Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis
In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels...
- Autores:
-
Nuñez, Eduardo
Mata, Ramón
Castro, Jorge
Maureira, Nelson
Guerrero, Néstor
Roco, Ángel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/3845
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/3845
- Palabra clave:
- Design codes
Seismic design
Sensitivity analysis
Steel storage racks
Steel structures
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIBAGUE2_4f34e22f6778d9e8deb52fbe0a8b183d |
---|---|
oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/3845 |
network_acronym_str |
UNIBAGUE2 |
network_name_str |
Repositorio Universidad de Ibagué |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis |
title |
Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis |
spellingShingle |
Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis Design codes Seismic design Sensitivity analysis Steel storage racks Steel structures |
title_short |
Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis |
title_full |
Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis |
title_fullStr |
Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis |
title_full_unstemmed |
Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis |
title_sort |
Influence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysis |
dc.creator.fl_str_mv |
Nuñez, Eduardo Mata, Ramón Castro, Jorge Maureira, Nelson Guerrero, Néstor Roco, Ángel |
dc.contributor.author.none.fl_str_mv |
Nuñez, Eduardo Mata, Ramón Castro, Jorge Maureira, Nelson Guerrero, Néstor Roco, Ángel |
dc.subject.proposal.eng.fl_str_mv |
Design codes Seismic design Sensitivity analysis Steel storage racks Steel structures |
topic |
Design codes Seismic design Sensitivity analysis Steel storage racks Steel structures |
description |
In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels of seismic zone and soil type. The models were designed according to the Chilean Code NCh2369. Subsequently, a global sensitivity analysis was developed to analyze the influence of each studied parameter in the seismic design response in terms of fundamental period, drift, and base shear from a response spectral analysis approach. A total of 12000 simulations were performed. Two-hundred additional models were performed to evaluate the variation of seismic mass in the structural response. Results indicate a significant influence of live loads and seismic mass on steel racks designed for soft soils and unbrace conditions. The stiffness also modifies the performance of the racks, mainly in models using braces in the down-aisle direction and cross-aisle direction. In these cases, the seismic mass factor does not have a strong influence on structural response in comparison to the global slenderness |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-10-31 |
dc.date.accessioned.none.fl_str_mv |
2023-10-17T21:30:26Z |
dc.date.available.none.fl_str_mv |
2023-10-17T21:30:26Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Nuñez, E.; Mata, R.; Castro, J.; Maureira, N.; Guerrero, N.; Roco, Á. Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis. Buildings 2022, 12, 1826. https://doi.org/10.3390/ buildings12111826 |
dc.identifier.issn.none.fl_str_mv |
20755309 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/3845 |
identifier_str_mv |
Nuñez, E.; Mata, R.; Castro, J.; Maureira, N.; Guerrero, N.; Roco, Á. Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis. Buildings 2022, 12, 1826. https://doi.org/10.3390/ buildings12111826 20755309 |
url |
https://hdl.handle.net/20.500.12313/3845 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
21 |
dc.relation.citationissue.none.fl_str_mv |
1826 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
12 |
dc.relation.ispartofjournal.none.fl_str_mv |
Buildings |
dc.relation.references.none.fl_str_mv |
