Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.

Este trabajo se enfoca en analizar el comportamiento mecánico de un sistema recubierto (AISI D2/TiNbN). La metodología adoptada se basa en realizar un ensayo experimental y simulación por elementos finitos de un ensayo de indentación. Para el modelo experimental se consideró un indentador Vickers pi...

Full description

Autores:
Beltrán Betancourt, Nicolás
Troncoso Gutiérrez, Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
spa
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/4402
Acceso en línea:
https://hdl.handle.net/20.500.12313/4402
Palabra clave:
Sistema recubierto (AISI D2/TiNbN) - Comportamiento mecánico
Recubrimientos
Análisis de Esfuerzos
Abaqus
AISI D2
TiNbN
Vickers
Coatings
Stress Analysis
Abaqus
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_8ae27d83517e155ea18c6f4a5832166b
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/4402
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.spa.fl_str_mv Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.
title Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.
spellingShingle Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.
Sistema recubierto (AISI D2/TiNbN) - Comportamiento mecánico
Recubrimientos
Análisis de Esfuerzos
Abaqus
AISI D2
TiNbN
Vickers
Coatings
Stress Analysis
Abaqus
title_short Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.
title_full Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.
title_fullStr Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.
title_full_unstemmed Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.
title_sort Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.
dc.creator.fl_str_mv Beltrán Betancourt, Nicolás
Troncoso Gutiérrez, Sebastián
dc.contributor.advisor.none.fl_str_mv Perez Ruiz, Eduardo Alberto
dc.contributor.author.none.fl_str_mv Beltrán Betancourt, Nicolás
Troncoso Gutiérrez, Sebastián
dc.contributor.jury.none.fl_str_mv Araque de los Ríos, Oscar Javier
Piamba Jiménez, Jeferson Fernando
dc.subject.armarc.none.fl_str_mv Sistema recubierto (AISI D2/TiNbN) - Comportamiento mecánico
topic Sistema recubierto (AISI D2/TiNbN) - Comportamiento mecánico
Recubrimientos
Análisis de Esfuerzos
Abaqus
AISI D2
TiNbN
Vickers
Coatings
Stress Analysis
Abaqus
dc.subject.proposal.spa.fl_str_mv Recubrimientos
Análisis de Esfuerzos
Abaqus
AISI D2
TiNbN
dc.subject.proposal.eng.fl_str_mv Vickers
Coatings
Stress Analysis
Abaqus
description Este trabajo se enfoca en analizar el comportamiento mecánico de un sistema recubierto (AISI D2/TiNbN). La metodología adoptada se basa en realizar un ensayo experimental y simulación por elementos finitos de un ensayo de indentación. Para el modelo experimental se consideró un indentador Vickers piramidal de base cuadrada y una carga de 1 kgf, obteniendo como resultado fotografías de la huella dejada por el indentador, las cuales presentaron fallas cohesivas que derivaron en grietas circulares. El modelo computacional se desarrolló por medio del software de elemento finitos Abaqus, donde se establecieron valores de límite de fluencia y módulo de Young, tanto para el sustrato como para el recubrimiento, se realizaron análisis de convergencia de malla obteniendo como resultado tanto para la condición de carga como para la condición de descarga, mapas de esfuerzo equivalente o esfuerzo de Von Misses, esfuerzos S11, los cuales permitieron crear una correlación entre los resultados experimentales y los obtenidos por medio del modelo computacional.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-27T21:50:29Z
dc.date.available.none.fl_str_mv 2024-08-27T21:50:29Z
dc.date.issued.none.fl_str_mv 2024
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Beltrán Betancourt, N. & Troncoso Gutiérrez, S. (2024). Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación. [Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/4402
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/4402
identifier_str_mv Beltrán Betancourt, N. & Troncoso Gutiérrez, S. (2024). Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación. [Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/4402
url https://hdl.handle.net/20.500.12313/4402
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv B. Bhushan, ‘Depth-sensing nanoindentation measurement techniques and applications’, Microsyst. Technol., vol. 23, pp. 1–55, May 2017, doi: 10.1007/s00542-017-3372-2.
‘Instrumented indentation testing (IIT) | Anton Paar Wiki’, Anton Paar. Accessed: May 13, 2024. [Online]. Available: https://wiki.anton-paar.com/en/instrumented-indentation-testing-iit/
Z. Yuan et al., ‘Analysis of the mechanical properties of TiN/Ti multilayer coatings using indentation under a broad load range’, Ceram. Int., vol. 47, no. 8, pp. 10796–10808, Apr. 2021, doi: 10.1016/j.ceramint.2020.12.196.
