Use of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenarios

Land-use changes produce variations in upper soil hydraulic properties and alter the hydrological response and hydraulic behavior of streams. Thus, the combined effect of variations in soil properties and current hydraulics interacts with the exposure of structures exposed and their degree of physic...

Full description

Autores:
Hernández-Atencia, Yelena
Peña, Luis E.
Muñoz-Ramos, Jader
Rojas, Isabel
Álvarez, Alexander
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/3833
Acceso en línea:
https://hdl.handle.net/20.500.12313/3833
Palabra clave:
Flood assessment
Hydraulic soil properties
Land-use evolution
Physical vulnerability
Scaling behavior
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_14355fb68159efc62a61e48757cc6f65
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/3833
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Use of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenarios
title Use of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenarios
spellingShingle Use of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenarios
Flood assessment
Hydraulic soil properties
Land-use evolution
Physical vulnerability
Scaling behavior
title_short Use of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenarios
title_full Use of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenarios
title_fullStr Use of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenarios
title_full_unstemmed Use of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenarios
title_sort Use of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenarios
dc.creator.fl_str_mv Hernández-Atencia, Yelena
Peña, Luis E.
Muñoz-Ramos, Jader
Rojas, Isabel
Álvarez, Alexander
dc.contributor.author.none.fl_str_mv Hernández-Atencia, Yelena
Peña, Luis E.
Muñoz-Ramos, Jader
Rojas, Isabel
Álvarez, Alexander
dc.subject.proposal.eng.fl_str_mv Flood assessment
Hydraulic soil properties
Land-use evolution
Physical vulnerability
Scaling behavior
topic Flood assessment
Hydraulic soil properties
Land-use evolution
Physical vulnerability
Scaling behavior
description Land-use changes produce variations in upper soil hydraulic properties and alter the hydrological response and hydraulic behavior of streams. Thus, the combined effect of variations in soil properties and current hydraulics interacts with the exposure of structures exposed and their degree of physical vulnerability. This study aims to evaluate the effect of land-use evolution from 1976 to 2017 on the physical vulnerability of structures exposed to floods in the Combeima cathment, Colombia, proposing two novel approaches: (i) based on soil infiltration capacity variation (CN) in the basin and changes in stream flow velocity (v), (ii) through soil water storage variation in the root zone (Hu). Hydrological and hydraulic modeling and the implementation of four physical vulnerability assessment methods were performed using GIS analysis. Findings indicate that simplifying physical vulnerability estimations through CN, Hu, and (Formula presented.) variations in catchments and at cross-section resolutions is possible, allowing a detailed analysis of the land-use change effect on the vulnerability of structures. The scaling behavior of the physical vulnerability of structures was identified when Hu is defined as a scale variable and, similarly, concerning flow velocity in the stream. Therefore, applying the power law could be useful in planning processes with limited information
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-17T20:15:27Z
dc.date.available.none.fl_str_mv 2023-10-17T20:15:27Z
dc.date.issued.none.fl_str_mv 2023-03-20
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Hernández-Atencia, Y.; Peña, L.E.; Muñoz-Ramos, J.; Rojas, I.; Álvarez, A. Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios. Water 2023, 15, 1214. https:// doi.org/10.3390/w15061214
dc.identifier.issn.none.fl_str_mv 20734441
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/3833
