Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode Control

Context: Microinverters are widely used in modular photovoltaic installations but its operation with reduced power is limited to inject real power into the grid. One way to optimize the use of microinverters consist of providing them the Active Power Filtering (APF) capability, which allows its use...

Full description

Autores:
Lopez-Santos, Oswaldo
Tilaguy-Lezama, Sebastián
Rico-Ramírez, Sandra Patricia
Cortes-Torres, Luis Darío
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/3819
Acceso en línea:
https://hdl.handle.net/20.500.12313/3819
Palabra clave:
Microinverter
Active power filter
Single-phase PQ theory
Sliding-mode control
Nonlinear control (en)
Microinverter
Active power filter
Single-phase PQ theory
Sliding-mode control
NonLinear control
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_399e9fc7d46d107107891993c788c96b
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/3819
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode Control
title Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode Control
spellingShingle Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode Control
Microinverter
Active power filter
Single-phase PQ theory
Sliding-mode control
Nonlinear control (en)
Microinverter
Active power filter
Single-phase PQ theory
Sliding-mode control
NonLinear control
title_short Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode Control
title_full Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode Control
title_fullStr Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode Control
title_full_unstemmed Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode Control
title_sort Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode Control
dc.creator.fl_str_mv Lopez-Santos, Oswaldo
Tilaguy-Lezama, Sebastián
Rico-Ramírez, Sandra Patricia
Cortes-Torres, Luis Darío
dc.contributor.author.none.fl_str_mv Lopez-Santos, Oswaldo
Tilaguy-Lezama, Sebastián
Rico-Ramírez, Sandra Patricia
Cortes-Torres, Luis Darío
dc.subject.es_CO.fl_str_mv Microinverter
Active power filter
Single-phase PQ theory
Sliding-mode control
Nonlinear control (en)
topic Microinverter
Active power filter
Single-phase PQ theory
Sliding-mode control
Nonlinear control (en)
Microinverter
Active power filter
Single-phase PQ theory
Sliding-mode control
NonLinear control
dc.subject.proposal.eng.fl_str_mv Microinverter
Active power filter
Single-phase PQ theory
Sliding-mode control
NonLinear control
description Context: Microinverters are widely used in modular photovoltaic installations but its operation with reduced power is limited to inject real power into the grid. One way to optimize the use of microinverters consist of providing them the Active Power Filtering (APF) capability, which allows its use as both distributed generation and compensation unit even under unfavorable conditions of insolation. With this approach, the output stage of the microinverter can provide reactive and distortive components of power in order to compensate power quality defects of a localized load. Method: This paper proposes a non-linear control strategy to integrate the APF function in a singlephase two-stage photovoltaic microinverter. The proposal involves the use of the single-phase P-Q theory to generate the current reference, sliding mode control to achieve a robust tracking of that reference and linear robust control to maintain the power balance regulating the DC-link voltage of the microinverter. The proposed control does not require the use of low-pass filters and in turn uses a recursive average computation improving the general performance of the system. Results: The theoretical approach is validated by means of simulation results in which appropriate levels of harmonic distortion are obtained in the grid-side current for different load types and power levels. The robustness of the control system is tested by applying disturbances in the harmonic content of the load current and its power level obtaining an appropriate dynamic performance adapted to the demands of the application. Conclusions: The main advantage of this proposal is the possibility to add the active filter function to coventional microinverters extending its capability to power conditioning only integrating some algorithms. A simple design method to ensure reliability, robustness and high power quality is detailed.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-05-10
dc.date.accessioned.none.fl_str_mv 2023-10-06T21:53:29Z
dc.date.available.none.fl_str_mv 2023-10-06T21:53:29Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.es_CO.fl_str_mv Lopez-Santos, O., Tilaguy-Lezama, S., Rico-Ramírez, S. P., and Cortes-Torres, L. D. (2017). Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase P-Q Theory and Sliding Mode Control. Ingeniería, 22(2), 254–268. https://doi.org/10.14483/udistrital.jour.reving.2017.2.a06
dc.identifier.issn.none.fl_str_mv 0121-750X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/3819
identifier_str_mv Lopez-Santos, O., Tilaguy-Lezama, S., Rico-Ramírez, S. P., and Cortes-Torres, L. D. (2017). Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase P-Q Theory and Sliding Mode Control. Ingeniería, 22(2), 254–268. https://doi.org/10.14483/udistrital.jour.reving.2017.2.a06
0121-750X
url https://hdl.handle.net/20.500.12313/3819
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 268
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 254
dc.relation.citationvolume.none.fl_str_mv 22
dc.relation.ispartofjournal.none.fl_str_mv Ingeniería
dc.relation.references.none.fl_str_mv H. A. Sher, and K.E. Addoweesh, “Micro-inverters - Promising Solutions in Solar Photovoltaics,” Energy for Sustainable Development, vol. 16, pp. 389-400, Dec. 2012.
