099https://repositorio.unibague.edu.co/bitstreams/8e6ce70c-10ff-4bb0-86e0-859a18abcca0/downloadc61950554e9ac958401c4f369ff75d61MD51metals.pdfmetals.pdfapplication/pdf6129675https://repositorio.unibague.edu.co/bitstreams/bfa589f1-ea4d-4bfd-bf1a-369af1eabc73/downloadfc53e43e3b7594781e66e6458182e6b8MD52TEXTmetals.pdf.txtmetals.pdf.txtExtracted texttext/plain5https://repositorio.unibague.edu.co/bitstreams/4652223a-4df2-499f-af3d-2830cb4f697a/download5dbe86c1111d64f45ba435df98fdc825MD54THUMBNAILmetals.pdf.jpgmetals.pdf.jpgGenerated Thumbnailimage/jpeg6147https://repositorio.unibague.edu.co/bitstreams/e284dae9-1087-419e-be06-c4bf85125243/download518e9b7458281ed52cbf9814964d4be2MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/64315522-2366-496f-803e-c3b8cd90a7db/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5320.500.12313/3876oai:repositorio.unibague.edu.co:20.500.12313/38762023-10-27 03:00:27.75https://creativecommons.org/licenses/by-nc-nd/4.0/https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=