identifier_str_mv Hernández-Atencia, Y.; Peña, L.E.; Muñoz-Ramos, J.; Rojas, I.; Álvarez, A. Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios. Water 2023, 15, 1214. https:// doi.org/10.3390/w15061214
20734441
url https://hdl.handle.net/20.500.12313/3833
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 16
dc.relation.citationissue.none.fl_str_mv 1214
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 15
dc.relation.ispartofjournal.none.fl_str_mv Water (Switzerland)
dc.relation.references.none.fl_str_mv WMO. 2018 Annual Report: WMO for the Twenty-First Century, No. 1229. 2018. Available online: https://library.wmo.int/doc_num.php?explnum_id=6264 (accessed on 11 February 2023)
Erlick, J.C. Natural Disasters in Latin America and the Caribbean; Routledge: London, UK, 2021
Bhatt, C.; Rao, G.; Diwakar, P.; Dadhwal, V. Development of flood inundation extent libraries over a range of potential flood levels: A practical framework for quick flood response. Geomat. Nat. Hazards Risk 2016, 8, 384–401
Baeck, S.H.; Choi, S.J.; Choi, G.W.; Lee, N.R. A study of evaluating and forecasting watersheds using the flood vulnerability assessment index in Korea. Geomat. Nat. Hazards Risk 2014, 5, 208–231
Ye, B.; Jiang, J.; Liu, J.; Zheng, Y.; Zhou, N. Research on quantitative assessment of climate change risk at an urban scale: Review of recent progress and outlook of future direction. Renew. Sustain. Energy Rev. 2021, 135, 110415
Yang, Y.-C.; Ge, Y.-E. Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port. Transp. Policy 2020, 97, 232–244
Dandapat, K.; Panda, G.K. Flood vulnerability analysis and risk assessment using analytical hierarchy process. Model. Earth Syst. Environ. 2017, 3, 1627–1646
Gain, A.K.; Mojtahed, V.; Biscaro, C.; Balbi, S.; Giupponi, C. An integrated approach of flood risk assessment in the eastern part of Dhaka City. Nat. Hazards 2015, 79, 1499–1530
Marques, G.F.; de Souza, V.B.; Moraes, N.V. The economic value of the flow regulation environmental service in a Brazilian urban watershed. J. Hydrol. 2017, 554, 406–419
Chowdhuri, I.; Pal, S.C.; Chakrabortty, R. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv. Space Res. 2020, 65, 1466–1489
Haque, M.; Islam, S.; Sikder, B.; Islam, S. Community flood resilience assessment in Jamuna floodplain: A case study in Jamalpur District Bangladesh. Int. J. Disaster Risk Reduct. 2022, 72, 102861
Fernández-Montblanc, T.; Duo, E.; Ciavola, P. Dune reconstruction and revegetation as a potential measure to decrease coastal erosion and flooding under extreme storm conditions. Ocean Coast. Manag. 2019, 188, 105075
Ettinger, S.; Mounaud, L.; Magill, C.; Yao-Lafourcade, A.-F.; Thouret, J.-C.; Manville, V.; Negulescu, C.; Zuccaro, G.; De Gregorio, D.; Nardone, S.; et al. Building vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regression. J. Hydrol. 2016, 541, 563–581
Laudan, J.; Rözer, V.; Sieg, T.; Vogel, K.; Thieken, A.H. Damage assessment in Braunsbach 2016: Data collection and analysis for an improved understanding of damaging processes during flash floods. Nat. Hazards Earth Syst. Sci. 2017, 17, 2163–2179
Guidolin, M.; Chen, A.S.; Ghimire, B.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. Model. Softw. 2016, 84, 378–394
Van Westen, C.J. Remote Sensing and GIS for Natural Hazards Assessment and Disaster Risk Management. In Treatise on Geomorphology; Academic Press: Cambridge, MA, USA, 2013; Volume 3, pp. 259–298
Hendrawan, V.S.A.; Komori, D. Developing flood vulnerability curve for rice crop using remote sensing and hydrodynamic modeling. Int. J. Disaster Risk Reduct. 2021, 54, 102058
Karagiorgos, K.; Thaler, T.; Hübl, J.; Maris, F.; Fuchs, S. Multi-vulnerability analysis for flash flood risk management. Nat. Hazards 2016, 82, 63–87
Bankoff. Mapping Vulnerability: Disasters, Development and People, Earthscan, 1st ed.; Taylor & Francis: London, UK, 2004
Gabel, F. Chancen dynamischer Konzeptionen von Vulnerabilität für den Katastrophenschutz. In Resilienz im Katastrophenfall Konzepte zur Stärkung von Pflege- und Hilfsbedürftigen im Bevölkerungsschutz; Marco Krüger, Matthias Max—Bielefeld Transcr: Gnoien, Germany, 2019; pp. 77–96
