Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis

In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels...

Full description

Autores:
Nuñez, Eduardo
Mata, Ramón
Castro, Jorge
Maureira, Nelson
Guerrero, Néstor
Roco, Ángel
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/3845
Acceso en línea:
https://hdl.handle.net/20.500.12313/3845
Palabra clave:
Design codes
Seismic design
Sensitivity analysis
Steel storage racks
Steel structures
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_4f34e22f6778d9e8deb52fbe0a8b183d
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/3845
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis
title Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis
spellingShingle Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis
Design codes
Seismic design
Sensitivity analysis
Steel storage racks
Steel structures
title_short Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis
title_full Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis
title_fullStr Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis
title_full_unstemmed Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis
title_sort Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis
dc.creator.fl_str_mv Nuñez, Eduardo
Mata, Ramón
Castro, Jorge
Maureira, Nelson
Guerrero, Néstor
Roco, Ángel
dc.contributor.author.none.fl_str_mv Nuñez, Eduardo
Mata, Ramón
Castro, Jorge
Maureira, Nelson
Guerrero, Néstor
Roco, Ángel
dc.subject.proposal.eng.fl_str_mv Design codes
Seismic design
Sensitivity analysis
Steel storage racks
Steel structures
topic Design codes
Seismic design
Sensitivity analysis
Steel storage racks
Steel structures
description In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels of seismic zone and soil type. The models were designed according to the Chilean Code NCh2369. Subsequently, a global sensitivity analysis was developed to analyze the influence of each studied parameter in the seismic design response in terms of fundamental period, drift, and base shear from a response spectral analysis approach. A total of 12000 simulations were performed. Two-hundred additional models were performed to evaluate the variation of seismic mass in the structural response. Results indicate a significant influence of live loads and seismic mass on steel racks designed for soft soils and unbrace conditions. The stiffness also modifies the performance of the racks, mainly in models using braces in the down-aisle direction and cross-aisle direction. In these cases, the seismic mass factor does not have a strong influence on structural response in comparison to the global slenderness
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-31
dc.date.accessioned.none.fl_str_mv 2023-10-17T21:30:26Z
dc.date.available.none.fl_str_mv 2023-10-17T21:30:26Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Nuñez, E.; Mata, R.; Castro, J.; Maureira, N.; Guerrero, N.; Roco, Á. Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis. Buildings 2022, 12, 1826. https://doi.org/10.3390/ buildings12111826
dc.identifier.issn.none.fl_str_mv 20755309
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/3845
identifier_str_mv Nuñez, E.; Mata, R.; Castro, J.; Maureira, N.; Guerrero, N.; Roco, Á. Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis. Buildings 2022, 12, 1826. https://doi.org/10.3390/ buildings12111826
20755309
url https://hdl.handle.net/20.500.12313/3845
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 21
dc.relation.citationissue.none.fl_str_mv 1826
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 12
dc.relation.ispartofjournal.none.fl_str_mv Buildings
dc.relation.references.none.fl_str_mv Castiglioni, C.A.; Drei, A.; Carydis, P.; Mouzakis, H. Experimental assessment of static friction between pallet and beams in racking systems. J. Build. Eng. 2016, 6, 203–214