Castiglioni, C.A.; Drei, A.; Carydis, P.; Mouzakis, H. Experimental assessment of static friction between pallet and beams in racking systems. J. Build. Eng. 2016, 6, 203–214 Coulomb, C.A. Essai sur une Application des Regles de Maximis et Minimis à Quelques Problemes Relatifs à l’architecture, Memoires de Mathèmatique et de Physique; Academie Royale des Sciences: Paris, France, 1776; pp. 343–382 Stribeck, R. Die wesentlichen Eigenschaften der Gleit- und Rollenlager (Characteristics of Plain and Roller Bearings). Z. Vereines Seutscher Ing. 1902, 46, 1432–1437 Dahl, P.R. Solid Friction Damping of Mechanical Vibrations. AIAA J. 1976, 14, 1675–1682 De Wit, C.C.; Olsson, H.; Amstrong, K.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control 1995, 40, 419–425 Denoël, V.; Degée, H. Cas Particulier d’étude Analytique de l’élément à Frottement, Internal Report 2005-1; Department M&S, University of Liege: Liege, Belgium, 2005 ANSI MH16 1–2012; Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks. Rack Manufacturers Institute: Charlotte, NC, USA, 2012 ANSI MH 16.3; Specification for the Design, Testing and Utilization of Industrial Steel Cantilevered Storage Racks. American National Standard: New York, NY, USA, 2009 EN 16681; Steel Static Storage Systems—Adjustable Pallet Racking Systems. Principles for Seismic Design European Committee for Standardization: Brussels, Belgium, 2016 FEM 10.2.08; Recommendations for the Design of Static Steel Storage Pallet Racks in Seismic Conditions. Federation Européenne de Manutention: Brussels, Belgium, 2010 AS 4084-2012; Steel Storage Racking. Standards Australia Sydney: Sydney, Australia, 2012 NCh2369.Of2003; Earthquake Resistant Design of Industrial Structures and Facilities. Instituto Nacional de Normalización (INN): Santiago, Chile, 2003. (In English) NCh433.Of1996; Earthquake Resistant Design of Buildings. Instituto Nacional de Normalización (INN): Santiago, Chile, 2012. (In English) Nuñez, E.; Aguayo, C.; Herrera, R. Assessment of the Seismic Behavior of Selective Storage Racks Subjected to Chilean Earthquakes. Metals 2020, 10, 855 AISI. North American Specification for the Design of Cold-Formed Steel Structural Members, 1st ed.; American Iron and Steel Institute: Washington, DC, USA, 2012 Zhang, W.; Tong, G. Response spectra of two-storey frames with racks on the elastic floor. J. Build. Eng. 2021, 43, 103092 Bernuzzi, C.; Simoncelli, M. Steel storage pallet racks in seismic zones: Advanced vs. standard design strategies. Thin-Walled Struct. 2017, 116, 291–306 EN 1993-1-1:2005; Eurocode 3—Design of Steel Structures-part 1-1: General Rules and Rules for Buildings. CEN European Committee for Standardization: Belgium, Brussels, 2005 Bernuzzi, C.; Simoncelli, M. Seismic Design of Grana Cheese Cold-Formed Steel Racks. Buildings 2020, 10, 246 Tsarpalis, D.; Vamvatsikos, D.; Vayas, I. Seismic assessment approaches for mass-dominant sliding contents: The case of storage racks. Earthq. Eng. Struct. Dyn. 2021, 51, 812–831 Maguire, J.R.; Teh, L.H.; Clifton, G.C.; McCarthy, T.J. Equivalent static force method for selective storage racks with uplifting baseplates. J. Constr. Steel Res. 2019, 165, 105821 Baldassino, N.; Zandonini, R. Design by testing of industrial racks. Adv. Steel. Constr. 2011, 7, 27–47 Smith, J.; Marcillo, E.; Reyes, J.; Ardila, O. Assessment of the Effective Seismic Mass for Low-Rise Framed Shear Buildings Supporting Nearly Permanent Live Loads. J. Struct. Eng. 2018, 144, 04018098 Natali, A.; Morelli, F.; Salvatore, W. Influence of the Design Parameters on the Current Seismic Design Approach for Automated Rack Supported Warehouses. In Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering, Lisbon, Portugal, 10–12 April 2022 Smith, J.; Reyes, J.; Ardila, L.; Villamizar, J.; Ardila, O. Effect of live load on the seismic design of single-storey storage structures under unidirectional horizontal ground motions. Eng. Struct. 2015, 93, 50–60. Deng, L.; Li, J.; Yang, Y.; Deng, P. Imperfection sensitivity analysis and DSM design of web-stiffened lipped channel columns experiencing local-distortional interaction. Thin-Walled Struct. 2020, 152, 106699 Gusella, F.; Arwade, S.R.; Orlando, M.; Peterman, K.D. Influence of mechanical and geometric uncertainty on rack connection structural response. J. Constr. Steel Res. 2018, 153, 343–355 Alvarez, O.; Muñoz, E.; Maureira, N.; Roco, A. A Sensitivity Analysis Approach for Assessing the Effect of Design Parameters in Reducing Seismic Demand of Base-Isolated Storage Racks. Appl. Sci. 2011, 11, 11553 Zareian, F.; Aguirre, C.; Beltrán, J.F.; Cruz, E.; Herrera, R.; Leon, R.; Millan, A.; Verdugo, A. Reconnaissance Report of Chilean Industrial Facilities Affected by the 2010 Chile Offshore Bío-Bío Earthquake. Earthq. Spectra 2012, 28, 513–532 FEMA 460; Seismic Considerations for Steel Storage Racks Located in Areas Accessible to the Public. Federal Emergency Management Agency: Washington, DC, USA, 2005 A36/A36M-14; Standard Specification for Carbon Structural Steel. ASTM International: West Conshohocken, PA, USA, 2014 Computer and Structures, Inc. (CSI). SAP2000; v22; Computer and Structures, Inc.: Berkeley, CA, USA, 2000 Pavéz, I. Análisis Experimental del Comportamiento de Elementos Conformantes de Sistemas de Almacenaje en Diversas Condiciones de Carga. Thesis to Obtain the Professional Title of Mechanical Engineer. Licentiate Thesis, University of Concepción, Concepción, Chile, 2017. (In Spanish) Wojtkiewicz, S.F.; Johnson, E.A. Efficient sensitivity analysis of structures with local modifications. I: Time domain responses. J. Eng. Mech. 2014, 140, 04014067 Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 2015, 67, 1–11 Young, P.; Spear, R.; Hornberger, G. Modeling badly defined systems: Some further thoughts. In Proceedings of the SIMSIG Conference, Canberra, Australia, 4–8 September 1978; pp. 24–32 Spear, R.; Hornberger, G. Eutrophication in peel inlet. II. Identification of critical uncertainties via generalized sensitivity analysis. Water Res. 1980, 14, 43–49 Pianosi, F.; Sarrazin, F.; Wagener, T. A Matlab toolbox for Global Sensitivity Analysis. Environ. Model. Softw. 2015, 70, 80–85 MATLAB, version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010 McKenna, F.; Fenves, G.L.; Scott, M.H. Open System for Earthquake Engineering Simulation; University of California: Berkeley, CA, USA, 2000 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.place.none.fl_str_mv |
Suiza |
dc.source.none.fl_str_mv |
https://www.mdpi.com/2075-5309/12/11/1826 |
institution |
Universidad de Ibagué |
bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/deff394a-949d-49eb-907a-aac720645645/download https://repositorio.unibague.edu.co/bitstreams/1540ae39-a820-4e6d-9af8-8d1bdc0e77ee/download https://repositorio.unibague.edu.co/bitstreams/c605a966-d4db-4f01-abdf-5dd32d87cf0f/download https://repositorio.unibague.edu.co/bitstreams/94aac402-ff63-4f90-89dc-bf05fb6e9b18/download |
bitstream.checksum.fl_str_mv |
14baea03483772494b1c5cbd4f0ed8b0 6561768122d276b65be8c37a067ea9d8 f54cd1bcee3ed9ac59176be2b8d35bd0 2fa3e590786b9c0f3ceba1b9656b7ac3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814204115372212224 |
spelling |
Nuñez, Eduardo1d5cdb21-9c1a-4002-865b-2107704e126c-1Mata, Ramón3510326f-13ac-41f4-9d25-72770fd438c6-1Castro, Jorgeca9ad4f8-d55f-4528-b01f-57d3adc18ddd-1Maureira, Nelson21db11d7-a2fd-445f-9547-dfdf08c2e0a1-1Guerrero, Néstor9b04d6cb-7990-4c4a-b69b-4d7a40d14cf5-1Roco, Ángel4e368a21-6dff-492c-a8ae-f84e9d2ffcfa-12023-10-17T21:30:26Z2023-10-17T21:30:26Z2022-10-31In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels of seismic zone and soil type. The models were designed according to the Chilean Code NCh2369. Subsequently, a global sensitivity analysis was developed to analyze the influence of each studied parameter in the seismic design response in terms of fundamental period, drift, and base shear from a response spectral analysis approach. A total of 12000 simulations were performed. Two-hundred additional models were performed to evaluate the variation of seismic mass in the structural response. Results indicate a significant influence of live loads and seismic mass on steel racks designed for soft soils and unbrace conditions. The stiffness also modifies the performance of the racks, mainly in models using braces in the down-aisle direction and cross-aisle direction. In these cases, the seismic mass factor does not have a strong influence on structural response in comparison to the global slendernessapplication/pdfNuñez, E.; Mata, R.; Castro, J.; Maureira, N.; Guerrero, N.; Roco, Á. Influence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks: A Sensitivity Analysis. Buildings 2022, 12, 1826. https://doi.org/10.3390/ buildings1211182620755309https://hdl.handle.net/20.500.12313/3845engSuiza211826112BuildingsCastiglioni, C.A.; Drei, A.; Carydis, P.; Mouzakis, H. Experimental assessment of static friction between pallet and beams in racking systems. J. Build. Eng. 2016, 6, 203–214Coulomb, C.A. Essai sur une Application des Regles de Maximis et Minimis à Quelques Problemes Relatifs à l’architecture, Memoires de Mathèmatique et de Physique; Academie Royale des Sciences: Paris, France, 1776; pp. 343–382Stribeck, R. Die wesentlichen Eigenschaften der Gleit- und Rollenlager (Characteristics of Plain and Roller Bearings). Z. Vereines Seutscher Ing. 1902, 46, 1432–1437Dahl, P.R. Solid Friction Damping of Mechanical Vibrations. AIAA J. 1976, 14, 1675–1682De Wit, C.C.; Olsson, H.; Amstrong, K.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control 1995, 40, 419–425Denoël, V.; Degée, H. Cas Particulier d’étude Analytique de l’élément à Frottement, Internal Report 2005-1; Department M&S, University of Liege: Liege, Belgium, 2005ANSI MH16 1–2012; Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks. Rack Manufacturers Institute: Charlotte, NC, USA, 2012ANSI MH 16.3; Specification for the Design, Testing and Utilization of Industrial Steel Cantilevered Storage Racks. American National Standard: New York, NY, USA, 2009EN 16681; Steel Static Storage Systems—Adjustable Pallet Racking Systems. Principles for Seismic Design European Committee for Standardization: Brussels, Belgium, 2016FEM 10.2.08; Recommendations for the Design of Static Steel Storage Pallet Racks in Seismic Conditions. Federation Européenne de Manutention: Brussels, Belgium, 2010AS 4084-2012; Steel Storage Racking. Standards Australia Sydney: Sydney, Australia, 2012NCh2369.Of2003; Earthquake Resistant Design of Industrial Structures and Facilities. Instituto Nacional de Normalización (INN): Santiago, Chile, 2003. (In English)NCh433.Of1996; Earthquake Resistant Design of Buildings. Instituto Nacional de Normalización (INN): Santiago, Chile, 2012. (In English)Nuñez, E.; Aguayo, C.; Herrera, R. Assessment of the Seismic Behavior of Selective Storage Racks Subjected to Chilean Earthquakes. Metals 2020, 10, 855AISI. North American Specification for the Design of Cold-Formed Steel Structural Members, 1st ed.; American Iron and Steel Institute: Washington, DC, USA, 2012Zhang, W.; Tong, G. Response spectra of two-storey frames with racks on the elastic floor. J. Build. Eng. 2021, 43, 103092Bernuzzi, C.; Simoncelli, M. Steel storage pallet racks in seismic zones: Advanced vs. standard design strategies. Thin-Walled Struct. 2017, 116, 291–306EN 1993-1-1:2005; Eurocode 3—Design of Steel Structures-part 1-1: General Rules and Rules for Buildings. CEN European Committee for Standardization: Belgium, Brussels, 2005Bernuzzi, C.; Simoncelli, M. Seismic Design of Grana Cheese Cold-Formed Steel Racks. Buildings 2020, 10, 246Tsarpalis, D.; Vamvatsikos, D.; Vayas, I. Seismic assessment approaches for mass-dominant sliding contents: The case of storage racks. Earthq. Eng. Struct. Dyn. 2021, 51, 812–831Maguire, J.R.; Teh, L.H.; Clifton, G.C.; McCarthy, T.J. Equivalent static force method for selective storage racks with uplifting baseplates. J. Constr. Steel Res. 2019, 165, 105821Baldassino, N.; Zandonini, R. Design by testing of industrial racks. Adv. Steel. Constr. 2011, 7, 27–47Smith, J.; Marcillo, E.; Reyes, J.; Ardila, O. Assessment of the Effective Seismic Mass for Low-Rise Framed Shear Buildings Supporting Nearly Permanent Live Loads. J. Struct. Eng. 2018, 144, 04018098Natali, A.; Morelli, F.; Salvatore, W. Influence of the Design Parameters on the Current Seismic Design Approach for Automated Rack Supported Warehouses. In Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering, Lisbon, Portugal, 10–12 April 2022Smith, J.; Reyes, J.; Ardila, L.; Villamizar, J.; Ardila, O. Effect of live load on the seismic design of single-storey storage structures under unidirectional horizontal ground motions. Eng. Struct. 2015, 93, 50–60.Deng, L.; Li, J.; Yang, Y.; Deng, P. Imperfection sensitivity analysis and DSM design of web-stiffened lipped channel columns experiencing local-distortional interaction. Thin-Walled Struct. 2020, 152, 106699Gusella, F.; Arwade, S.R.; Orlando, M.; Peterman, K.D. Influence of mechanical and geometric uncertainty on rack connection structural response. J. Constr. Steel Res. 2018, 153, 343–355Alvarez, O.; Muñoz, E.; Maureira, N.; Roco, A. A Sensitivity Analysis Approach for Assessing the Effect of Design Parameters in Reducing Seismic Demand of Base-Isolated Storage Racks. Appl. Sci. 2011, 11, 11553Zareian, F.; Aguirre, C.; Beltrán, J.F.; Cruz, E.; Herrera, R.; Leon, R.; Millan, A.; Verdugo, A. Reconnaissance Report of Chilean Industrial Facilities Affected by the 2010 Chile Offshore Bío-Bío Earthquake. Earthq. Spectra 2012, 28, 513–532FEMA 460; Seismic Considerations for Steel Storage Racks Located in Areas Accessible to the Public. Federal Emergency Management Agency: Washington, DC, USA, 2005A36/A36M-14; Standard Specification for Carbon Structural Steel. ASTM International: West Conshohocken, PA, USA, 2014Computer and Structures, Inc. (CSI). SAP2000; v22; Computer and Structures, Inc.: Berkeley, CA, USA, 2000Pavéz, I. Análisis Experimental del Comportamiento de Elementos Conformantes de Sistemas de Almacenaje en Diversas Condiciones de Carga. Thesis to Obtain the Professional Title of Mechanical Engineer. Licentiate Thesis, University of Concepción, Concepción, Chile, 2017. (In Spanish)Wojtkiewicz, S.F.; Johnson, E.A. Efficient sensitivity analysis of structures with local modifications. I: Time domain responses. J. Eng. Mech. 2014, 140, 04014067Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 2015, 67, 1–11Young, P.; Spear, R.; Hornberger, G. Modeling badly defined systems: Some further thoughts. In Proceedings of the SIMSIG Conference, Canberra, Australia, 4–8 September 1978; pp. 24–32Spear, R.; Hornberger, G. Eutrophication in peel inlet. II. Identification of critical uncertainties via generalized sensitivity analysis. Water Res. 1980, 14, 43–49Pianosi, F.; Sarrazin, F.; Wagener, T. A Matlab toolbox for Global Sensitivity Analysis. Environ. Model. Softw. 2015, 70, 80–85MATLAB, version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010McKenna, F.; Fenves, G.L.; Scott, M.H. Open System for Earthquake Engineering Simulation; University of California: Berkeley, CA, USA, 2000This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/2075-5309/12/11/1826Design codesSeismic designSensitivity analysisSteel storage racksSteel structuresInfluence of global slenderness and sliding pallets on seismic design of steel storage racks: a sensitivity analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdf.txtInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdf.txtExtracted texttext/plain4143https://repositorio.unibague.edu.co/bitstreams/deff394a-949d-49eb-907a-aac720645645/download14baea03483772494b1c5cbd4f0ed8b0MD53THUMBNAILInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdf.jpgInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdf.jpgGenerated Thumbnailimage/jpeg11836https://repositorio.unibague.edu.co/bitstreams/1540ae39-a820-4e6d-9af8-8d1bdc0e77ee/download6561768122d276b65be8c37a067ea9d8MD54ORIGINALInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdfInfluence of Global Slenderness and Sliding Pallets on Seismic Design of Steel Storage Racks A Sensitivity Analysis - buildings-12-01826-v2.pdfapplication/pdf97286https://repositorio.unibague.edu.co/bitstreams/c605a966-d4db-4f01-abdf-5dd32d87cf0f/downloadf54cd1bcee3ed9ac59176be2b8d35bd0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/94aac402-ff63-4f90-89dc-bf05fb6e9b18/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5220.500.12313/3845oai:repositorio.unibague.edu.co:20.500.12313/38452023-10-18 03:00:38.674https://creativecommons.org/licenses/by-nc-nd/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |