Amaryllidaceae alkaloids in skin cancer management: Photoprotective effect on human keratinocytes and anti-proliferative activity in melanoma cells

Skin cancer has high rates of mortality and therapeutic failure. In this study, to develop a multi-agent strategy for skin cancer management, the selective cytotoxicity of several alkaloid fractions and pure alkaloids isolated from Amaryllidaceae species was evaluated in melanoma cells. In addition,...

Full description

Autores:
Castañeda, Carol
Bravo, Karent
Cortés, Natalie
Bedoya, Janeth
Borges, Warley de S.
Bastida, Jaume
Osorio, Edison
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/3880
Acceso en línea:
https://hdl.handle.net/20.500.12313/3880
Palabra clave:
Amaryllidaceae alkaloids
Eucharis caucana
Photoprotection
Skin cancer
Zephyranthes carinata
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
Description
Summary:Skin cancer has high rates of mortality and therapeutic failure. In this study, to develop a multi-agent strategy for skin cancer management, the selective cytotoxicity of several alkaloid fractions and pure alkaloids isolated from Amaryllidaceae species was evaluated in melanoma cells. In addition, UVB-stimulated keratinocytes (HaCaT) were exposed to seven alkaloid fractions characterized by GC-MS, and the production of intracellular reactive oxygen species (ROS) and IL-6, were measured to evaluate their photoprotection effects. The Eucharis caucana (bulb) alkaloid fraction (20 μg/ml) had a clear effect on the viability of melanoma cells, reducing it by 45.7% without affecting healthy keratinocytes. This alkaloid fraction and tazettine (both at 2.5 μg/ml) suppressed UVB-induced ROS production by 31.6% and 29.4%, respectively. The highest anti-inflammatory potential was shown by the Zephyranthes carinata (bulb) alkaloid fraction (10 μg/ml), which reduced IL-6 production by 90.8%. According to the chemometric analysis, lycoramine and tazettine had a photoprotective effect on the UVB-exposed HaCaT cells, attenuating the production of ROS and IL-6. These results suggest that Amaryllidaceae alkaloids have photoprotective and therapeutic potential in skin cancer management, especially at low concentrations.