Malik, S.; Pal, S.C.; Sattar, A.; Singh, S.K.; Das, B.; Chakrabortty, R.; Mohammad, P. Trend of extreme rainfall events using suitable Global Circulation Model to combat the water logging condition in Kolkata Metropolitan Area. Urban Clim. 2020, 32, 100599
Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 2022, 26, 5015–5033
Messner, V.; Meyer, F. Flood Damage, Vulnerability and Risk Perception—Challenges for Flood Damage Research; Springer: Berlin/Heidelberg, Germany, 2005
Liu, J.; Shi, Z.; Wang, D. Measuring and mapping the flood vulnerability based on land-use patterns: A case study of Beijing, China. Nat. Hazards 2016, 83, 1545–1565
Wu, F.; Sun, Y.; Sun, Z.; Wu, S.; Zhang, Q. Assessing agricultural system vulnerability to floods: A hybrid approach using emergy and a landscape fragmentation index. Ecol. Indic. 2019, 105, 337–346
Caldas, A.M.; Pissarra, T.C.T.; Costa, R.C.A.; Neto, F.C.R.; Zanata, M.; da Parahyba, R.B.V.; Fernandes, L.F.S.; Pacheco, F.A.L. Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water 2018, 10, 1357
USDA-SCS. Section 4: Hidrology. In National Engineering Handbook; Soil Conservation Service; United States Department of Agriculture: Washington, DC, USA, 1972; p. 127
Peña, L.E.; Barrios, M.; Francés, F. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale. J. Hydrol. 2016, 541, 1258–1272
Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578
Soil Survey Staff. Soil Taxonomy, 2nd ed.; U.S. Government Printing Office: Washington, DC, USA, 1999
United States Departament of Agriculture. Keys to Soil Taxonomy; SMSS Technical monograph No. 19; Pocahontas Press, Inc.: Blacksburg, VA, USA, 1992
Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332, 226–240
Medici, C.; Butturini, A.; Bernal, S.; Vázquez, E.; Sabater, F.; Vélez, J.I.; Francés, F. Modelling the non-linear hydrological behaviour of a small Mediterranean forested catchment. Hydrol. Process. 2008, 22, 3814–3828
Salazar, S.; Francés, F.; Komma, J.; Blume, T.; Francke, T.; Bronstert, A.; Bloschl, G. A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Nat. Hazards Earth Syst. Sci. 2012, 12, 3287–3306
Francésa, F.; Bussib, G. Análisis del impacto del cambio climático en el ciclo de sedimentos de la cuenca del río Ésera (España) mediante un modelo hidrológico distribuido. Rev. Iberoam. Ribagua 2014, 1, 14–25
Siswanto, S.Y.; Francés, F. How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: A case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environ. Earth Sci. 2019, 78, 550
Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216
Bozzi, S.; Passoni, G.; Bernardara, P.; Goutal, N.; Arnaud, A. Roughness and Discharge Uncertainty in 1D Water Level Calculations. Environ. Model. Assess. 2014, 20, 343–353
Liu, J.; Shi, Z.; Tan, X. Measuring the dynamic evolution of road network vulnerability to floods: A case study of Wuhan, China. Travel Behav. Soc. 2020, 23, 13–24
Ologunorisa, T.E. An assessment of flood vulnerability zones in the Niger delta, Nigeria. Int. J. Environ. Stud. 2004, 61, 31–38
Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 1958, 38, 1409–1438
Huang, L.; Wang, G.; Wang, Y.; Blanzieri, E.; Su, C. Link Clustering with Extended Link Similarity and EQ Evaluation Division. PLoS ONE 2013, 8, e66005
Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986
Burlando, P.; Rosso, R. Scaling and muitiscaling models of depth-duration-frequency curves for storm precipitation. J. Hydrol. 1996, 187, 45–64
Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900
Kundu, S.; Khare, D.; Mondal, A. Individual and combined impacts of future climate and land use changes on the water balance. Ecol. Eng. 2017, 105, 42–57
Marshall, M.R.; Ballard, C.E.; Frogbrook, Z.L.; Solloway, I.; McIntyre, N.; Reynolds, B.; Wheater, H.S. The impact of rural land management changes on soil hydraulic properties and runoff processes: Results from experimental plots in upland UK. Hydrol. Process. 2014, 28, 2617–2629