Coulomb, C.A. Essai sur une Application des Regles de Maximis et Minimis à Quelques Problemes Relatifs à l’architecture, Memoires de Mathèmatique et de Physique; Academie Royale des Sciences: Paris, France, 1776; pp. 343–382
Stribeck, R. Die wesentlichen Eigenschaften der Gleit- und Rollenlager (Characteristics of Plain and Roller Bearings). Z. Vereines Seutscher Ing. 1902, 46, 1432–1437
Dahl, P.R. Solid Friction Damping of Mechanical Vibrations. AIAA J. 1976, 14, 1675–1682
De Wit, C.C.; Olsson, H.; Amstrong, K.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control 1995, 40, 419–425
Denoël, V.; Degée, H. Cas Particulier d’étude Analytique de l’élément à Frottement, Internal Report 2005-1; Department M&S, University of Liege: Liege, Belgium, 2005
ANSI MH16 1–2012; Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks. Rack Manufacturers Institute: Charlotte, NC, USA, 2012
ANSI MH 16.3; Specification for the Design, Testing and Utilization of Industrial Steel Cantilevered Storage Racks. American National Standard: New York, NY, USA, 2009
EN 16681; Steel Static Storage Systems—Adjustable Pallet Racking Systems. Principles for Seismic Design European Committee for Standardization: Brussels, Belgium, 2016
FEM 10.2.08; Recommendations for the Design of Static Steel Storage Pallet Racks in Seismic Conditions. Federation Européenne de Manutention: Brussels, Belgium, 2010
AS 4084-2012; Steel Storage Racking. Standards Australia Sydney: Sydney, Australia, 2012
NCh2369.Of2003; Earthquake Resistant Design of Industrial Structures and Facilities. Instituto Nacional de Normalización (INN): Santiago, Chile, 2003. (In English)
NCh433.Of1996; Earthquake Resistant Design of Buildings. Instituto Nacional de Normalización (INN): Santiago, Chile, 2012. (In English)
Nuñez, E.; Aguayo, C.; Herrera, R. Assessment of the Seismic Behavior of Selective Storage Racks Subjected to Chilean Earthquakes. Metals 2020, 10, 855
AISI. North American Specification for the Design of Cold-Formed Steel Structural Members, 1st ed.; American Iron and Steel Institute: Washington, DC, USA, 2012
Zhang, W.; Tong, G. Response spectra of two-storey frames with racks on the elastic floor. J. Build. Eng. 2021, 43, 103092
Bernuzzi, C.; Simoncelli, M. Steel storage pallet racks in seismic zones: Advanced vs. standard design strategies. Thin-Walled Struct. 2017, 116, 291–306
EN 1993-1-1:2005; Eurocode 3—Design of Steel Structures-part 1-1: General Rules and Rules for Buildings. CEN European Committee for Standardization: Belgium, Brussels, 2005
Bernuzzi, C.; Simoncelli, M. Seismic Design of Grana Cheese Cold-Formed Steel Racks. Buildings 2020, 10, 246
Tsarpalis, D.; Vamvatsikos, D.; Vayas, I. Seismic assessment approaches for mass-dominant sliding contents: The case of storage racks. Earthq. Eng. Struct. Dyn. 2021, 51, 812–831
Maguire, J.R.; Teh, L.H.; Clifton, G.C.; McCarthy, T.J. Equivalent static force method for selective storage racks with uplifting baseplates. J. Constr. Steel Res. 2019, 165, 105821
Baldassino, N.; Zandonini, R. Design by testing of industrial racks. Adv. Steel. Constr. 2011, 7, 27–47
Smith, J.; Marcillo, E.; Reyes, J.; Ardila, O. Assessment of the Effective Seismic Mass for Low-Rise Framed Shear Buildings Supporting Nearly Permanent Live Loads. J. Struct. Eng. 2018, 144, 04018098
Natali, A.; Morelli, F.; Salvatore, W. Influence of the Design Parameters on the Current Seismic Design Approach for Automated Rack Supported Warehouses. In Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering, Lisbon, Portugal, 10–12 April 2022
Smith, J.; Reyes, J.; Ardila, L.; Villamizar, J.; Ardila, O. Effect of live load on the seismic design of single-storey storage structures under unidirectional horizontal ground motions. Eng. Struct. 2015, 93, 50–60.