F. Blaabjerg, Z. Chen, and S.B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184-1194, Sep. 2004.
Y. Xue, L. Chang; S.B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, Sep. 2004.
J.D. Bastidas, C.A. Ramos-Paja, and E. Franco, “Modeling and parameter calculation of photovoltaic fields in irregular weather conditions,” Revista INGENIER´IA, vol. 17, no. 1, pp. 37-48, Jun. 2012.
M. Molinas and J. Kondoh, “Power electronic loads as providers of reactive power ancillary service to the grid: Analytical and experimental study,” in Proc. 13th European Conference on Power Electronics and Applications (EPE), Barcelona, 2009, pp. 1-10.
W. Abbas and M. A. Saqib, “Effect of Nonlinear Load Distributions on Total Harmonic Distortion in a Power System,” in Proc. International Conference on Electrical Engineering (ICEE), Lahore, 2007, pp. 1-6
C. H. Chang, Y. H. Lin, Y. M. Chen and Y. R. Chang, “Simplified Reactive Power Control for Single-Phase GridConnected Photovoltaic Inverters,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2286-2296, May 2014.
M. Islam, N. Afrin and S. Mekhilef, “Efficient Single Phase Transformerless Inverter for Grid-Tied PVG System With Reactive Power Control,” IEEE Trans. Sustainable Energy, vol. 7, no. 3, pp. 1205-1215, July 2016
I. Bouloumpasis, P. Vovos, K. Georgakas, and N.A. Vovos, “Current harmonics compensation in microgrids exploiting the power electronics interfaces of renewable energy sources,” Energies, vol. 8, no. 4, pp. 2295-2311, Aug. 2015.
F.P. de Souza and I. Barbi, “Single-phase active power filters for distributed power factor correction,” in Proc. IEEE 31st Annual Power Electronics Specialists Conference (PESC), Galway, 2000, pp. 500-505.
O. Lopez-Santos, “Filtro activo paralelo para compensacion de factor de potencia y distorsi ´ on arm ´ onica en apli- ´ caciones industriales,” Master thesis, Universidad Nacional de Colombia, 2010
F.R. Jimenez, J.M. Salamanca, & P.F. Cardenas, “Modeling and circuital analysis of a Single Phase Shunt Active Power Filter,” In 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS), Barranquilla, 2014.
Hua, C-C. Li, C-H. Lee, C-S. “Control Analysis of an active power filter using Lyapunov candidate,” IET Power Electron., vol. 2. no. 4, April 2009.
O. Lopez-Santos, L. Martinez-Salamero, G. Garcia, & H. Valderrama-Blavi, “Sliding-mode control of a transformerless dual-stage grid-connected photovoltaic micro-inverter,” In Proc. 10th IEEE International Multi-Conference on Systems, Signals & Devices (SSD), pp. 1-6, 2013.
O. Lopez-Santos, G. Garcia, J.C. Avila-Martinez, D.F. Gonzalez-Morales, & C. Toro-Zuluaga. “A simple digital sinusoidal reference generator for grid-synchronized power electronics applications,” In Proc. IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pp. 1-6, 2015.
O. Lopez-Santos, “Contribution to the DC-AC conversion in photovoltaic systems: Module oriented converters,” Doctoral dissertation, INSA de Toulouse, pp. 1-248, 2015.