GEOTEC. Estudio de Amenazas Naturales, Vulnerabilidad y Escenarios de Riesgo en los Centros Poblados de Villarestrepo, Llanitos, Juntas, Pastales, Pico de Oro, Bocatoma Combeima y Cay, por Flujos Torrenciales en las Microcuencas del Río Combeima; Geotec Group—Alcaldía de Ibagué—Cortolima: Ibagué, Colombia, 2007
Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642
Odunuga, S.; Adegun, O.; Raji, S.A.; Udofia, S. Changes in flood risk in Lower Niger–Benue catchments. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 97–102
Jobe, A.; Kalra, A.; Ibendahl, E. Conservation Reserve Program effects on floodplain land cover management. J. Environ. Manag. 2018, 214, 305–314
Horton, A.J.; Nygren, A.; Diaz-Perera, M.A.; Kummu, M. Flood severity along the Usumacinta River, Mexico: Identifying the anthropogenic signature of tropical forest conversion. J. Hydrol. X 2020, 10, 100072
Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27
Tanir, T.; Sumi, S.J.; Lima, A.D.S.D.; Coelho, G.D.A.; Uzun, S.; Cassalho, F.; Ferreira, C.M. Multi-scale comparison of urban socio-economic vulnerability in the Washington, DC metropolitan region resulting from compound flooding. Int. J. Disaster Risk Reduct. 2021, 61, 102362
Czech, W.; Radecki-Pawlik, A.; Wyżga, B.; Hajdukiewicz, H. Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions. Geomorphology 2016, 272, 32–42
McEachran, Z.P.; Karwan, D.L.; Sebestyen, S.D.; Slesak, R.A.; Ng, G.-H.C. Nonstationary flood-frequency analysis to assess effects of harvest and cover type conversion on peak flows at the Marcell Experimental Forest, Minnesota, USA. J. Hydrol. 2021, 596, 126054
Zhao, L.; Liu, F. Land-use planning adaptation in response to SLR based on a vulnerability analysis. Ocean Coast. Manag. 2020, 196, 105297
Rahman, M.; Ningsheng, C.; Mahmud, G.I.; Islam, M.; Pourghasemi, H.R.; Ahmad, H.; Habumugisha, J.M.; Washakh, R.M.A.; Alam, M.; Liu, E.; et al. Flooding and its relationship with land cover change, population growth, and road density. Geosci. Front. 2021, 12, 101224
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.place.none.fl_str_mv Suiza
dc.source.none.fl_str_mv https://www.mdpi.com/2073-4441/15/6/1214
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/2f3c492f-2737-4fc2-b485-f6c2bb302105/download
https://repositorio.unibague.edu.co/bitstreams/6addbda4-aefc-41e7-a5e5-1c30cb9d26e1/download
https://repositorio.unibague.edu.co/bitstreams/71e1e274-fed3-4f0b-84e0-0e2e60df9117/download
https://repositorio.unibague.edu.co/bitstreams/f2b9fdd5-0180-435d-a8cc-abd5ff2de824/download
bitstream.checksum.fl_str_mv c9f8b0c8fdfd41e9ea0246a4b8a4019c
29ef22f863546171e7f724ea541cbb7b
6321a90631628f11a71d0ce6c8297b0e
2fa3e590786b9c0f3ceba1b9656b7ac3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814204081121525760
spelling Hernández-Atencia, Yelenaf6bf5711-55f6-4c95-a040-686ee9382f22-1Peña, Luis E.b8e15f98-c09b-4a85-8025-9a9d1e43b712-1Muñoz-Ramos, Jader73e655c3-b351-4102-bff6-ac120532da02-1Rojas, Isabelc425bfc3-9091-48c4-9e71-d3994a15cb19-1Álvarez, Alexander3f06aadc-b1d2-4d42-85b6-4ea0b58f6269-12023-10-17T20:15:27Z2023-10-17T20:15:27Z2023-03-20Land-use changes produce variations in upper soil hydraulic properties and alter the hydrological response and hydraulic behavior of streams. Thus, the combined effect of variations in soil properties and current hydraulics interacts with the exposure of structures exposed and their degree of physical vulnerability. This study aims to evaluate the effect of land-use evolution from 1976 to 2017 on the physical vulnerability of structures exposed to floods in the Combeima cathment, Colombia, proposing two novel approaches: (i) based on soil infiltration capacity variation (CN) in the basin and changes in stream flow velocity (v), (ii) through soil water storage variation in the root zone (Hu). Hydrological and hydraulic modeling and the implementation of four physical vulnerability assessment methods were performed using GIS analysis. Findings indicate that simplifying physical