M. Gsellmann et al., ‘Strength ranking for interfaces between a TiN hard coating and microstructural constituents of high speed steel determined by micromechanical testing’, Mater. Des., vol. 204, p. 109690, Jun. 2021, doi: 10.1016/j.matdes.2021.109690.
A. S. Alaboodi and Z. Hussain, ‘Finite element modeling of nano-indentation technique to characterize thin film coatings’, J. King Saud Univ. - Eng. Sci., vol. 31, no. 1, pp. 61–69, Jan. 2019, doi: 10.1016/j.jksues.2017.02.001.
G. A. Howarth and H. L. Manock, ‘Water-borne polyurethane dispersions and their use in functional coatings’, Surf. Coat. Int., vol. 80, no. 7, pp. 324–328, Jul. 1997, doi: 10.1007/BF02692680.
G. A. Howarth, ‘The synergy between water-borne epoxy and high solids polyurethane legislation compliant coatings’, Surf. Coat. Int., vol. 82, no. 9, pp. 460–466, Sep. 1999, doi: 10.1007/BF02692651.
J. M. Lackner, L. Major, and M. Kot, ‘Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates’, Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, Sep. 2011, doi: 10.2478/v10175-011-0042-x.
J. M. Lackner, W. Waldhauser, L. MAJOR, J. Morgiel, M. Kot, and B. MAJOR, ‘Nanocrystalline Cr/CrN and Ti/TiN multilayer coatings produced by pulsed laser deposition at room temperature’, Bull. Pol. Acad. Sci. Tech. Sci., vol. 54, Jun. 2006.
A. M. Kamalan Kirubaharan and P. Kuppusami, ‘Corrosion behavior of ceramic nanocomposite coatings at nanoscale’, Elsevier, 2020, pp. 295–314. doi: 10.1016/B978-0-12-819359-4.00016-7.
K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, and J. Koskinen, ‘Tribological contact analysis of a rigid ball sliding on a hard coated surface: Part I: Modelling stresses and strains’, Surf. Coat. Technol., vol. 200, no. 12, pp. 3793–3809, Mar. 2006, doi: 10.1016/j.surfcoat.2005.03.040.
V. P. Tabakov, L. V. Khudobin, A. V. Chikhranov, and Y. A. Dolzhenko, ‘The effect of wear-resistant coatings composition based on niobium nitride on the structural parameters, mechanical properties and efficiency of the cutting tool’, IOP Conf. Ser. Mater. Sci. Eng., vol. 966, no. 1, p. 012034, Nov. 2020, doi: 10.1088/1757-899X/966/1/012034.
X. S. Yang et al., ‘Finite element analysis of crack propagation and fracture mechanical properties of freestanding 8 wt.% Y2O3–ZrO2 coatings’, Surf. Coat. Technol., vol. 223, pp. 87–91, May 2013, doi: 10.1016/j.surfcoat.2013.02.034.
C. Zou, H. Yang, X. Xu, M. Zang, and S. Chen, ‘Computational modeling of impact failure of polymer coatings’, Compos. Struct., vol. 291, p. 115576, Jul. 2022, doi: 10.1016/j.compstruct.2022.115576.
W. F. H. W Zamri, N. Suang, I. F. Mohamed, A. K. Ariffin, and M. F. Md Din, ‘Modelling of Nanoindentation of TiAlN and TiN Thin Film Coatings for Automotive Bearing’, Int. J. Recent Technol. Eng. IJRTE, vol. 8, pp. 7194–7199, Sep. 2019, doi: 10.35940/ijrte.C6208.098319.
A. Buang, R. Liu, X. Wu, and M. Yao, ‘Cracking analysis of HVOF coatings under Vickers indentation’, J. Coat. Technol. Res., vol. 5, pp. 513–534, Dec. 2008, doi: 10.1007/s11998-008-9106-8.
Y. Gaillard, E. Jimenez-Piqué, M. Oliva-Ramirez, V. J. Rico, and A. R. Gonzalez-Elipe, ‘Extraction of microstructural parameters from sculptured thin films nanoindentation’, Surf. Coat. Technol., vol. 425, p. 127696, Nov. 2021, doi: 10.1016/j.surfcoat.2021.127696.
G. Marchiori et al., ‘Optimizing thickness of ceramic coatings on plastic components for orthopedic applications: A finite element analysis’, Mater. Sci. Eng. C, vol. 58, pp. 381–388, Jan. 2016, doi: 10.1016/j.msec.2015.08.067.
F. Lofaj and D. Németh, ‘The effects of tip sharpness and coating thickness on nanoindentation measurements in hard coatings on softer substrates by FEM’, Thin Solid Films, vol. 644, pp. 173–181, Dec. 2017, doi: 10.1016/j.tsf.2017.09.051.
