Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru
Leishmaniasis is a worldwide infectious parasitic disease caused by different species of protozoa of the genus Leishmania, which are transmitted to animals and humans through the bite of insects of the Psychodidae family. In the present work, the antileishmanial activity of an alkaloid extract of th...
- Autores:
-
Soto-Vásquez, Marilú Roxana
Alvarado-García, Paul Alan Arkin
Osorio, Edison H.
Tallini, Luciana R.
Bastida, Jaume
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/3836
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/3836
- Palabra clave:
- Alkaloids
Amaryllidaceae
Clinanthus milagroanthus
Leishmania braziliensis
Molecular docking
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIBAGUE2_343e9a271a2037cd592a28e5fbace448 |
---|---|
oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/3836 |
network_acronym_str |
UNIBAGUE2 |
network_name_str |
Repositorio Universidad de Ibagué |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru |
title |
Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru |
spellingShingle |
Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru Alkaloids Amaryllidaceae Clinanthus milagroanthus Leishmania braziliensis Molecular docking |
title_short |
Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru |
title_full |
Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru |
title_fullStr |
Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru |
title_full_unstemmed |
Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru |
title_sort |
Antileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in Peru |
dc.creator.fl_str_mv |
Soto-Vásquez, Marilú Roxana Alvarado-García, Paul Alan Arkin Osorio, Edison H. Tallini, Luciana R. Bastida, Jaume |
dc.contributor.author.none.fl_str_mv |
Soto-Vásquez, Marilú Roxana Alvarado-García, Paul Alan Arkin Osorio, Edison H. Tallini, Luciana R. Bastida, Jaume |
dc.subject.proposal.eng.fl_str_mv |
Alkaloids Amaryllidaceae Clinanthus milagroanthus Leishmania braziliensis Molecular docking |
topic |
Alkaloids Amaryllidaceae Clinanthus milagroanthus Leishmania braziliensis Molecular docking |
description |
Leishmaniasis is a worldwide infectious parasitic disease caused by different species of protozoa of the genus Leishmania, which are transmitted to animals and humans through the bite of insects of the Psychodidae family. In the present work, the antileishmanial activity of an alkaloid extract of the bulbs of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) was evaluated in vitro, in vivo, and in silico against the parasite Leishmania braziliensis, and the chemical profile of the sample was determined by GC-MS analysis. At concentrations of 1, 10, and 100 µg·mL−1, the alkaloid extract presented inhibition percentages of 8.7%, 23.1%, and 98.8%, respectively, against L. braziliensis with a p < 0.05, and IC50 values of 18.5 ± 0.3 µg·mL−1. Furthermore, at a dose of 1.0 mg·kg−1, a greater decrease in lesion size was observed (90%) for in vivo assays, as well as a decrease in infection (96%), finding no significant differences (p > 0.05) in comparison with amphotericin B (92% and 98%, respectively). Eleven alkaloids were identified in C. milagroanthus bulbs: galanthamine, vittatine/crinine, 8-O-demethylmaritidine, anhydrolycorine, 11,12-dehydroanhydrolycorine, hippamine, lycorine, 2-hydroxyanhydrolycorine, 7-hydroxyclivonine, 2α-hydroxyhomolycorine, and 7-hydroxyclivonine isomer. A molecular model of Leishmania braziliensis trypanothione reductase (TRLb) was built using computational experiments to evaluate in silico the potential of the Amaryllidaceae alkaloid identified in C. milagroanthus toward this enzyme. The structures galanthamine, 7-hydroxyclivonine isomer, and crinine showed better estimated free energy of binding than the reference compound, amphotericin B. In conclusion, this is the first in vitro, in vivo, and in silico report about the antileishmanial potential and alkaloid profiling of the extract of C. milagroanthus bulbs, which could become an interesting source of bioactive molecules |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-17T20:38:23Z |