vulnerability estimations through CN, Hu, and (Formula presented.) variations in catchments and at cross-section resolutions is possible, allowing a detailed analysis of the land-use change effect on the vulnerability of structures. The scaling behavior of the physical vulnerability of structures was identified when Hu is defined as a scale variable and, similarly, concerning flow velocity in the stream. Therefore, applying the power law could be useful in planning processes with limited informationapplication/pdfHernández-Atencia, Y.; Peña, L.E.; Muñoz-Ramos, J.; Rojas, I.; Álvarez, A. Use of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios. Water 2023, 15, 1214. https:// doi.org/10.3390/w1506121420734441https://hdl.handle.net/20.500.12313/3833engSuiza161214115Water (Switzerland)WMO. 2018 Annual Report: WMO for the Twenty-First Century, No. 1229. 2018. Available online: https://library.wmo.int/doc_num.php?explnum_id=6264 (accessed on 11 February 2023)Erlick, J.C. Natural Disasters in Latin America and the Caribbean; Routledge: London, UK, 2021Bhatt, C.; Rao, G.; Diwakar, P.; Dadhwal, V. Development of flood inundation extent libraries over a range of potential flood levels: A practical framework for quick flood response. Geomat. Nat. Hazards Risk 2016, 8, 384–401Baeck, S.H.; Choi, S.J.; Choi, G.W.; Lee, N.R. A study of evaluating and forecasting watersheds using the flood vulnerability assessment index in Korea. Geomat. Nat. Hazards Risk 2014, 5, 208–231Ye, B.; Jiang, J.; Liu, J.; Zheng, Y.; Zhou, N. Research on quantitative assessment of climate change risk at an urban scale: Review of recent progress and outlook of future direction. Renew. Sustain. Energy Rev. 2021, 135, 110415Yang, Y.-C.; Ge, Y.-E. Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port. Transp. Policy 2020, 97, 232–244Dandapat, K.; Panda, G.K. Flood vulnerability analysis and risk assessment using analytical hierarchy process. Model. Earth Syst. Environ. 2017, 3, 1627–1646Gain, A.K.; Mojtahed, V.; Biscaro, C.; Balbi, S.; Giupponi, C. An integrated approach of flood risk assessment in the eastern part of Dhaka City. Nat. Hazards 2015, 79, 1499–1530Marques, G.F.; de Souza, V.B.; Moraes, N.V. The economic value of the flow regulation environmental service in a Brazilian urban watershed. J. Hydrol. 2017, 554, 406–419Chowdhuri, I.; Pal, S.C.; Chakrabortty, R. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv. Space Res. 2020, 65, 1466–1489Haque, M.; Islam, S.; Sikder, B.; Islam, S. Community flood resilience assessment in Jamuna floodplain: A case study in Jamalpur District Bangladesh. Int. J. Disaster Risk Reduct. 2022, 72, 102861Fernández-Montblanc, T.; Duo, E.; Ciavola, P. Dune reconstruction and revegetation as a potential measure to decrease coastal erosion and flooding under extreme storm conditions. Ocean Coast. Manag. 2019, 188, 105075Ettinger, S.; Mounaud, L.; Magill, C.; Yao-Lafourcade, A.-F.; Thouret, J.-C.; Manville, V.; Negulescu, C.; Zuccaro, G.; De Gregorio, D.; Nardone, S.; et al. Building vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regression. J. Hydrol. 2016, 541, 563–581Laudan, J.; Rözer, V.; Sieg, T.; Vogel, K.; Thieken, A.H. Damage assessment in Braunsbach 2016: Data collection and analysis for an improved understanding of damaging processes during flash floods. Nat. Hazards Earth Syst. Sci. 2017, 17, 2163–2179Guidolin, M.; Chen, A.S.; Ghimire, B.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. Model. Softw. 2016, 84, 378–394Van Westen, C.J. Remote Sensing and GIS for Natural Hazards Assessment and Disaster Risk Management. In Treatise on Geomorphology; Academic Press: Cambridge, MA, USA, 2013; Volume 3, pp. 259–298Hendrawan, V.S.A.; Komori, D. Developing flood vulnerability curve for rice crop using remote sensing and hydrodynamic modeling. Int. J. Disaster Risk Reduct. 