F. Lofaj and D. Németh, ‘Multiple cohesive cracking during nanoindentation in a hard W-C coating/steel substrate system by FEM’, J. Eur. Ceram. Soc., vol. 37, no. 14, pp. 4379–4388, Nov. 2017, doi: 10.1016/j.jeurceramsoc.2017.03.051.
L. A. Piana, E. A. Pérez R, R. M. Souza, A. O. Kunrath, and T. R. Strohaecker, ‘Numerical and experimental analyses on the indentation of coated systems with substrates with different mechanical properties’, Thin Solid Films, vol. 491, no. 1, pp. 197–203, Nov. 2005, doi: 10.1016/j.tsf.2005.06.025.
M. Kot, W. Rakowski, J. M. Lackner, and Ł. Major, ‘Analysis of spherical indentations of coating-substrate systems: Experiments and finite element modeling’, Mater. Des., vol. 43, pp. 99–111, Jan. 2013, doi: 10.1016/j.matdes.2012.06.040.
Y. Xiao, L. Wu, J. Luo, and L. Zhou, ‘Mechanical response of thin hard coatings under indentation considering rough surface and residual stress’, Diam. Relat. Mater., vol. 108, p. 107991, Oct. 2020, doi: 10.1016/j.diamond.2020.107991.
A. P. Serro et al., ‘A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications’, Surf. Coat. Technol., vol. 203, no. 24, pp. 3701–3707, Sep. 2009, doi: 10.1016/j.surfcoat.2009.06.010.
Ł. Łapaj, J. Markuszewski, J. Wendland, A. Mróz, and M. Wierusz-Kozłowska, ‘Massive failure of TiNbN coating in surface engineered metal-on-metal hip arthroplasty: Retrieval analysis’, J. Biomed. Mater. Res. B Appl. Biomater., vol. 104, no. 5, pp. 1043–1049, Jul. 2016, doi: 10.1002/jbm.b.33421.
‘Materials | Free Full-Text | Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments’. Accessed: May 14, 2024. [Online]. Available: https://www.mdpi.com/1996-1944/17/10/2235
‘Metals | Free Full-Text | Determination of Vickers Hardness in D2 Steel and TiNbN Coating Using Convolutional Neural Networks’. Accessed: May 14, 2024. [Online]. Available: https://www.mdpi.com/2075-4701/13/8/1391
C. T. Sindi, M. A. Najafabadi, and S. A. Ebrahimian, ‘Fracture Toughness Determination of Heat Treated AISI D2 Tool Steel Using AE Technique’, ISIJ Int., vol. 51, no. 2, pp. 305–312, 2011, doi: 10.2355/isijinternational.51.305.
‘Productos - Aceros SISA’. Accessed: May 13, 2024. [Online]. Available: https://sisa1.com.mx/productos/
J. M. Gonzalez-Carmona, C. L. Mambuscay, C. Ortega-Portilla, A. Hurtado-Macias, and J. F. Piamba, ‘TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions’, Materials, vol. 16, no. 13, Art. no. 13, Jan. 2023, doi: 10.3390/ma16134531.
‘NOVOTEST’. Accessed: May 13, 2024. [Online]. Available: http://novotest.biz/micro-vickers-hardness-tester-novotest-tb-mcv/
‘ASTM E92-17 - Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials’. Accessed: May 13, 2024. [Online]. Available: https://webstore.ansi.org/standards/astm/astme9217
‘Materiales metálicos. ensayo de dureza vickers. parte 1: método de ensayo’. Accessed: May 13, 2024. [Online]. Available: https://tienda.icontec.org/gp-ntc-iso-materiales-metalicos-ensayo-de-dureza-vickers-parte-1-metodo-de-ensayo-ntc-iso6507-1-2018.html
‘Astm E92-2017 Vickers | PDF | Dureza | Ciencias fisicas’, Scribd. Accessed: May 13, 2024. [Online]. Available: https://es.scribd.com/document/656075610/Astm-e92-2017-Vickers
‘Fig. 5. Schematic represents Vickers hardness test.’, ResearchGate. Accessed: May 14, 2024. [Online]. Available: https://www.researchgate.net/figure/Schematic-represents-Vickers-hardness-test_fig5_317132340
‘Mitutoyo, Product: Diamond indenter for Vickers test’. Accessed: May 14, 2024. [Online]. Available: https://shop.mitutoyo.eu/web/mitutoyo/en/mitutoyo/Hardness_indenters_and_replacement_balls/Diamond%20indenter%20for%20Vickers%20test/$catalogue/mitutoyoData/PR/63DIA012/index.xhtml;jsessionid=712B7E2C0B307DEE9CE3FF382FDC1F4F
‘Vickers Hardness Test’. Accessed: May 14, 2024. [Online]. Available: https://www.gordonengland.co.uk/hardness/vickers.htm
‘D2 Steel Properties’. Accessed: May 14, 2024. [Online]. Available: https://www.steelexpress.co.uk/toolsteel/D2-Steel-properties.html
‘Bowden and Tabor - an overview | ScienceDirect Topics’. Accessed: May 14, 2024. [Online]. Available: https://www.sciencedirect.com/topics/engineering/bowden-and-tabor
E. J. Pavlina and C. J. Van Tyne, ‘Correlation of Yield Strength and Tensile Strength with Hardness for Steels’, J. Mater. Eng. Perform., vol. 17, no. 6, pp. 888–893, Dec. 2008, doi: 10.1007/s11665-008-9225-5.