dc.date.available.none.fl_str_mv |
2023-10-17T20:38:23Z |
dc.date.issued.none.fl_str_mv |
2023-01-10 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Soto-Vásquez, M.R.; Alvarado-García, P.A.A.; Osorio, E.H.; Tallini, L.R.; Bastida, J. Antileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru. Plants 2023, 12, 322. https:// doi.org/10.3390/plants12020322 |
dc.identifier.issn.none.fl_str_mv |
22237747 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/3836 |
identifier_str_mv |
Soto-Vásquez, M.R.; Alvarado-García, P.A.A.; Osorio, E.H.; Tallini, L.R.; Bastida, J. Antileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru. Plants 2023, 12, 322. https:// doi.org/10.3390/plants12020322 22237747 |
url |
https://hdl.handle.net/20.500.12313/3836 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
13 |
dc.relation.citationissue.none.fl_str_mv |
322 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
12 |
dc.relation.ispartofjournal.none.fl_str_mv |
Plants |
dc.relation.references.none.fl_str_mv |
Mannan, S.; Elhadad, H.; Loc, T.; Sadik, M.; Mohamed, M.; Nami, N.; Thuong, N.; Trong, B.; Duc, N.T.M.; Hoang, A.N. Prevalence and associated factors of asymptomatic leishmaniasis: A systematic review and meta-analysis. Int. J. Parasitol. 2021, 81, 102229 Veasey, J.; Zampieri, R.; Lellis, R.; Freitas, T.; Winter, L. Identification of Leishmania species by high-resolution DNA dissociation in cases of American cutaneous leishmaniasis. An. Bras. Dermatol. 2020, 95, 459–468 Valero, N.; Uriarte, N. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: A systematic review. Parasitol Res. 2020, 119, 365–384 World Health Organization—Leishmaniosis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 20 May 2022) Abdrrahman, S.; Surur, A.; Fekadu, A.; Makonnen, E.; Hailu, A. Challenges and Opportunities for Drug Discovery in Developing Countries: The Example of Cutaneous Leishmaniasis. ACS Med. Chem. Lett. 2020, 11, 2058–2062 Newman, D.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803 Berkov, S.; Osorio, E.; Viladomat, F.; Bastida, J. Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. In The Alkaloids: Chemistry and Biology; Knölker, H.-J., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 83, pp. 113–185 Evidente, A.; Kireev, S.; Jenkins, A.; Romero, A.; Steelant, W.; Van, S.; Kornienko, A. Biological evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives: Discovery of novel leads for anticancer drug design. Planta Med. 2009, 75, 501–507 Bastida, J.; Lavilla, R.; Viladomat, F. Chemical and biological aspects of Narcissus alkaloids. In The Alkaloids: Chemistry and Physiology; Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 63, pp. 87–179 Leiva, S.; Meerow, A.W. A new species of Clinanthus from northern Peru (Asparagales, Amaryllidaceae, Amarylloideae, Clinantheae). PhytoKeys 2016, 63, 99–106 León, B.; Sagástegui, A.; Sánchez, I.; Zapata, M.; Meerow, A. Amaryllidaceae endémicas del Perú. Rev. Peru. Biol. 2006, 13, 690–697 Schnoes, H.K.; Smith, D.H.; Burlingame, A.L.; Jeffs, P.W.; Doepke, W. High resolution mass spectrometry in molecular structure studies. IX. Mass spectra of Amaryllidaceae alkaloids. Lycorenine series. Tetrahedron 1968, 24, 2825–2837 Ortiz, J.E.; Pigni, N.B.; Andujar, S.A.; Roitman, G.; Suvire, F.D.; Enriz, R.D.; Tapia, A.; Bastida, J.; Feresin, G.E. Alkaloids from Hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016, 