A. Cid-Pastor, L. Martinez-Salamero, A. El Aroudi, R. Giral, J. Calvente, R. Leyva, ”Synthesis of loss-freeresistors based on sliding-mode control and its applications in power processing,” Control Engineering Practice, vol. 21 no. 5 pp. 689-699. May. 2013.
O. Lopez-Santos, G. Garcia and L. Martinez-Salamero, ”Derivation of a global model of a two-stage photovoltaic microinverter using sliding-mode control,” in Proc. IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Fortaleza, 2015, pp. 1-6.
M.T. Haque, ”Single-phase PQ theory,” in Proc. IEEE 33rd Annual Power Electronics Specialists Conference (PESC), Cairns, 2002, pp. 1815-1820.
M.T. Haque and T. Ise, ”Implementation of single-phase pq theory,” in Proc. of the Power Conversion Conference (PCC), Osaka, 2002, pp. 761-765.
M.T. Haque,”Single-phase pq theory for active filters,” in Proc. IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering (TENCON), 2002, pp. 1941-1944.
V. Khadkikar, A. Chandra and B. N. Singh, ”Generalised single-phase p-q theory for active power filtering: simulation and DSP-based experimental investigation”. IET Power Electron., vol. 2, no. 1, pp. 67-78, January 2009.
S. Golestan, M. Ramezani, J. M. Guerrero, F. D. Freijedo and M. Monfared, ”Moving Average Filter Based Phase-Locked Loops: Performance Analysis and Design Guidelines,” in IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2750-2763, June 2014.
S.W: Smith, The scientist and engineer’s guide to digital signal processing. 2d. Edition. San Diego: California Technical Publishing. 1999
O. Lopez-Santos, G. Garcia, L. Martinez-Salamero, & L. Cortes-Torres, “Suppressing the effect of the DC-link voltage ripple on the current control of a sliding-mode controlled microinverter,” in Proc. Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 447-452, 2015.
H. Jiabing, Z.Q. Zhu, H. Nian, L. Shang, Y. He, “Sliding mode current control of grid-connected voltage source converter,” in Proc. of the IEEE Energy Conversion Congress and Exposition (ECCE), pp. 912-919, Sep. 2010.
I.-S. Kim, “Sliding mode controller for the single-phase grid-connected photovoltaic system,” Applied Energy, vol. 83, Oct. 2006, pp. 1101-1115
J. Matas, L. Garc´ıa, J. Miret, J. Guerrero, and M. Castilla, “Feedback Linearization of a Single-Phase Active Power Filter via Sliding Mode Control,” IEEE Trans. Power Electron., vol.23, no.1. Jan. 2008.
V. Utkin, J. Guldner and J. Shi, Sliding mode control in electromechanical systems, CRC Press, 2th. Edition, Taylor and Francis Group, 2009.
D. G. Montoya, C. A. Ramos-Paja and R. Giral, ”Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques,” in IEEE Trans. Power Electron., vol. 31, no. 1, pp. 235-247, Jan. 2016.
O. Lopez-Santos, G. Garcia, L. Martinez-Salamero, J.C. Avila-Martinez, & L. Seguier, “Non-linear control of the output stage of a solar microinverter,” International Journal of Control, pp. 1-20, 2015
H. Panagopoulus, K.J. Astrom and T. Hagglund, “Design of PID controllers based on constrained optimization,” IEE Proc. on Control Theory Appl., vol. 149, no. 1, pp. 32-40, 2002.
O. Lopez-Santos, L. Martinez-Salamero, G. Garcia, H. Valderrama-Blavi and T. Sierra-Polanco, ”Robust SlidingMode Control Design for a Voltage Regulated Quadratic Boost Converter,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2313-2327, Apr. 2015.
IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std 519- 2014, 2014.
IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems, IEEE Std 929-2000, 2000.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.place.none.fl_str_mv Colombia
dc.source.none.fl_str_mv http://www.scielo.org.co/scielo.php?pid=S0121-750X2017000200254&script=sci_abstract&tlng=en
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/b4c37837-4535-478c-a4aa-c633286b6739/download
https://repositorio.unibague.edu.co/bitstreams/b5e89654-6d23-48d5-b327-d8a4489a7af9/download
https://repositorio.unibague.edu.co/bitstreams/ee739f51-2fc6-42cb-9271-085efd6e038b/download
https://repositorio.unibague.edu.co/bitstreams/427dd81c-f2b6-403f-813c-a7fd48e0344e/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
309d198f36925682e90a0703ff146682
5c7b34332ef6cda63dbaaa56052d50fe
556b8ba33b26fe2412311ce8e385ae5f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814204089435684864
spelling Lopez-Santos, Oswaldoed03734a-10c0-40d8-ab9a-162fa1273b00-1Tilaguy-Lezama, Sebastián3cfab99d-9def-420d-adba-0ec45fbe3e39-1Rico-Ramírez, Sandra Patriciaf6a3d3e3-7721-46ba-9cbf-43085b5cd7a8-1Cortes-Torres, Luis Daríof1676730-bd89-4ecb-b515-f25f1a8ebfea-12023-10-06T21:53:29Z2023-10-06T21:53:29Z2017-05-10Context: Microinverters are widely used in modular photovoltaic installations but its operation with reduced power is limited to inject real power into the grid. One way to optimize the use of microinverters consist of providing them the Active Power Filtering (APF) capability, which allows its use as both distributed generation and compensation unit even under unfavorable conditions of insolation. With this approach, the output stage of the microinverter can provide reactive and distortive components of power in order to compensate power quality defects of a localized load. Method: This paper proposes a non-linear control strategy to integrate the APF function in a singlephase two-stage photovoltaic microinverter. The proposal involves the use of the single-phase P-Q theory to generate the current reference, sliding mode control to achieve a robust tracking of that reference and linear robust control to maintain the power balance regulating the DC-link voltage of the microinverter. The proposed control does not require the use of low-pass filters and in turn uses a recursive average computation improving the general performance of the system. Results: The theoretical approach is validated by means of simulation results in which appropriate levels of harmonic distortion are obtained in the grid-side current for different load types and power levels. The robustness of the control system is tested by applying disturbances in the harmonic content of the load current and its power level obtaining an appropriate dynamic performance adapted to the demands of the application. Conclusions: The main advantage of this proposal is the possibility to add the active filter function to coventional microinverters extending its capability to power conditioning only integrating some algorithms. A simple design method to ensure reliability, robustness and high power quality is detailed.application/pdfLopez-Santos, O., Tilaguy-Lezama, S., Rico-Ramírez, S. P., and Cortes-Torres, L. D. (2017). Operation of a Photovoltaic Microinverter as Active Power Filter using the single phase P-Q Theory and Sliding Mode Control. Ingeniería, 22(2), 254–268. https://doi.org/10.14483/udistrital.jour.reving.2017.2.a060121-750Xhttps://hdl.handle.net/20.500.12313/3819engColombia268225422IngenieríaH. A. Sher, and K.E. Addoweesh, “Micro-inverters - Promising Solutions in Solar Photovoltaics,” Energy for Sustainable Development, vol. 16, pp. 389-400, Dec. 2012.F. Blaabjerg, Z. Chen, and S.B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184-1194, Sep. 2004.Y. Xue, L. Chang; S.B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, Sep. 2004.J.D. Bastidas, C.A. Ramos-Paja, and E. Franco, “Modeling and parameter calculation of photovoltaic fields in irregular weather conditions,” Revista INGENIER´IA, vol. 17, no. 1, pp. 37-48, Jun. 2012.M. Molinas and J. Kondoh, “Power electronic loads as providers of reactive power ancillary service to the grid: Analytical and experimental study,” in Proc. 13th European Conference on Power Electronics and Applications (EPE), Barcelona, 2009, pp. 1-10.W. Abbas and M. A. Saqib, “Effect of Nonlinear Load Distributions on Total Harmonic Distortion in a Power System,” in Proc. International Conference on Electrical Engineering (ICEE), Lahore, 2007, pp. 1-6C. H. Chang, Y. H. Lin, Y. M. Chen and Y. R. Chang, “Simplified Reactive Power Control for Single-Phase GridConnected Photovoltaic Inverters,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2286-2296, May 2014.M. Islam, N. Afrin and S. Mekhilef, “Efficient Single Phase Transformerless Inverter for Grid-Tied PVG System With Reactive Power Control,” IEEE Trans. Sustainable Energy, vol. 7, no. 3, pp. 1205-1215, July 2016I. Bouloumpasis, P. Vovos, K. Georgakas, and N.A. Vovos, “Current harmonics compensation in microgrids exploiting the power electronics interfaces of renewable energy sources,” Energies, vol. 8, no. 4, pp. 2295-2311, Aug. 2015.F.P. de Souza and I. Barbi, “Single-phase active power filters for distributed power factor correction,” in Proc. IEEE 31st Annual Power Electronics Specialists Conference (PESC), Galway, 2000, pp. 500-505.O. Lopez-Santos, “Filtro activo paralelo para compensacion de factor de potencia y distorsi ´ on arm ´ onica en apli- ´ caciones industriales,” Master thesis, Universidad Nacional de Colombia, 2010F.R. Jimenez, J.M. Salamanca, & P.F. Cardenas, “Modeling and circuital analysis of a Single Phase Shunt Active Power Filter,” In 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS), Barranquilla, 2014.Hua, C-C. Li, C-H. Lee, C-S. “Control Analysis of an active power filter using Lyapunov candidate,” IET Power Electron., vol. 2. no. 4, April 2009.O. Lopez-Santos, L. Martinez-Salamero, G. Garcia, & H. Valderrama-Blavi, “Sliding-mode control of a transformerless dual-stage grid-connected photovoltaic micro-inverter,” In Proc. 10th IEEE International Multi-Conference on Systems, Signals & Devices (SSD), pp. 1-6, 2013.O. Lopez-Santos, G. Garcia, J.C. Avila-Martinez, D.F. Gonzalez-Morales, & C. Toro-Zuluaga. “A simple digital sinusoidal reference generator for grid-synchronized power electronics applications,” In Proc. IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pp. 1-6, 2015.O. Lopez-Santos, “Contribution to the DC-AC conversion in photovoltaic systems: Module oriented converters,” Doctoral dissertation, INSA de Toulouse, pp. 1-248, 2015.A. Cid-Pastor, L. Martinez-Salamero, A. El Aroudi, R. Giral, J. Calvente, R. Leyva, ”Synthesis of loss-freeresistors based on sliding-mode control and its applications in power processing,” Control Engineering Practice, vol. 21 no. 5 pp. 689-699. May. 2013.O. Lopez-Santos, G. Garcia and L. Martinez-Salamero, ”Derivation of a global model of a two-stage photovoltaic microinverter using sliding-mode control,” in Proc. IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Fortaleza, 2015, pp. 1-6.M.T. Haque, ”Single-phase PQ theory,” in Proc. IEEE 33rd Annual Power Electronics Specialists Conference (PESC), Cairns, 2002, pp. 1815-1820.M.T. Haque and T. Ise, ”Implementation of single-phase pq theory,” in Proc. of the Power Conversion Conference (PCC), Osaka, 2002, pp. 761-765.M.T. Haque,”Single-phase pq theory for active filters,” in Proc. IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering (TENCON), 2002, pp. 1941-1944.V. Khadkikar, A. Chandra and B. N. Singh, ”Generalised single-phase p-q theory for active power filtering: simulation and DSP-based experimental investigation”. IET Power Electron., vol. 2, no. 1, pp. 67-78, January 2009.S. Golestan, M. Ramezani, J. M. Guerrero, F. D. Freijedo and M. Monfared, ”Moving Average Filter Based Phase-Locked Loops: Performance Analysis and Design Guidelines,” in IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2750-2763, June 2014.S.W: Smith, The scientist and engineer’s guide to digital signal processing. 2d. Edition. San Diego: California Technical Publishing. 1999O. Lopez-Santos, G. Garcia, L. Martinez-Salamero, & L. Cortes-Torres, “Suppressing the effect of the DC-link voltage ripple on the current control of a sliding-mode controlled microinverter,” in Proc. Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 447-452, 2015.H. Jiabing, Z.Q. Zhu, H. Nian, L. Shang, Y. He, “Sliding mode current control of grid-connected voltage source converter,” in Proc. of the IEEE Energy Conversion Congress and Exposition (ECCE), pp. 912-919, Sep. 2010.I.-S. Kim, “Sliding mode controller for the single-phase grid-connected photovoltaic system,” Applied Energy, vol. 83, Oct. 2006, pp. 1101-1115J. Matas, L. Garc´ıa, J. Miret, J. Guerrero, and M. Castilla, “Feedback Linearization of a Single-Phase Active Power Filter via Sliding Mode Control,” IEEE Trans. Power Electron., vol.23, no.1. Jan. 2008.V. Utkin, J. Guldner and J. Shi, Sliding mode control in electromechanical systems, CRC Press, 2th. Edition, Taylor and Francis Group, 2009.D. G. Montoya, C. A. Ramos-Paja and R. Giral, ”Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques,” in IEEE Trans. Power Electron., vol. 31, no. 1, pp. 235-247, Jan. 2016.O. Lopez-Santos, G. Garcia, L. Martinez-Salamero, J.C. Avila-Martinez, & L. Seguier, “Non-linear control of the output stage of a solar microinverter,” International Journal of Control, pp. 1-20, 2015H. Panagopoulus, K.J. Astrom and T. Hagglund, “Design of PID controllers based on constrained optimization,” IEE Proc. on Control Theory Appl., vol. 149, no. 1, pp. 32-40, 2002.O. Lopez-Santos, L. Martinez-Salamero, G. Garcia, H. Valderrama-Blavi and T. Sierra-Polanco, ”Robust SlidingMode Control Design for a Voltage Regulated Quadratic Boost Converter,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2313-2327, Apr. 2015.IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std 519- 2014, 2014.IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems, IEEE Std 929-2000, 2000.Atribución - No comercial - Compartir lo mismo : esta licencia permite a otros distribuir, remezclar, retocar y crear a partir de tu trabajo de forma no comercial, siempre y cuando te den crédito y licencien sus nuevas creaciones en las mismas condiciones.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/http://www.scielo.org.co/scielo.php?pid=S0121-750X2017000200254&script=sci_abstract&tlng=enMicroinverterActive power filterSingle-phase PQ theorySliding-mode controlNonlinear control (en)MicroinverterActive power filterSingle-phase PQ theorySliding-mode controlNonLinear controlOperation of a Photovoltaic Microinverter as Active Power Filter using the single phase PQ Theory and Sliding Mode ControlArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionoswaldo.lopez@unibague.edu.coLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/b4c37837-4535-478c-a4aa-c633286b6739/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALOperation of a Photovoltaic Microinverter as Active Power.pdfOperation of a Photovoltaic Microinverter as Active Power.pdfapplication/pdf131446https://repositorio.unibague.edu.co/bitstreams/b5e89654-6d23-48d5-b327-d8a4489a7af9/download309d198f36925682e90a0703ff146682MD52TEXTOperation of a Photovoltaic Microinverter as Active Power.pdf.txtOperation of a Photovoltaic Microinverter as Active Power.pdf.txtExtracted texttext/plain3526https://repositorio.unibague.edu.co/bitstreams/ee739f51-2fc6-42cb-9271-085efd6e038b/download5c7b34332ef6cda63dbaaa56052d50feMD53THUMBNAILOperation of a Photovoltaic Microinverter as Active Power.pdf.jpgOperation of a Photovoltaic Microinverter as Active Power.pdf.jpgGenerated Thumbnailimage/jpeg17369https://repositorio.unibague.edu.co/bitstreams/427dd81c-f2b6-403f-813c-a7fd48e0344e/download556b8ba33b26fe2412311ce8e385ae5fMD5420.500.12313/3819oai:repositorio.unibague.edu.co:20.500.12313/38192023-10-07 03:00:28.026https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución - No comercial - Compartir lo mismo : esta licencia permite a otros distribuir, remezclar, retocar y crear a partir de tu trabajo de forma no comercial, siempre y cuando te den crédito y licencien sus nuevas creaciones en las mismas condiciones.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=