‘ABAQUS Version 6.6 Documentation’. Accessed: May 13, 2024. [Online]. Available: https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/index.html
‘Mesh Convergence Study’. Accessed: May 13, 2024. [Online]. Available: https://forum.ansys.com/forums/topic/mesh-convergence-study/
‘E3 Standard Guide for Preparation of Metallographic Specimens’. Accessed: May 13, 2024. [Online]. Available: https://www.astm.org/standards/e3
J. Richter, ‘Application of Vickers indentation for assessment of PVD TiN coated new nonledeburitic high-speed steels’, Surf. Coat. Technol., vol. 162, no. 2, pp. 119–130, Jan. 2003, doi: 10.1016/S0257-8972(02)00567-4.
N. H. Faisal, R. Ahmed, A. K. Prathuru, S. Spence, M. Hossain, and J. A. Steel, ‘An improved Vickers indentation fracture toughness model to assess the quality of thermally sprayed coatings’, Eng. Fract. Mech., vol. 128, pp. 189–204, Sep. 2014, doi: 10.1016/j.engfracmech.2014.07.015.
J. Gonzalez, C. L. Mambuscay, C. Ortega, J. Piamba, A. Hurtado-Macias, and H. Sánchez, ‘Effect of Substrate Temperature on Adhesion and Tribological Properties of Tinbn Coatings Deposited by Cathodic Arc’. Rochester, NY, Jan. 30, 2023. doi: 10.2139/ssrn.4342237.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
dc.format.extent.none.fl_str_mv 60 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Ibagué
dc.publisher.faculty.none.fl_str_mv Ingeniería
dc.publisher.place.none.fl_str_mv Ibagué
dc.publisher.program.none.fl_str_mv Ingeniería Mecánica
publisher.none.fl_str_mv Universidad de Ibagué
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/0c0583e2-9a4f-40b5-9fa1-f99446d8f8da/download
https://repositorio.unibague.edu.co/bitstreams/a54a92be-2b93-4627-8f60-12387182eb1b/download
https://repositorio.unibague.edu.co/bitstreams/e93697a9-d684-45d4-bebe-71652866032e/download
https://repositorio.unibague.edu.co/bitstreams/1db5cf23-c1de-4b53-ab1f-fdd6cf919557/download
https://repositorio.unibague.edu.co/bitstreams/11f0a4b5-02ce-49c1-ad56-be79c6b995d5/download
https://repositorio.unibague.edu.co/bitstreams/9e604a3a-7007-4a3e-bd0c-187cb7bf83aa/download
https://repositorio.unibague.edu.co/bitstreams/b5557fef-fd5a-4d64-90da-4393c62fbedd/download
https://repositorio.unibague.edu.co/bitstreams/2ad3c2c2-ae39-449f-830f-85764b93782b/download
bitstream.checksum.fl_str_mv e0ae867bda3847f140e20edc5653abe4
fe752dc04f92927add0c2fbafe029b9a
f1365fa8f19bd45b43ff3c50e86b033a
2fa3e590786b9c0f3ceba1b9656b7ac3
b78d08f1c8839b7cc4da9c7fcfd099b5
03142d87785a4a3932a6f0debd9711db
6701024c293f4dcdc800df75714f69a0
d70c2254cf98a991f845b6845a7c6a72
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814204074610917376
spelling Perez Ruiz, Eduardo Albertodf2fe5ec-7f4d-4ed0-9f47-b01b3dc8195f600Beltrán Betancourt, Nicolásb812e490-a1a2-4aea-8a28-55b7d185a800-1Troncoso Gutiérrez, Sebastián0c96d655-1a3c-4b04-9cc6-25ceae800b98-1Araque de los Ríos, Oscar Javier4dea260b-198b-4d9f-a410-2a0a8ec79c87600Piamba Jiménez, Jeferson Fernando2542324e-59b6-44cb-8577-2da79c47599a-12024-08-27T21:50:29Z2024-08-27T21:50:29Z2024Este trabajo se enfoca en analizar el comportamiento mecánico de un sistema recubierto (AISI D2/TiNbN). La metodología adoptada se basa en realizar un ensayo experimental y simulación por elementos finitos de un ensayo de indentación. Para el modelo experimental se consideró un indentador Vickers piramidal de base cuadrada y una carga de 1 kgf, obteniendo como resultado fotografías de la huella dejada por el indentador, las cuales presentaron fallas cohesivas que derivaron en grietas circulares. El modelo computacional se desarrolló por medio del software de elemento finitos Abaqus, donde se establecieron valores de