79, 1241–1248 Soto-Vásquez, M.R.; Horna-Pinedo, M.V.; Tallini, L.R.; Bastida, J. Chemical Composition and In Vitro Antiplasmodial Activity of the Total Alkaloids of the Bulbs of Two Amaryllidaceae Species from Northern Peru. Pharmacogn. J. 2021, 13, 1046–1052 Adessi, T.G.; Borioni, J.L.; Pigni, N.B.; Bastida, J.; Cavallaro, V.; Murray, A.P.; Puiatti, M.; Oberti, J.C.; Segundo, L.; Nicotra, V.E.; et al. Clinanthus microstephium, an Amaryllidaceae Species with Cholinesterase Inhibitor Alkaloids: Structure-Activity Analysis of Haemanthamine Skeleton Derivatives. Chem. Biodivers. 2019, 16, 1800662 Kaya, G.I.; Polat, D.C.; Sarikaya, B.; Onur, M.A.; Somer, N.U. Quantititative determination of lycorine and galanthamine in Galanthus trojanus and G. cilicicus by HPLC-DAD. Nat. Prod. Commun. 2014, 9, 115 Kaya, G.I.; Cicek, D.; Sarikaya, B.; Onur, M.A.; Somer, N.U. HPLC-DAD analysis of lycorine in Amaryllidaceae species. Nat. Prod. Commun. 2010, 5, 873–876 Huaylla, H.; Llalla, O.; Torras-Claveria, L.; Bastida, J. Alkaloid profile in Pyrolirion albicans Herb. (Amaryllidaceae), a Peruvian endemic species. S. Afr. J. Bot. 2021, 136, 76–80 Ahmet, E.; Ceren, E.; Buket, B.; Mustafa, A.; Nehir, U.; Gulen, I. Application of HPLC-DAD for the quantification of Lycorine in Galanthus elwesii Hook. Braz. J. Pharm. Sci. 2017, 53, 15063–15069 Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed. Pharmacother. 2018, 107, 615–624 Nair, J.J.; van Staden, J. Antiprotozoal alkaloid principles of the plant family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2019, 29, 12664 Osorio, E.D.; Berkov, S.; Brun, R.; Codina, C.; Viladomat, F.; Cabezas, F.; Bastida, J. In vitro antiprotozoal activity of alkaloids from Phaedranassa dubia (Amaryllidaceae). Phytochem. Lett. 2010, 3, 161–163 Tallini, L.R.; de Andrade, J.P.; Kaiser, M.; Viladomat, F.; Nair, J.J.; Zuanazzi, J.A.S.; Bastida, J. Alkaloid constituents of the Amaryllidaceae plant Amaryllis belladonna L. Molecules 2017, 22, 1437 Labraña, L.; Machocho, A.K.; Kricsfalusy, V.; Brun, R.; Codina, C.; Viladomat, F.; Bastida, J. Alkaloids from Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Phytochemistry 2002, 60, 847–852 Kaya, G.I.; Sarikaya, B.; Onur, M.A.; Somer, N.U.; Viladomat, F.; Codina, C.; Bastida, J.; Lauinger, I.L.; Kaiser, M.; Tasdemir, D. Antiprotozoal alkaloids from Galanthus trojanus. Phytochem. Lett. 2011, 4, 301–305 Tallini, L.R.; Torras-Claveria, L.; de Borges, S.W.; Kaiser, M.; Viladomat, F.; Zuanazzi, J.A.S.; Bastida, J. N-oxide alkaloids from Crinum amabile (Amaryllidaceae). Molecules 2018, 23, 127 Machocho, A.; Chhabra, S.C.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Crinum stuhlmannii. Planta Med. 1998, 64, 679–680 Nair, J.J.; Machocho, A.K.; Campbell, W.E.; Brun, R.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Crinum macowanii. Phytochemistry 2000, 54, 945–950 Herrera, M.R.; Machocho, A.K.; Brun, R.; Viladomat, F.; Codina, C.; Bastida, J. Crinane and lycorane type alkaloids from Zephyranthes citrina. Planta Med. 2001, 67, 191–193 Osorio, E.; Robledo, S.; Bastida, J. Alkaloids with antiprotozoal activity. In The Alkaloids Chemistry and Biology; Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 66, pp. 113–190 Ponte-Sucre, A.; Faber, J.H.; Gulder, T.; Kajahn, I.; Pedersen, S.E.H.; Schultheis, M.; Bringmann, G.; Moll, H. Activities of Naphthylisoquinoline Alkaloids and Synthetic Analogs against Leishmania major. Antimicrob. Agents Chemother. 2007, 51, 188–194 Tempone, A.G.; Treiger, S.E.; de Andrade, H.F.; de Amorin, G.; Yogi, A.; Salerno, C.; Bachiega, D.; Lupo, N.C.; Bonotto, S.V.; Fischer, D.C.H. Antiprotozoal activity of Brazilian plant extracts from isoquinoline alkaloid-producing families. Phytomedicine 2005, 12, 382–390 Ponte-Sucre, A.; Vicik, R.; Schultheis, M.; Schirmeister, T.; Moll, H. Aziridine-2,3-dicarboxylates: Peptidomimetic cysteine protease inhibitors with antileishmanial activity. Antimicrob. Agents Chemother. 