Deng, L.; Li, J.; Yang, Y.; Deng, P. Imperfection sensitivity analysis and DSM design of web-stiffened lipped channel columns experiencing local-distortional interaction. Thin-Walled Struct. 2020, 152, 106699
Gusella, F.; Arwade, S.R.; Orlando, M.; Peterman, K.D. Influence of mechanical and geometric uncertainty on rack connection structural response. J. Constr. Steel Res. 2018, 153, 343–355
Alvarez, O.; Muñoz, E.; Maureira, N.; Roco, A. A Sensitivity Analysis Approach for Assessing the Effect of Design Parameters in Reducing Seismic Demand of Base-Isolated Storage Racks. Appl. Sci. 2011, 11, 11553
Zareian, F.; Aguirre, C.; Beltrán, J.F.; Cruz, E.; Herrera, R.; Leon, R.; Millan, A.; Verdugo, A. Reconnaissance Report of Chilean Industrial Facilities Affected by the 2010 Chile Offshore Bío-Bío Earthquake. Earthq. Spectra 2012, 28, 513–532
FEMA 460; Seismic Considerations for Steel Storage Racks Located in Areas Accessible to the Public. Federal Emergency Management Agency: Washington, DC, USA, 2005
A36/A36M-14; Standard Specification for Carbon Structural Steel. ASTM International: West Conshohocken, PA, USA, 2014
Computer and Structures, Inc. (CSI). SAP2000; v22; Computer and Structures, Inc.: Berkeley, CA, USA, 2000
Pavéz, I. Análisis Experimental del Comportamiento de Elementos Conformantes de Sistemas de Almacenaje en Diversas Condiciones de Carga. Thesis to Obtain the Professional Title of Mechanical Engineer. Licentiate Thesis, University of Concepción, Concepción, Chile, 2017. (In Spanish)
Wojtkiewicz, S.F.; Johnson, E.A. Efficient sensitivity analysis of structures with local modifications. I: Time domain responses. J. Eng. Mech. 2014, 140, 04014067
Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 2015, 67, 1–11
Young, P.; Spear, R.; Hornberger, G. Modeling badly defined systems: Some further thoughts. In Proceedings of the SIMSIG Conference, Canberra, Australia, 4–8 September 1978; pp. 24–32
Spear, R.; Hornberger, G. Eutrophication in peel inlet. II. Identification of critical uncertainties via generalized sensitivity analysis. Water Res. 1980, 14, 43–49
Pianosi, F.; Sarrazin, F.; Wagener, T. A Matlab toolbox for Global Sensitivity Analysis. Environ. Model. Softw. 2015, 70, 80–85
MATLAB, version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010
McKenna, F.; Fenves, G.L.; Scott, M.H. Open System for Earthquake Engineering Simulation; University of California: Berkeley, CA, USA, 2000
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.place.none.fl_str_mv Suiza
dc.source.none.fl_str_mv https://www.mdpi.com/2075-5309/12/11/1826
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/deff394a-949d-49eb-907a-aac720645645/download
https://repositorio.unibague.edu.co/bitstreams/1540ae39-a820-4e6d-9af8-8d1bdc0e77ee/download
https://repositorio.unibague.edu.co/bitstreams/c605a966-d4db-4f01-abdf-5dd32d87cf0f/download
https://repositorio.unibague.edu.co/bitstreams/94aac402-ff63-4f90-89dc-bf05fb6e9b18/download
bitstream.checksum.fl_str_mv 14baea03483772494b1c5cbd4f0ed8b0
6561768122d276b65be8c37a067ea9d8
f54cd1bcee3ed9ac59176be2b8d35bd0
2fa3e590786b9c0f3ceba1b9656b7ac3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814204115372212224
spelling Nuñez, Eduardo1d5cdb21-9c1a-4002-865b-2107704e126c-1Mata, Ramón3510326f-13ac-41f4-9d25-72770fd438c6-1Castro, Jorgeca9ad4f8-d55f-4528-b01f-57d3adc18ddd-1Maureira, Nelson21db11d7-a2fd-445f-9547-dfdf08c2e0a1-1Guerrero, Néstor9b04d6cb-7990-4c4a-b69b-4d7a40d14cf5-1Roco, Ángel4e368a21-6dff-492c-a8ae-f84e9d2ffcfa-12023-10-17T21:30:26Z2023-10-17T21:30:26Z2022-10-31In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels of seismic zone and soil type. The models were designed according to the Chilean Code NCh2369. Subsequently, a global sensitivity analysis was developed to analyze the influence of each studied parameter in the seismic design response in terms of fundamental period, drift, and base shear from a response spectral analysis approach. A total of 12000 simulations were performed. Two-hundred additional models were performed to evaluate the variation of seismic mass in the structural response. Results indicate a significant influence of live loads and seismic mass on steel racks designed for soft soils and unbrace conditions. The stiffness also modifies the performance of the racks, mainly in models using braces in the down-aisle direction and cross-aisle direction. In these cases, the seismic mass factor does not have a strong influence on structural response in comparison to the global slendernessapplication/pdfNuñez, E.; Mata, R.; Castro, J.; Maureira, N.; Guerrero, N.; Roco, Á. Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis. Buildings 2022, 12, 1826. https://doi.org/10.3390/ buildings1211182620755309https://hdl.handle.net/20.500.12313/3845engSuiza211826112BuildingsCastiglioni, C.A.; Drei, A.; Carydis, P.; Mouzakis, H. Experimental assessment of static friction between pallet and beams in racking systems. J. Build. Eng. 2016, 6, 203–214Coulomb, C.A. Essai sur une Application des Regles de Maximis et Minimis à Quelques Problemes Relatifs à l’architecture, Memoires de Mathèmatique et de Physique; Academie Royale des Sciences: Paris, France, 1776; pp. 343–382Stribeck, R. Die wesentlichen Eigenschaften der Gleit- und Rollenlager (Characteristics of Plain and Roller Bearings). Z. Vereines Seutscher Ing. 1902, 46, 1432–1437Dahl, P.R. Solid Friction Damping of Mechanical Vibrations. AIAA J. 1976, 14, 1675–1682De Wit, C.C.; Olsson, H.; Amstrong, K.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control 1995, 40, 419–425Denoël, V.; Degée, H. Cas Particulier d’étude Analytique de l’élément à Frottement, Internal Report 2005-1; Department M&S, University of Liege: Liege, Belgium, 2005ANSI MH16 1–2012; Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks. Rack Manufacturers Institute: Charlotte, NC, USA, 2012ANSI MH 16.3; Specification for the Design, Testing and Utilization of Industrial Steel Cantilevered Storage Racks. American National Standard: New York, NY, USA, 2009EN 16681; Steel Static Storage Systems—Adjustable Pallet Racking Systems. Principles for Seismic Design European Committee for Standardization: Brussels, Belgium, 2016FEM 10.2.08; Recommendations for the Design of Static Steel Storage Pallet Racks in Seismic Conditions. Federation Européenne de Manutention: Brussels, Belgium, 2010AS 4084-2012; Steel Storage Racking. Standards Australia Sydney: Sydney, Australia, 2012NCh2369.Of2003; Earthquake Resistant Design of Industrial Structures and Facilities. Instituto Nacional de Normalización (INN): Santiago, Chile, 2003. (In English)NCh433.Of1996; Earthquake Resistant Design of Buildings. Instituto Nacional de Normalización (INN): Santiago, Chile, 2012. (In English)Nuñez, E.; Aguayo, C.; Herrera, R. Assessment of the Seismic Behavior of Selective Storage Racks Subjected to Chilean Earthquakes. Metals 2020, 10, 855AISI. North American Specification for the Design of Cold-Formed Steel Structural Members, 1st ed.; American Iron and Steel Institute: Washington, DC, USA, 2012Zhang, W.; Tong, G. Response spectra of two-storey frames with racks on the elastic floor. J. Build. Eng. 2021, 43, 103092Bernuzzi, C.; Simoncelli, M. Steel storage pallet racks in seismic zones: Advanced vs. standard design strategies. Thin-Walled Struct. 2017, 116, 291–306EN 1993-1-1:2005; Eurocode 3—Design of Steel Structures-part 1-1: General Rules and Rules for Buildings. CEN European Committee for Standardization: Belgium, Brussels, 2005Bernuzzi, C.; Simoncelli, M. Seismic Design of Grana Cheese Cold-Formed Steel Racks. Buildings 2020, 10, 246Tsarpalis, D.; Vamvatsikos, D.; Vayas, I. Seismic assessment approaches for mass-dominant sliding contents: The case of storage racks. Earthq. Eng. Struct. Dyn. 2021, 51, 812–831Maguire, J.R.; Teh, L.H.; Clifton, G.C.; McCarthy, T.J. Equivalent static force method for selective storage racks with uplifting baseplates. J. Constr. Steel Res. 2019, 165, 105821Baldassino, N.; Zandonini, R. Design by testing of industrial racks. Adv. Steel. Constr. 