límite de fluencia y módulo de Young, tanto para el sustrato como para el recubrimiento, se realizaron análisis de convergencia de malla obteniendo como resultado tanto para la condición de carga como para la condición de descarga, mapas de esfuerzo equivalente o esfuerzo de Von Misses, esfuerzos S11, los cuales permitieron crear una correlación entre los resultados experimentales y los obtenidos por medio del modelo computacional.This work focuses on analyzing the mechanical behaviour of a coated system (AISI D2/TiNbN). The adopted methodology is based on conducting an experimental test and finite element simulation of an indentation test. For the experimental model, a square-based Vickers pyramidal indenter and a load of 1 kgf were considered, resulting in photographs of the indentation left by the indenter, which exhibited cohesive failures leading to circular cracks. The computational model was developed using the Abaqus finite element software, where yield limit and Young's modulus values were established for both the substrate and the coating. Mesh convergence analyses were performed, resulting in equivalent stress or Von Mises stress maps for both loading and unloading conditions, as well as S11 stresses. These allowed for a correlation between the experimental results and those obtained through the computational model.PregradoIngeniero MecánicoINTRODUCCIÓN.....1 Capitulo 1: OBJETIVOS.....3 1.1 OBJETIVO GENERAL.....3 1.2 OBJETIVOS ESPECIFICOS.....3 Capitulo 2: REVISIÓN DE LA LITERATURA.....5 2.1 GENERALIDADES SISTEMA RECUBIERTO.....9 2.1.1 Condiciones del sustrato (Acero AISI D2).....9 2.1.2 Condiciones de recubrimientos (TiNbN).....9 Capitulo 3: MATERIALES Y METODOS.....11 3.1 ENSAYO DE INDENTACIÓN EXPERIMENTAL.....11 3.2 ENSAYO DE INDENTACIÓN MODELO COMPUTACIONAL.....14 3.2.1 Modulo partes (Part).....14 3.2.2 Módulo propiedades mecánicas (Property).....17 3.2.3 Módulo de ensamble (Assembly).....19 3.2.4 Módulo de Contacto (interaction).....20 3.2.5 Modulo carga y restricciones (load).....21 3.2.6 Módulo de malla (Mesh).....22 3.2.7 Convergencia.....23 Capitulo 4: RESULTADOS.....25 4.1 MICROESTRUCTURA DEL SUSTRATO.....25 4.2 ENSAYO DE INDENTACIÓN EXPERIMENTAL.....27 4.3 ENSAYO DE INDENTACIÓN MODELO COMPUTACIONAL.....28 Capitulo 5: ANALISIS DE RESULTADOS.....33 Capitulo 6: CONCLUSIONES.....39 REFERENCIAS.....40 A. Anexo: Gráficos complementarios de cada modelo de recubrimiento.....45 B. Anexo: Creación de modelo en Abaqus.....4760 páginasapplication/pdfBeltrán Betancourt, N. & Troncoso Gutiérrez, S. (2024). Análisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación. [Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/4402https://hdl.handle.net/20.500.12313/4402spaUniversidad de IbaguéIngenieríaIbaguéIngeniería MecánicaB. Bhushan, ‘Depth-sensing nanoindentation measurement techniques and applications’, Microsyst. Technol., vol. 23, pp. 1–55, May 2017, doi: 10.1007/s00542-017-3372-2.‘Instrumented indentation testing (IIT) | Anton Paar Wiki’, Anton Paar. Accessed: May 13, 2024. [Online]. Available: https://wiki.anton-paar.com/en/instrumented-indentation-testing-iit/Z. Yuan et al., ‘Analysis of the mechanical properties of TiN/Ti multilayer coatings using indentation under a broad load range’, Ceram. Int., vol. 47, no. 8, pp. 10796–10808, Apr. 2021, doi: 10.1016/j.ceramint.2020.12.196.M. Gsellmann et al., ‘Strength ranking for interfaces between a TiN hard coating and microstructural constituents of high speed steel determined by micromechanical testing’, Mater. Des., vol. 204, p. 109690, Jun. 2021, doi: 10.1016/j.matdes.2021.109690.A. S. Alaboodi and Z. Hussain, ‘Finite element modeling of nano-indentation technique to characterize thin film coatings’, J. King Saud Univ. - Eng. Sci., vol. 31, no. 1, pp. 61–69, Jan. 2019, doi: 10.1016/j.jksues.2017.02.001.G. A. Howarth and H. L. Manock, ‘Water-borne polyurethane dispersions and their use in functional coatings’, Surf. Coat. Int., vol. 80, no. 7, pp. 324–328, Jul. 1997, doi: 10.1007/BF02692680.G. A. Howarth, ‘The synergy between water-borne epoxy and high solids polyurethane legislation compliant coatings’, Surf. Coat. Int., vol. 82, no. 9, pp. 460–466, Sep. 1999, doi: 10.1007/BF02692651.J. M. Lackner, L. Major, and M. Kot, ‘Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates’, Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, Sep. 2011, doi: 10.2478/v10175-011-0042-x.J. M. Lackner, W. Waldhauser, L. MAJOR, J. Morgiel, M. Kot, and B. MAJOR, ‘Nanocrystalline Cr/CrN and Ti/TiN multilayer coatings produced by pulsed laser deposition at room temperature’, Bull. Pol. Acad. Sci. Tech. Sci., vol. 54, Jun. 2006.A. M. Kamalan Kirubaharan and P. Kuppusami, ‘Corrosion behavior of ceramic nanocomposite coatings at nanoscale’, Elsevier, 2020, pp. 295–314. doi: 10.1016/B978-0-12-819359-4.00016-7.K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, and J. Koskinen, ‘Tribological contact analysis of a rigid ball sliding on a hard coated surface: Part I: Modelling stresses and strains’, Surf. Coat. Technol., vol. 200, no. 12, pp. 3793–3809, Mar. 2006, doi: 10.1016/j.surfcoat.2005.03.040.V. P. Tabakov, L. V. Khudobin, A. V. Chikhranov, and Y. A. Dolzhenko, ‘The effect of wear-resistant coatings composition based on niobium nitride on the structural parameters, mechanical properties and efficiency of the cutting tool’, IOP Conf. Ser. Mater. Sci. Eng., vol. 966, no. 1, p. 012034, Nov. 2020, doi: 10.1088/1757-899X/966/1/012034.X. S. Yang et al., ‘Finite element analysis of crack propagation and fracture mechanical properties of freestanding 8 wt.% Y2O3–ZrO2 coatings’, Surf. Coat. Technol., vol. 223, pp. 87–91, May 2013, doi: 10.1016/j.surfcoat.2013.02.034.C. Zou, H. Yang, X. Xu, M. Zang, and S. Chen, ‘Computational modeling of impact failure of polymer coatings’, Compos. Struct., vol. 291, p. 115576, Jul. 2022, doi: 10.1016/j.compstruct.2022.115576.W. F. H. W Zamri, N. Suang, I. F. Mohamed, A. K. Ariffin, and M. F. Md Din, ‘Modelling of Nanoindentation of TiAlN and TiN Thin Film Coatings for Automotive Bearing’, Int. J. Recent Technol. Eng. IJRTE, vol. 8, pp. 7194–7199, Sep. 2019, doi: 10.35940/ijrte.C6208.098319.A. Buang, R. Liu, X. Wu, and M. Yao, ‘Cracking analysis of HVOF coatings under Vickers indentation’, J. Coat. Technol. Res., vol. 5, pp. 513–534, Dec. 2008, doi: 10.1007/s11998-008-9106-8.Y. Gaillard, E. Jimenez-Piqué, M. Oliva-Ramirez, V. J. Rico, and A. R. Gonzalez-Elipe, ‘Extraction of microstructural parameters from sculptured thin films nanoindentation’, Surf. Coat. Technol., vol. 425, p. 127696, Nov. 2021, doi: 10.1016/j.surfcoat.2021.127696.G. Marchiori et al., ‘Optimizing thickness of ceramic coatings on plastic components for orthopedic applications: A finite element analysis’, Mater. Sci. Eng. C, vol. 58, pp. 381–388, Jan. 2016, doi: 10.1016/j.msec.2015.08.067.F. Lofaj and D. Németh, ‘The effects of tip sharpness and coating thickness on nanoindentation measurements in hard coatings on softer substrates by FEM’, Thin Solid Films, vol. 644, pp. 173–181, Dec. 2017, doi: 10.1016/j.tsf.2017.09.051.F. Lofaj and D. Németh, ‘Multiple cohesive cracking during nanoindentation in a hard W-C coating/steel substrate system by FEM’, J. Eur. Ceram. Soc., vol. 37, no. 14, pp. 4379–4388, Nov. 2017, doi: 10.1016/j.jeurceramsoc.2017.03.051.L. A. Piana, E. A. Pérez R, R. M. Souza, A. O. Kunrath, and T. R. Strohaecker, ‘Numerical and experimental analyses on the indentation of coated systems with substrates with different mechanical properties’, Thin Solid Films, vol. 491, no. 1, pp. 197–203, Nov. 2005, doi: 10.1016/j.tsf.2005.06.025.M. Kot, W. Rakowski, J. M. Lackner, and Ł. Major, ‘Analysis of spherical indentations of coating-substrate systems: Experiments and finite element modeling’, Mater. Des., vol. 43, pp. 99–111, Jan. 2013, doi: 10.1016/j.matdes.2012.06.040.Y. Xiao, L. Wu, J. Luo, and L. Zhou, ‘Mechanical response of thin hard coatings under indentation considering rough surface and residual stress’, Diam. Relat. Mater., vol. 108, p. 107991, Oct. 2020, doi: 10.1016/j.diamond.2020.107991.A. P. Serro et al., ‘A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications’, Surf. Coat. Technol., vol. 203, no. 24, pp. 3701–3707, Sep. 2009, doi: 10.1016/j.surfcoat.2009.06.010.Ł. Łapaj, J. Markuszewski, J. Wendland, A. Mróz, and M. Wierusz-Kozłowska, ‘Massive failure of TiNbN coating in surface engineered metal-on-metal hip arthroplasty: Retrieval analysis’, J. Biomed. Mater. Res. B Appl. Biomater., vol. 104, no. 5, pp. 1043–1049, Jul. 2016, doi: 10.1002/jbm.b.33421.‘Materials | Free Full-Text | Predictive Modeling of Vickers Hardness Using Machine Learning Techniques on D2 Steel with Various Treatments’. Accessed: May 14, 2024. [Online]. Available: https://www.mdpi.com/1996-1944/17/10/2235‘Metals | Free Full-Text | Determination of Vickers Hardness in D2 Steel and TiNbN Coating Using Convolutional Neural Networks’. Accessed: May 14, 2024. [Online]. Available: https://www.mdpi.com/2075-4701/13/8/1391C. T. Sindi, M. A. Najafabadi, and S. A. Ebrahimian, ‘Fracture Toughness Determination of Heat Treated AISI D2 Tool Steel Using AE Technique’, ISIJ Int., vol. 51, no. 2, pp. 305–312, 2011, doi: 10.2355/isijinternational.51.305.‘Productos - Aceros SISA’. Accessed: May 13, 2024. [Online]. Available: https://sisa1.com.mx/productos/J. M. Gonzalez-Carmona, C. L. Mambuscay, C. Ortega-Portilla, A. Hurtado-Macias, and J. F. Piamba, ‘TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions’, Materials, vol. 16, no. 13, Art. no. 13, Jan. 2023, doi: 10.3390/ma16134531.‘NOVOTEST’. Accessed: May 13, 2024. [Online]. Available: http://novotest.biz/micro-vickers-hardness-tester-novotest-tb-mcv/‘ASTM E92-17 - Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials’. Accessed: May 13, 2024. [Online]. Available: https://webstore.ansi.org/standards/astm/astme9217‘Materiales metálicos. ensayo de dureza vickers. parte 1: método de ensayo’. Accessed: May 13, 2024. [Online]. Available: https://tienda.icontec.org/gp-ntc-iso-materiales-metalicos-ensayo-de-dureza-vickers-parte-1-metodo-de-ensayo-ntc-iso6507-1-2018.html‘Astm E92-2017 Vickers | PDF | Dureza | Ciencias fisicas’, Scribd. Accessed: May 13, 2024. [Online]. Available: https://es.scribd.com/document/656075610/Astm-e92-2017-Vickers‘Fig. 5. Schematic represents Vickers hardness test.’, ResearchGate. Accessed: May 14, 2024. [Online]. Available: https://www.researchgate.net/figure/Schematic-represents-Vickers-hardness-test_fig5_317132340‘Mitutoyo, Product: Diamond indenter for Vickers test’. Accessed: May 14, 2024. [Online]. Available: https://shop.mitutoyo.eu/web/mitutoyo/en/mitutoyo/Hardness_indenters_and_replacement_balls/Diamond%20indenter%20for%20Vickers%20test/$catalogue/mitutoyoData/PR/63DIA012/index.xhtml;jsessionid=712B7E2C0B307DEE9CE3FF382FDC1F4F‘Vickers Hardness Test’. Accessed: May 14, 2024. [Online]. Available: https://www.gordonengland.co.uk/hardness/vickers.htm‘D2 Steel Properties’. Accessed: May 14, 2024. [Online]. Available: https://www.steelexpress.co.uk/toolsteel/D2-Steel-properties.html‘Bowden and Tabor - an overview | ScienceDirect Topics’. Accessed: May 14, 2024. [Online]. Available: https://www.sciencedirect.com/topics/engineering/bowden-and-taborE. J. Pavlina and C. J. Van Tyne, ‘Correlation of Yield Strength and Tensile Strength with Hardness for Steels’, J. Mater. Eng. Perform., vol. 17, no. 6, pp. 888–893, Dec. 2008, doi: 10.1007/s11665-008-9225-5.‘ABAQUS Version 6.6 Documentation’. Accessed: May 13, 2024. [Online]. Available: https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/index.html‘Mesh Convergence Study’. Accessed: May 13, 2024. [Online]. Available: https://forum.ansys.com/forums/topic/mesh-convergence-study/‘E3 Standard Guide for Preparation of Metallographic Specimens’. Accessed: May 13, 2024. [Online]. Available: https://www.astm.org/standards/e3J. Richter, ‘Application of Vickers indentation for assessment of PVD TiN coated new nonledeburitic high-speed steels’, Surf. Coat. Technol., vol. 162, no. 2, pp. 119–130, Jan. 2003, doi: 10.1016/S0257-8972(02)00567-4.N. H. Faisal, R. Ahmed, A. K. Prathuru, S. Spence, M. Hossain, and J. A. Steel, ‘An improved Vickers indentation fracture toughness model to assess the quality of thermally sprayed coatings’, Eng. Fract. Mech., vol. 128, pp. 189–204, Sep. 2014, doi: 10.1016/j.engfracmech.2014.07.015.J. Gonzalez, C. L. Mambuscay, C. Ortega, J. Piamba, A. Hurtado-Macias, and H. Sánchez, ‘Effect of Substrate Temperature on Adhesion and Tribological Properties of Tinbn Coatings Deposited by Cathodic Arc’. Rochester, NY, Jan. 30, 2023. doi: 10.2139/ssrn.4342237.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/Sistema recubierto (AISI D2/TiNbN) - Comportamiento mecánicoRecubrimientosAnálisis de EsfuerzosAbaqusAISI D2TiNbNVickersCoatingsStress AnalysisAbaqusAnálisis del comportamiento mecánico del sistema recubierto (AISI D2/TiNbN), mediante ensayo experimental y simulación por elementos finitos de ensayo de indentación.Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf2912481https://repositorio.unibague.edu.co/bitstreams/0c0583e2-9a4f-40b5-9fa1-f99446d8f8da/downloade0ae867bda3847f140e20edc5653abe4MD51Anexos.zipAnexos.zipapplication/zip174481033https://repositorio.unibague.edu.co/bitstreams/a54a92be-2b93-4627-8f60-12387182eb1b/downloadfe752dc04f92927add0c2fbafe029b9aMD52Formato de autorización.pdfFormato de autorización.pdfapplication/pdf168947https://repositorio.unibague.edu.co/bitstreams/e93697a9-d684-45d4-bebe-71652866032e/downloadf1365fa8f19bd45b43ff3c50e86b033aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/1db5cf23-c1de-4b53-ab1f-fdd6cf919557/download2fa3e590786b9c0f3ceba1b9656b7ac3MD54TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain88873https://repositorio.unibague.edu.co/bitstreams/11f0a4b5-02ce-49c1-ad56-be79c6b995d5/downloadb78d08f1c8839b7cc4da9c7fcfd099b5MD55Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain3932https://repositorio.unibague.edu.co/bitstreams/9e604a3a-7007-4a3e-bd0c-187cb7bf83aa/download03142d87785a4a3932a6f0debd9711dbMD57THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg7029https://repositorio.unibague.edu.co/bitstreams/b5557fef-fd5a-4d64-90da-4393c62fbedd/download6701024c293f4dcdc800df75714f69a0MD56Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg14703https://repositorio.unibague.edu.co/bitstreams/2ad3c2c2-ae39-449f-830f-85764b93782b/downloadd70c2254cf98a991f845b6845a7c6a72MD5820.500.12313/4402oai:repositorio.unibague.edu.co:20.500.12313/44022024-08-28 03:00:42.093https://creativecommons.org/licenses/by-nc/4.0/https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=