2006, 50, 2439–2447 Da Silva, M.A.; Fokoue, H.H.; Fialho, S.N.; de A. dos Santos, A.P.; Rossi, N.R.D.L.P.; de J. Gouveia, A.; Ferreira, A.S.; Passarini, G.M.; Garay, A.F.G.; Alfonso, J.J.; et al. Antileishmanial activity evaluation of a natural amide and its synthetic analogs against Leishmania (V.) braziliensis: An integrated approach in vitro and in silico. Parasitol. Res. 2021, 120, 2199–2218 Colotti, G.; Baiocco, P.; Fiorillo, A.; Boffi, A.; Poser, E.; Di Chiaro, F.; Ilari, A. Structural insights into the enzymes of the trypanothione pathway: Targets for antileishmaniasis drugs. Future Med. Chem. 2013, 5, 1861–1875 Battista, T.; Colotti, G.; Ilari, A.; Fiorillo, A. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases. Molecules 2020, 25, 1924 Bodade, R.G.; Beedkar, S.D.; Manwar, A.V.; Khobragade, C.N. Homology modeling and docking study of xanthine oxidase of Arthrobacter sp. XL26. Int. J. Biol. Macromol. 2010, 47, 298–303 Baiocco, P.; Colotti, G.; Franceschini, S.; Ilari, A. Molecular basis of antimony treatment in Leishmaniasis. J. Med. Chem. 2009, 52, 2603–2612 Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963, 7, 95–99 Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291 Bond, C.S.; Zhang, Y.; Berriman, M.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 1999, 7, 81–89 Saccoliti, F.; Angiulli, G.; Pupo, G.; Pescatori, L.; Madia, V.N.; Messore, A.; Colotti, G.; Fiorillo, A.; Scipione, L.; Gramiccia, M.; et al. Inhibition of Leishmania infantum trypanothione reductase by diaryl sulfide derivatives. J. Enzym. Inhib. Med. Chem. 2017, 32, 304–310 Meerow, A.W.; Nakamura, K. Two new species of Peruvian Amaryllidaceae, an expanded concept of the genus Paramongaia, and taxonomic notes in Stenomesson. Phytotaxa 2019, 416, 184–196 Soto-Vásquez, M.R.; Rodríguez-Muñoz, C.A.; Tallini, L.R.; Bastida, J. Alkaloid Composition and Biological Activities of the Amaryllidaceae Species Ismene amancaes (Ker Gawl.) Herb. Plants 2022, 11, 1906 Antwi, C.A.; Amisigo, C.M.; Adjimani, J.P.; Gwira, T.M. In vitro activity and mode of action of phenolic compounds on Leishmania donovani. PLoS Negl. Trop. Dis. 2019, 13, e0007206 Singh, S.; Mohapatra, D.P.; Sivakumar, R. Successful replacement of fetal calf serum with human urine for in vitro culture of Leishmania donovani. J. Commun. Dis. 2000, 32, 289–294 Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63 Comandolli-Wyrepkowski, C.D.; Grafova, I.; Naiff, M.F.; Avella, M.; Gentile, G.; Grafov, A.; Franco, A.M.R. Topical treatment of experimental cutaneous leishmaniasis in golden hamster (Mesocricetus auratus) with formulations containing pentamidine. Acta Amaz. 2017, 47, 39–46 Varela, -M.R.E.; Villa-Pulgarin, J.A.; Yepes, E.; Müller, I.; Modolell, M.; Muñoz, D.L.; Robledo, S.M.; Muskus, C.E.; López-Abán, J.; Muro, A.; et al. In vitro and in vivo efficacy of ether lipid edelfosine against Leishmania spp. and SbV-resistant parasites. PLoS Negl. Trop. Dis. 2012, 6, 1612 Robledo, S.M.; Carrillo, L.M.; Daza, A.; Restrepo, A.M.; Muñoz, D.L.; Tobón, J.; Murillo, J.D.; López, A.; Ríos, C.; Mesa, C.V.; et al. Cutaneous Leishmaniasis in the Dorsal Skin of Hamsters: A Useful Model for the Screening of Antileishmanial Drugs. J. Vis. Exp. 2012, 62, 3533 Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basci local alignment search tool. J. Mol. Biol. 1990, 215, 403–410 Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815 Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612 Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791 Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250 Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckinan genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1999, 19, 1639–1662 Schrödinger Release 2022-3: Maestro; Schrödinger, LLC.: New York, NY, USA, 2021 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.place.none.fl_str_mv |
Suiza |
dc.source.none.fl_str_mv |
https://www.mdpi.com/2223-7747/12/2/322 |
institution |
Universidad de Ibagué |
bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/d7d64be2-c335-4971-9ad6-226d88073d23/download https://repositorio.unibague.edu.co/bitstreams/482efafa-2d93-4faa-80fb-1b76fe651775/download https://repositorio.unibague.edu.co/bitstreams/00ce57fa-7bc9-41c2-9f37-bd42b0c06d95/download https://repositorio.unibague.edu.co/bitstreams/4b73506f-8d33-46ef-aedb-9c5e5cc35aea/download |
bitstream.checksum.fl_str_mv |
328d59031b13114085bbb87a91563810 b1d35282e501b923f47ba8a59145bd3c 2fa3e590786b9c0f3ceba1b9656b7ac3 fb4d1d5da8732411eb472cc1e02b0c26 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814204091614625792 |
spelling |
Soto-Vásquez, Marilú Roxanac7d2fb41-1daf-4d03-880f-df6ce493f06e-1Alvarado-García, Paul Alan Arkin612c3d0b-2069-4e97-a3d4-5e085d831264-1Osorio, Edison H.087e0c0b-d49f-4915-b7fa-272d785c30af-1Tallini, Luciana R.2f4f4ff0-b0e3-4368-a41a-43b019651013-1Bastida, Jaume00ea29d6-11a2-48bd-bc9e-2dd48a2bc06e-12023-10-17T20:38:23Z2023-10-17T20:38:23Z2023-01-10Leishmaniasis is a worldwide infectious parasitic disease caused by different species of protozoa of the genus Leishmania, which are transmitted to animals and humans through the bite of insects of the Psychodidae family. In the present work, the antileishmanial activity of an alkaloid extract of the bulbs of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) was evaluated in vitro, in vivo, and in silico against the parasite Leishmania braziliensis, and the chemical profile of the sample was determined by GC-MS analysis. At concentrations of 1, 10, and 100 µg·mL−1, the alkaloid extract presented inhibition percentages of 8.7%, 23.1%, and 98.8%, respectively, against L. braziliensis with a p < 0.05, and IC50 values of 18.5 ± 0.3 µg·mL−1. Furthermore, at a dose of 1.0 mg·kg−1, a greater decrease in lesion size was observed (90%) for in vivo assays, as well as a decrease in infection (96%), finding no significant differences (p > 0.05) in comparison with amphotericin B (92% and 98%, respectively). Eleven alkaloids were identified in C. milagroanthus bulbs: galanthamine, vittatine/crinine, 8-O-demethylmaritidine, anhydrolycorine, 11,12-dehydroanhydrolycorine, hippamine, lycorine, 2-hydroxyanhydrolycorine, 7-hydroxyclivonine, 2α-hydroxyhomolycorine, and 7-hydroxyclivonine isomer. A molecular model of Leishmania braziliensis trypanothione reductase (TRLb) was built using computational experiments to evaluate in silico the potential of the Amaryllidaceae alkaloid identified in C. milagroanthus toward this enzyme. The structures galanthamine, 7-hydroxyclivonine isomer, and crinine showed better estimated free energy of binding than the reference compound, amphotericin B. In conclusion, this is the first in vitro, in vivo, and in silico report about the antileishmanial potential and alkaloid profiling of the extract of C. milagroanthus bulbs, which could become an interesting source of bioactive moleculesapplication/pdfSoto-Vásquez, M.R.; Alvarado-García, P.A.A.; Osorio, E.H.; Tallini, L.R.; Bastida, J. Antileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru. Plants 2023, 12, 322. https:// doi.org/10.3390/plants1202032222237747https://hdl.handle.net/20.500.12313/3836engSuiza13322112PlantsMannan, S.; Elhadad, H.; Loc, T.; Sadik, M.; Mohamed, M.; Nami, N.; Thuong, N.; Trong, B.; Duc, N.T.M.; Hoang, A.N. Prevalence and associated factors of asymptomatic leishmaniasis: A systematic review and meta-analysis. Int. J. Parasitol. 