2011, 7, 27–47Smith, J.; Marcillo, E.; Reyes, J.; Ardila, O. Assessment of the Effective Seismic Mass for Low-Rise Framed Shear Buildings Supporting Nearly Permanent Live Loads. J. Struct. Eng. 2018, 144, 04018098Natali, A.; Morelli, F.; Salvatore, W. Influence of the Design Parameters on the Current Seismic Design Approach for Automated Rack Supported Warehouses. In Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering, Lisbon, Portugal, 10–12 April 2022Smith, J.; Reyes, J.; Ardila, L.; Villamizar, J.; Ardila, O. Effect of live load on the seismic design of single-storey storage structures under unidirectional horizontal ground motions. Eng. Struct. 2015, 93, 50–60.Deng, L.; Li, J.; Yang, Y.; Deng, P. Imperfection sensitivity analysis and DSM design of web-stiffened lipped channel columns experiencing local-distortional interaction. Thin-Walled Struct. 2020, 152, 106699Gusella, F.; Arwade, S.R.; Orlando, M.; Peterman, K.D. Influence of mechanical and geometric uncertainty on rack connection structural response. J. Constr. Steel Res. 2018, 153, 343–355Alvarez, O.; Muñoz, E.; Maureira, N.; Roco, A. A Sensitivity Analysis Approach for Assessing the Effect of Design Parameters in Reducing Seismic Demand of Base-Isolated Storage Racks. Appl. Sci. 2011, 11, 11553Zareian, F.; Aguirre, C.; Beltrán, J.F.; Cruz, E.; Herrera, R.; Leon, R.; Millan, A.; Verdugo, A. Reconnaissance Report of Chilean Industrial Facilities Affected by the 2010 Chile Offshore Bío-Bío Earthquake. Earthq. Spectra 2012, 28, 513–532FEMA 460; Seismic Considerations for Steel Storage Racks Located in Areas Accessible to the Public. Federal Emergency Management Agency: Washington, DC, USA, 2005A36/A36M-14; Standard Specification for Carbon Structural Steel. ASTM International: West Conshohocken, PA, USA, 2014Computer and Structures, Inc. (CSI). SAP2000; v22; Computer and Structures, Inc.: Berkeley, CA, USA, 2000Pavéz, I. Análisis Experimental del Comportamiento de Elementos Conformantes de Sistemas de Almacenaje en Diversas Condiciones de Carga. Thesis to Obtain the Professional Title of Mechanical Engineer. Licentiate Thesis, University of Concepción, Concepción, Chile, 2017. (In Spanish)Wojtkiewicz, S.F.; Johnson, E.A. Efficient sensitivity analysis of structures with local modifications. I: Time domain responses. J. Eng. Mech. 2014, 140, 04014067Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 2015, 67, 1–11Young, P.; Spear, R.; Hornberger, G. Modeling badly defined systems: Some further thoughts. In Proceedings of the SIMSIG Conference, Canberra, Australia, 4–8 September 1978; pp. 24–32Spear, R.; Hornberger, G. Eutrophication in peel inlet. II. Identification of critical uncertainties via generalized sensitivity analysis. Water Res. 1980, 14, 43–49Pianosi, F.; Sarrazin, F.; Wagener, T. A Matlab toolbox for Global Sensitivity Analysis. Environ. Model. Softw. 2015, 70, 80–85MATLAB, version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010McKenna, F.; Fenves, G.L.; Scott, M.H. Open System for Earthquake Engineering Simulation; University of California: Berkeley, CA, USA, 2000This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/2075-5309/12/11/1826Design codesSeismic designSensitivity analysisSteel storage racksSteel structuresInfluence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdf.txtInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdf.txtExtracted texttext/plain4143https://repositorio.unibague.edu.co/bitstreams/deff394a-949d-49eb-907a-aac720645645/download14baea03483772494b1c5cbd4f0ed8b0MD53THUMBNAILInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdf.jpgInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdf.jpgGenerated Thumbnailimage/jpeg11836https://repositorio.unibague.edu.co/bitstreams/1540ae39-a820-4e6d-9af8-8d1bdc0e77ee/download6561768122d276b65be8c37a067ea9d8MD54ORIGINALInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdfInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdfapplication/pdf97286https://repositorio.unibague.edu.co/bitstreams/c605a966-d4db-4f01-abdf-5dd32d87cf0f/downloadf54cd1bcee3ed9ac59176be2b8d35bd0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/94aac402-ff63-4f90-89dc-bf05fb6e9b18/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5220.500.12313/3845oai:repositorio.unibague.edu.co:20.500.12313/38452023-10-18 03:00:38.674https://creativecommons.org/licenses/by-nc-nd/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=