2021, 54, 102058Karagiorgos, K.; Thaler, T.; Hübl, J.; Maris, F.; Fuchs, S. Multi-vulnerability analysis for flash flood risk management. Nat. Hazards 2016, 82, 63–87Bankoff. Mapping Vulnerability: Disasters, Development and People, Earthscan, 1st ed.; Taylor & Francis: London, UK, 2004Gabel, F. Chancen dynamischer Konzeptionen von Vulnerabilität für den Katastrophenschutz. In Resilienz im Katastrophenfall Konzepte zur Stärkung von Pflege- und Hilfsbedürftigen im Bevölkerungsschutz; Marco Krüger, Matthias Max—Bielefeld Transcr: Gnoien, Germany, 2019; pp. 77–96Malik, S.; Pal, S.C.; Sattar, A.; Singh, S.K.; Das, B.; Chakrabortty, R.; Mohammad, P. Trend of extreme rainfall events using suitable Global Circulation Model to combat the water logging condition in Kolkata Metropolitan Area. Urban Clim. 2020, 32, 100599Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 2022, 26, 5015–5033Messner, V.; Meyer, F. Flood Damage, Vulnerability and Risk Perception—Challenges for Flood Damage Research; Springer: Berlin/Heidelberg, Germany, 2005Liu, J.; Shi, Z.; Wang, D. Measuring and mapping the flood vulnerability based on land-use patterns: A case study of Beijing, China. Nat. Hazards 2016, 83, 1545–1565Wu, F.; Sun, Y.; Sun, Z.; Wu, S.; Zhang, Q. Assessing agricultural system vulnerability to floods: A hybrid approach using emergy and a landscape fragmentation index. Ecol. Indic. 2019, 105, 337–346Caldas, A.M.; Pissarra, T.C.T.; Costa, R.C.A.; Neto, F.C.R.; Zanata, M.; da Parahyba, R.B.V.; Fernandes, L.F.S.; Pacheco, F.A.L. Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water 2018, 10, 1357USDA-SCS. Section 4: Hidrology. In National Engineering Handbook; Soil Conservation Service; United States Department of Agriculture: Washington, DC, USA, 1972; p. 127Peña, L.E.; Barrios, M.; Francés, F. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale. J. Hydrol. 2016, 541, 1258–1272Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578Soil Survey Staff. Soil Taxonomy, 2nd ed.; U.S. Government Printing Office: Washington, DC, USA, 1999United States Departament of Agriculture. Keys to Soil Taxonomy; SMSS Technical monograph No. 19; Pocahontas Press, Inc.: Blacksburg, VA, USA, 1992Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332, 226–240Medici, C.; Butturini, A.; Bernal, S.; Vázquez, E.; Sabater, F.; Vélez, J.I.; Francés, F. Modelling the non-linear hydrological behaviour of a small Mediterranean forested catchment. Hydrol. Process. 2008, 22, 3814–3828Salazar, S.; Francés, F.; Komma, J.; Blume, T.; Francke, T.; Bronstert, A.; Bloschl, G. A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Nat. Hazards Earth Syst. Sci. 2012, 12, 3287–3306Francésa, F.; Bussib, G. Análisis del impacto del cambio climático en el ciclo de sedimentos de la cuenca del río Ésera (España) mediante un modelo hidrológico distribuido. Rev. Iberoam. Ribagua 2014, 1, 14–25Siswanto, S.Y.; Francés, F. How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: A case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environ. Earth Sci. 2019, 78, 550Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216Bozzi, S.; Passoni, G.; Bernardara, P.; Goutal, N.; Arnaud, A. Roughness and Discharge Uncertainty in 1D Water Level Calculations. Environ. Model. Assess. 2014, 20, 343–353Liu, J.; Shi, Z.; Tan, X. Measuring the dynamic evolution of road network vulnerability to floods: A case study of Wuhan, China. Travel Behav. Soc. 2020, 23, 13–24Ologunorisa, T.E. An assessment of flood vulnerability zones in the Niger delta, Nigeria. Int. J. Environ. Stud. 2004, 61, 31–38Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 1958, 38, 1409–1438Huang, L.; Wang, G.; Wang, Y.; Blanzieri, E.; Su, C. Link Clustering with Extended Link Similarity and EQ Evaluation Division. PLoS ONE 2013, 8, e66005Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986Burlando, P.; Rosso, R. Scaling and muitiscaling models of depth-duration-frequency curves for storm precipitation. J. Hydrol. 1996, 187, 45–64Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900Kundu, S.; Khare, D.; Mondal, A. Individual and combined impacts of future climate and land use changes on the water balance. Ecol. Eng. 2017, 105, 42–57Marshall, M.R.; Ballard, C.E.; Frogbrook, Z.L.; Solloway, I.; McIntyre, N.; Reynolds, B.; Wheater, H.S. The impact of rural land management changes on soil hydraulic properties and runoff processes: Results from experimental plots in upland UK. Hydrol. Process. 2014, 28, 2617–2629GEOTEC. Estudio de Amenazas Naturales, Vulnerabilidad y Escenarios de Riesgo en los Centros Poblados de Villarestrepo, Llanitos, Juntas, Pastales, Pico de Oro, Bocatoma Combeima y Cay, por Flujos Torrenciales en las Microcuencas del Río Combeima; Geotec Group—Alcaldía de Ibagué—Cortolima: Ibagué, Colombia, 2007Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642Odunuga, S.; Adegun, O.; Raji, S.A.; Udofia, S. Changes in flood risk in Lower Niger–Benue catchments. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 97–102Jobe, A.; Kalra, A.; Ibendahl, E. Conservation Reserve Program effects on floodplain land cover management. J. Environ. Manag. 2018, 214, 305–314Horton, A.J.; Nygren, A.; Diaz-Perera, M.A.; Kummu, M. Flood severity along the Usumacinta River, Mexico: Identifying the anthropogenic signature of tropical forest conversion. J. Hydrol. X 2020, 10, 100072Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27Tanir, T.; Sumi, S.J.; Lima, A.D.S.D.; Coelho, G.D.A.; Uzun, S.; Cassalho, F.; Ferreira, C.M. Multi-scale comparison of urban socio-economic vulnerability in the Washington, DC metropolitan region resulting from compound flooding. Int. J. Disaster Risk Reduct. 2021, 61, 102362Czech, W.; Radecki-Pawlik, A.; Wyżga, B.; Hajdukiewicz, H. Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions. Geomorphology 2016, 272, 32–42McEachran, Z.P.; Karwan, D.L.; Sebestyen, S.D.; Slesak, R.A.; Ng, G.-H.C. Nonstationary flood-frequency analysis to assess effects of harvest and cover type conversion on peak flows at the Marcell Experimental Forest, Minnesota, USA. J. Hydrol. 2021, 596, 126054Zhao, L.; Liu, F. Land-use planning adaptation in response to SLR based on a vulnerability analysis. Ocean Coast. Manag. 2020, 196, 105297Rahman, M.; Ningsheng, C.; Mahmud, G.I.; Islam, M.; Pourghasemi, H.R.; Ahmad, H.; Habumugisha, J.M.; Washakh, R.M.A.; Alam, M.; Liu, E.; et al. Flooding and its relationship with land cover change, population growth, and road density. Geosci. Front. 2021, 12, 101224This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/2073-4441/15/6/1214Flood assessmentHydraulic soil propertiesLand-use evolutionPhysical vulnerabilityScaling behaviorUse of soil infiltration capacity and stream flow velocity to estimate physical flood vulnerability under land-use change scenariosArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTUse of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios - water-15-01214-4.pdf.txtUse of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios - water-15-01214-4.pdf.txtExtracted texttext/plain4424https://repositorio.unibague.edu.co/bitstreams/2f3c492f-2737-4fc2-b485-f6c2bb302105/downloadc9f8b0c8fdfd41e9ea0246a4b8a4019cMD53THUMBNAILUse of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios - water-15-01214-4.pdf.jpgUse of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios - water-15-01214-4.pdf.jpgGenerated Thumbnailimage/jpeg12219https://repositorio.unibague.edu.co/bitstreams/6addbda4-aefc-41e7-a5e5-1c30cb9d26e1/download29ef22f863546171e7f724ea541cbb7bMD54ORIGINALUse of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios - water-15-01214-4.pdfUse of Soil Infiltration Capacity and Stream Flow Velocity to Estimate Physical Flood Vulnerability under Land-Use Change Scenarios - water-15-01214-4.pdfapplication/pdf82738https://repositorio.unibague.edu.co/bitstreams/71e1e274-fed3-4f0b-84e0-0e2e60df9117/download6321a90631628f11a71d0ce6c8297b0eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/f2b9fdd5-0180-435d-a8cc-abd5ff2de824/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5220.500.12313/3833oai:repositorio.unibague.edu.co:20.500.12313/38332023-10-18 03:00:19.133https://creativecommons.org/licenses/by-nc-nd/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=