2021, 81, 102229Veasey, J.; Zampieri, R.; Lellis, R.; Freitas, T.; Winter, L. Identification of Leishmania species by high-resolution DNA dissociation in cases of American cutaneous leishmaniasis. An. Bras. Dermatol. 2020, 95, 459–468Valero, N.; Uriarte, N. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: A systematic review. Parasitol Res. 2020, 119, 365–384World Health Organization—Leishmaniosis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 20 May 2022)Abdrrahman, S.; Surur, A.; Fekadu, A.; Makonnen, E.; Hailu, A. Challenges and Opportunities for Drug Discovery in Developing Countries: The Example of Cutaneous Leishmaniasis. ACS Med. Chem. Lett. 2020, 11, 2058–2062Newman, D.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803Berkov, S.; Osorio, E.; Viladomat, F.; Bastida, J. Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. In The Alkaloids: Chemistry and Biology; Knölker, H.-J., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 83, pp. 113–185Evidente, A.; Kireev, S.; Jenkins, A.; Romero, A.; Steelant, W.; Van, S.; Kornienko, A. Biological evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives: Discovery of novel leads for anticancer drug design. Planta Med. 2009, 75, 501–507Bastida, J.; Lavilla, R.; Viladomat, F. Chemical and biological aspects of Narcissus alkaloids. In The Alkaloids: Chemistry and Physiology; Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 63, pp. 87–179Leiva, S.; Meerow, A.W. A new species of Clinanthus from northern Peru (Asparagales, Amaryllidaceae, Amarylloideae, Clinantheae). PhytoKeys 2016, 63, 99–106León, B.; Sagástegui, A.; Sánchez, I.; Zapata, M.; Meerow, A. Amaryllidaceae endémicas del Perú. Rev. Peru. Biol. 2006, 13, 690–697Schnoes, H.K.; Smith, D.H.; Burlingame, A.L.; Jeffs, P.W.; Doepke, W. High resolution mass spectrometry in molecular structure studies. IX. Mass spectra of Amaryllidaceae alkaloids. Lycorenine series. Tetrahedron 1968, 24, 2825–2837Ortiz, J.E.; Pigni, N.B.; Andujar, S.A.; Roitman, G.; Suvire, F.D.; Enriz, R.D.; Tapia, A.; Bastida, J.; Feresin, G.E. Alkaloids from Hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016, 79, 1241–1248Soto-Vásquez, M.R.; Horna-Pinedo, M.V.; Tallini, L.R.; Bastida, J. Chemical Composition and In Vitro Antiplasmodial Activity of the Total Alkaloids of the Bulbs of Two Amaryllidaceae Species from Northern Peru. Pharmacogn. J. 2021, 13, 1046–1052Adessi, T.G.; Borioni, J.L.; Pigni, N.B.; Bastida, J.; Cavallaro, V.; Murray, A.P.; Puiatti, M.; Oberti, J.C.; Segundo, L.; Nicotra, V.E.; et al. Clinanthus microstephium, an Amaryllidaceae Species with Cholinesterase Inhibitor Alkaloids: Structure-Activity Analysis of Haemanthamine Skeleton Derivatives. Chem. Biodivers. 2019, 16, 1800662Kaya, G.I.; Polat, D.C.; Sarikaya, B.; Onur, M.A.; Somer, N.U. Quantititative determination of lycorine and galanthamine in Galanthus trojanus and G. cilicicus by HPLC-DAD. Nat. Prod. Commun. 2014, 9, 115Kaya, G.I.; Cicek, D.; Sarikaya, B.; Onur, M.A.; Somer, N.U. HPLC-DAD analysis of lycorine in Amaryllidaceae species. Nat. Prod. Commun. 2010, 5, 873–876Huaylla, H.; Llalla, O.; Torras-Claveria, L.; Bastida, J. Alkaloid profile in Pyrolirion albicans Herb. (Amaryllidaceae), a Peruvian endemic species. S. Afr. J. Bot. 2021, 136, 76–80Ahmet, E.; Ceren, E.; Buket, B.; Mustafa, A.; Nehir, U.; Gulen, I. Application of HPLC-DAD for the quantification of Lycorine in Galanthus elwesii Hook. Braz. J. Pharm. Sci. 2017, 53, 15063–15069Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed. Pharmacother. 2018, 107, 615–624Nair, J.J.; van Staden, J. Antiprotozoal alkaloid principles of the plant family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2019, 29, 12664Osorio, E.D.; Berkov, S.; Brun, R.; Codina, C.; Viladomat, F.; Cabezas, F.; Bastida, J. In vitro antiprotozoal activity of alkaloids from Phaedranassa dubia (Amaryllidaceae). Phytochem. Lett. 2010, 3, 161–163Tallini, L.R.; de Andrade, J.P.; Kaiser, M.; Viladomat, F.; Nair, J.J.; Zuanazzi, J.A.S.; Bastida, J. Alkaloid constituents of the Amaryllidaceae plant Amaryllis belladonna L. Molecules 2017, 22, 1437Labraña, L.; Machocho, A.K.; Kricsfalusy, V.; Brun, R.; Codina, C.; Viladomat, F.; Bastida, J. Alkaloids from Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Phytochemistry 2002, 60, 847–852Kaya, G.I.; Sarikaya, B.; Onur, M.A.; Somer, N.U.; Viladomat, F.; Codina, C.; Bastida, J.; Lauinger, I.L.; Kaiser, M.; Tasdemir, D. Antiprotozoal alkaloids from Galanthus trojanus. Phytochem. Lett. 2011, 4, 301–305Tallini, L.R.; Torras-Claveria, L.; de Borges, S.W.; Kaiser, M.; Viladomat, F.; Zuanazzi, J.A.S.; Bastida, J. N-oxide alkaloids from Crinum amabile (Amaryllidaceae). Molecules 2018, 23, 127Machocho, A.; Chhabra, S.C.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Crinum stuhlmannii. Planta Med. 1998, 64, 679–680Nair, J.J.; Machocho, A.K.; Campbell, W.E.; Brun, R.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Crinum macowanii. Phytochemistry 2000, 54, 945–950Herrera, M.R.; Machocho, A.K.; Brun, R.; Viladomat, F.; Codina, C.; Bastida, J. Crinane and lycorane type alkaloids from Zephyranthes citrina. Planta Med. 2001, 67, 191–193Osorio, E.; Robledo, S.; Bastida, J. Alkaloids with antiprotozoal activity. In The Alkaloids Chemistry and Biology; Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 66, pp. 113–190Ponte-Sucre, A.; Faber, J.H.; Gulder, T.; Kajahn, I.; Pedersen, S.E.H.; Schultheis, M.; Bringmann, G.; Moll, H. Activities of Naphthylisoquinoline Alkaloids and Synthetic Analogs against Leishmania major. Antimicrob. Agents Chemother. 2007, 51, 188–194Tempone, A.G.; Treiger, S.E.; de Andrade, H.F.; de Amorin, G.; Yogi, A.; Salerno, C.; Bachiega, D.; Lupo, N.C.; Bonotto, S.V.; Fischer, D.C.H. Antiprotozoal activity of Brazilian plant extracts from isoquinoline alkaloid-producing families. Phytomedicine 2005, 12, 382–390Ponte-Sucre, A.; Vicik, R.; Schultheis, M.; Schirmeister, T.; Moll, H. Aziridine-2,3-dicarboxylates: Peptidomimetic cysteine protease inhibitors with antileishmanial activity. Antimicrob. Agents Chemother. 2006, 50, 2439–2447Da Silva, M.A.; Fokoue, H.H.; Fialho, S.N.; de A. dos Santos, A.P.; Rossi, N.R.D.L.P.; de J. Gouveia, A.; Ferreira, A.S.; Passarini, G.M.; Garay, A.F.G.; Alfonso, J.J.; et al. Antileishmanial activity evaluation of a natural amide and its synthetic analogs against Leishmania (V.) braziliensis: An integrated approach in vitro and in silico. Parasitol. Res. 2021, 120, 2199–2218Colotti, G.; Baiocco, P.; Fiorillo, A.; Boffi, A.; Poser, E.; Di Chiaro, F.; Ilari, A. Structural insights into the enzymes of the trypanothione pathway: Targets for antileishmaniasis drugs. Future Med. Chem. 2013, 5, 1861–1875Battista, T.; Colotti, G.; Ilari, A.; Fiorillo, A. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases. Molecules 2020, 25, 1924Bodade, R.G.; Beedkar, S.D.; Manwar, A.V.; Khobragade, C.N. Homology modeling and docking study of xanthine oxidase of Arthrobacter sp. XL26. Int. J. Biol. Macromol. 2010, 47, 298–303Baiocco, P.; Colotti, G.; Franceschini, S.; Ilari, A. Molecular basis of antimony treatment in Leishmaniasis. J. Med. Chem. 2009, 52, 2603–2612Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963, 7, 95–99Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291Bond, C.S.; Zhang, Y.; Berriman, M.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 1999, 7, 81–89Saccoliti, F.; Angiulli, G.; Pupo, G.; Pescatori, L.; Madia, V.N.; Messore, A.; Colotti, G.; Fiorillo, A.; Scipione, L.; Gramiccia, M.; et al. Inhibition of Leishmania infantum trypanothione reductase by diaryl sulfide derivatives. J. Enzym. Inhib. Med. Chem. 2017, 32, 304–310Meerow, A.W.; Nakamura, K. Two new species of Peruvian Amaryllidaceae, an expanded concept of the genus Paramongaia, and taxonomic notes in Stenomesson. Phytotaxa 2019, 416, 184–196Soto-Vásquez, M.R.; Rodríguez-Muñoz, C.A.; Tallini, L.R.; Bastida, J. Alkaloid Composition and Biological Activities of the Amaryllidaceae Species Ismene amancaes (Ker Gawl.) Herb. Plants 2022, 11, 1906Antwi, C.A.; Amisigo, C.M.; Adjimani, J.P.; Gwira, T.M. In vitro activity and mode of action of phenolic compounds on Leishmania donovani. PLoS Negl. Trop. Dis. 2019, 13, e0007206Singh, S.; Mohapatra, D.P.; Sivakumar, R. Successful replacement of fetal calf serum with human urine for in vitro culture of Leishmania donovani. J. Commun. Dis. 2000, 32, 289–294Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63Comandolli-Wyrepkowski, C.D.; Grafova, I.; Naiff, M.F.; Avella, M.; Gentile, G.; Grafov, A.; Franco, A.M.R. Topical treatment of experimental cutaneous leishmaniasis in golden hamster (Mesocricetus auratus) with formulations containing pentamidine. Acta Amaz. 2017, 47, 39–46Varela, -M.R.E.; Villa-Pulgarin, J.A.; Yepes, E.; Müller, I.; Modolell, M.; Muñoz, D.L.; Robledo, S.M.; Muskus, C.E.; López-Abán, J.; Muro, A.; et al. In vitro and in vivo efficacy of ether lipid edelfosine against Leishmania spp. and SbV-resistant parasites. PLoS Negl. Trop. Dis. 2012, 6, 1612Robledo, S.M.; Carrillo, L.M.; Daza, A.; Restrepo, A.M.; Muñoz, D.L.; Tobón, J.; Murillo, J.D.; López, A.; Ríos, C.; Mesa, C.V.; et al. Cutaneous Leishmaniasis in the Dorsal Skin of Hamsters: A Useful Model for the Screening of Antileishmanial Drugs. J. Vis. Exp. 2012, 62, 3533Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basci local alignment search tool. J. Mol. Biol. 1990, 215, 403–410Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckinan genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1999, 19, 1639–1662Schrödinger Release 2022-3: Maestro; Schrödinger, LLC.: New York, NY, USA, 2021This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/2223-7747/12/2/322AlkaloidsAmaryllidaceaeClinanthus milagroanthusLeishmania braziliensisMolecular dockingAntileishmanial activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) collected in PeruArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTAntileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru - plants-12-00322.pdf.txtAntileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru - plants-12-00322.pdf.txtExtracted texttext/plain4452https://repositorio.unibague.edu.co/bitstreams/d7d64be2-c335-4971-9ad6-226d88073d23/download328d59031b13114085bbb87a91563810MD53THUMBNAILAntileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru - plants-12-00322.pdf.jpgAntileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru - plants-12-00322.pdf.jpgGenerated Thumbnailimage/jpeg13038https://repositorio.unibague.edu.co/bitstreams/482efafa-2d93-4faa-80fb-1b76fe651775/downloadb1d35282e501b923f47ba8a59145bd3cMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/00ce57fa-7bc9-41c2-9f37-bd42b0c06d95/download2fa3e590786b9c0f3ceba1b9656b7ac3MD52ORIGINALAntileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru - plants-12-00322.pdfAntileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru - plants-12-00322.pdfapplication/pdf101395https://repositorio.unibague.edu.co/bitstreams/4b73506f-8d33-46ef-aedb-9c5e5cc35aea/downloadfb4d1d5da8732411eb472cc1e02b0c26MD5120.500.12313/3836oai:repositorio.unibague.edu.co:20.500.12313/38362023-10-18 03:00:28.881https://creativecommons.org/licenses/by-nc-nd/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |