Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020

Waste heat recovery (WHR) technologies have become vital to promote efficient operation in energy systems. The present investigation presents a bibliometric analysis of the research trends in the WHR field in the last decade (2010-2020). The study implements advanced methodologies to gather relevant...

Full description

Autores:
Peña, A.R
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/758
Acceso en línea:
https://hdl.handle.net/20.500.12834/758
Palabra clave:
Bibliometrics, Waste Heat Recovery, Energy, Multigeneration
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_fafa5367d0a9470672cceed8a6da122f
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/758
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020
title Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020
spellingShingle Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020
Bibliometrics, Waste Heat Recovery, Energy, Multigeneration
title_short Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020
title_full Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020
title_fullStr Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020
title_full_unstemmed Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020
title_sort Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020
dc.creator.fl_str_mv Peña, A.R
dc.contributor.author.none.fl_str_mv Peña, A.R
dc.contributor.other.none.fl_str_mv Cambronel, D.M
Ochoa, G.V
Henríquez, L.V
dc.subject.keywords.spa.fl_str_mv Bibliometrics, Waste Heat Recovery, Energy, Multigeneration
topic Bibliometrics, Waste Heat Recovery, Energy, Multigeneration
description Waste heat recovery (WHR) technologies have become vital to promote efficient operation in energy systems. The present investigation presents a bibliometric analysis of the research trends in the WHR field in the last decade (2010-2020). The study implements advanced methodologies to gather relevant information for interested readers on this topic. Results indicated that WHR technologies have registered more than 14,000 articles in the selected timeline with an increasing tendency. Moreover, the number of citations escalated to more than 25% in 2020, using 2010 as the baseline. Three primary research clusters stated that power cycles are the most cited topic in the WHR field. The journal “Energy” featured the highest citation margin, whereas the most relevant author from the database was Bejan et al. Lastly, China is leading the progress in the number of articles and subsequently the citation score, which is primary promoted by the “Chinese Academy of Science.” The study identified that the reduction of citations of WHR topics in the last 5 years might be primarily attributed to a transition in a more complex concept of multigeneration. In conclusion, the area of WHR technologies has maintained an increased interest in academia in the last 10 years while contributing to the exploitation of power cycle proposals, turbomachinery, heat exchangers, among others. Also, WHR plays a central role in the development of the next generation of multigeneration units.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-14T21:44:32Z
dc.date.available.none.fl_str_mv 2022-11-14T21:44:32Z
dc.date.issued.none.fl_str_mv 2022-09-27
dc.date.submitted.none.fl_str_mv 2022-05-17
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv Artículo
status_str draft
dc.identifier.citation.spa.fl_str_mv Pena, A. R., Cambronel, D. M., Ochoa, G. V., & Henríquez, L. V. (2022). Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020. International Journal of Energy Economics and Policy, 12(5), 132–137. https://doi.org/10.32479/ijeep.13293
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/758
dc.identifier.doi.none.fl_str_mv 10.32479/ijeep.13293
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv Pena, A. R., Cambronel, D. M., Ochoa, G. V., & Henríquez, L. V. (2022). Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020. International Journal of Energy Economics and Policy, 12(5), 132–137. https://doi.org/10.32479/ijeep.13293
10.32479/ijeep.13293
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/758
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv International Journal of Energy Economics and Policy
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/758/1/16_IJEEP_13293_rodriguez_okey.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/758/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/758/3/license.txt
bitstream.checksum.fl_str_mv b66c72b7b232d1af87a0e2357563ca5c
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203420257550336
spelling Peña, A.Re5937dfb-ab1b-457a-8878-149e4a13e22eCambronel, D.MOchoa, G.VHenríquez, L.V2022-11-14T21:44:32Z2022-11-14T21:44:32Z2022-09-272022-05-17Pena, A. R., Cambronel, D. M., Ochoa, G. V., & Henríquez, L. V. (2022). Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020. International Journal of Energy Economics and Policy, 12(5), 132–137. https://doi.org/10.32479/ijeep.13293https://hdl.handle.net/20.500.12834/75810.32479/ijeep.13293Universidad del AtlánticoRepositorio Universidad del AtlánticoWaste heat recovery (WHR) technologies have become vital to promote efficient operation in energy systems. The present investigation presents a bibliometric analysis of the research trends in the WHR field in the last decade (2010-2020). The study implements advanced methodologies to gather relevant information for interested readers on this topic. Results indicated that WHR technologies have registered more than 14,000 articles in the selected timeline with an increasing tendency. Moreover, the number of citations escalated to more than 25% in 2020, using 2010 as the baseline. Three primary research clusters stated that power cycles are the most cited topic in the WHR field. The journal “Energy” featured the highest citation margin, whereas the most relevant author from the database was Bejan et al. Lastly, China is leading the progress in the number of articles and subsequently the citation score, which is primary promoted by the “Chinese Academy of Science.” The study identified that the reduction of citations of WHR topics in the last 5 years might be primarily attributed to a transition in a more complex concept of multigeneration. In conclusion, the area of WHR technologies has maintained an increased interest in academia in the last 10 years while contributing to the exploitation of power cycle proposals, turbomachinery, heat exchangers, among others. Also, WHR plays a central role in the development of the next generation of multigeneration units.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Energy Economics and PolicyResearch Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020Público generalBibliometrics, Waste Heat Recovery, Energy, Multigenerationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/draftArtículohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede NorteAlibaba, M., Pourdarbani, R., Manesh, M.H.K., Ochoa, G.V., Forero, J.D. (2020), Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 6, e03758.Bae, C., Kim, J. (2017), Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36, 3389-3413.Bao, J., Zhao, L. (2013), A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, 325-342.Bejan, A., Tsatsaronis, G., Moran, M.J. (1996), Thermal Design and Optimization. Hoboken, New Jersey: Wiley.Chen, H., Goswami, D.Y., Stefanakos, E.K. (2010), A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews, 14, 3059-3067.Chu, W., Bennett, K., Cheng, J., Chen, Y., Wang, Q. (2019) Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger. Applied Thermal Engineering, 146, 805-814.Dai, Y., Wang, J., Gao, L. (2009), Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management, 50, 576-582.Demirbas, A. (2008), Emissions from combustion of biomass. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30, 170-178.Diaz, G.A., Duarte, J.O., García, J., Rincón, A., Fontalvo, A., Bula, A., Padilla, R.V. (2017), Maximum power from fluid flow by applying the first and second laws of thermodynamics. The Journal of Energy Resources Technology, 139, 4035021.Duarte, J., Amador, G., García, J., Fontalvo, A., Vásquez, R., Sanjuan, M., González, A. (2014), Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy, 71, 137-147.Duarte, J., García, J., Jiménez, J., Sanjuan, M.E., Bula, A., González, J. (2017), Auto-ignition control in spark-ignition engines using internal model control structure. Journal of Energy Resources Technology, Transactions of the ASME, 139, 022201.Gutierrez, J.C., Valencia, G., Duarte, J. (2020), Regenerative organic rankine cycle as bottoming cycle of an industrial gas engine: Traditional and advanced exergetic analysis. Applied Sciences, 10, 4411.Herrera, M., Castro, E., Duarte, J., Fontalvo, A., Vásquez, R. (2018), Análisis Exergético de un Ciclo Brayton Supercrítico con Dióxido de Carbono Como Fluido de Trabajo. Research Paper.Hung, T.C., Shai, T.Y., Wang, S.K. (1997), A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 22, 661-667.Jamel, M.S., Abd Rahman, A., Shamsuddin, A.H. (2013), Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renewable and Sustainable Energy Reviews, 20, 71-81.Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K. (2006), Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40, 5181-5192.Marchionni, M., Chai, L., Bianchi, G., Tassou, S.A. (2019), Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems. Applied Thermal Engineering, 161, 114190.Mouaky, A., Rachek, A. (2020), Energetic, exergetic and exergeoeconomic assessment of a hybrid solar/biomass poylgeneration system: A case study of a rural community in a semi-arid climate. Renewable Energy, 158, 280-296.Muk, H., He, B. (2007), Spark ignition natural gas engines a review. Energy Conversion and Management, 48, 608-618.Orozco, T., Herrera, M., Duarte, J. (2019), CFD study of heat exchangers applied in Brayton cycles: A case study in supercritical condition using carbon dioxide as working fluid. The International Review on Modelling and Simulations, 12, 72.Orozco, W., Acuña, N., Duarte, J. (2019), Characterization of emissions in low displacement diesel engines using biodiesel and energy recovery system. The International Review of Mechanical Engineering, 13, 420-426.Pacheco, E.C., Forero, J.D., Lascano, A.F. (2018), Análisis exergético de un ciclo Brayton supercrítico con dióxido de carbono como fluido de trabajo Exergetic analysis of a supercritical Brayton cycle with carbon dioxide as working fluid. Inge CUC, 14, 159-170.Quoilin, S., Van Den Broek, M., Declaye, S., Dewallef, P., Lemort, V. (2013), Techno-economic survey of organic rankine cycle (ORC) systems. Renewable and Sustainable Energy Reviews, 22, 168-186.Ramirez, R., Gutiérrez, A.S, Eras, J.J.C, Valencia, K., Hernández, B., Forero, J.D. (2019), Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. Journal of Cleaner Production, 241, 118412.Saleh, B., Koglbauer, G., Wendland, M., Fischer, J. (2007), Working fluids for low-temperature organic Rankine cycles. Energy, 32, 1210-1221.Sultan, U., Zhang, Y., Farooq, M., Imran, M., Khan, A.A., Zhuge, W., Khan, T.A., Yousaf, M.H., Ali, Q. (2021), Qualitative assessment and global mapping of supercritical CO2 power cycle technology. Sustainable Energy Technologies and Assessments, 43, 100978.Tchanche, B.F., Lambrinos, G., Frangoudakis, A., Papadakis, G. (2011), Low-grade heat conversion into power using organic Rankine cycles a review of various applications. Renewable and Sustainable Energy Reviews, 15, 3963-3979.Valencia, G., Acevedo, C., Duarte, J. (2020), Combustion and performance study of low-displacement compression ignition engines operating with diesel-biodiesel blends. Applied Sciences, 10, 907.Valencia, G., Cárdenas, J., Duarte, J. (2020), Exergy, economic, and life-cycle assessment of orc system for waste heat recovery in a natural gas internal combustion engine. Resources, 9, 2.Vasquez, R., Chean, Y., Too, S., Benito, R., Stein, W. (2015), Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Applied Energy, 148, 348-365.Wang, E.H., Zhang, H.G., Fan, B.Y., Ouyang, M.G., Zhao, Y., Mu, Q.H. (2011), Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy, 36, 3406-3418.Yonoff, R.E., Ochoa, G.V., Cardenas-Escorcia, Y., Silva-Ortega, J.I., Meriño-Stand, L. (2019), Research trends in proton exchange membrane fuel cells during 2008-2018: A bibliometric analysis. Heliyon, 5, e01724.Yu, A., Su, W., Lin, X., Zhou, N. (2021), Recent trends of supercritical CO2Brayton cycle: Bibliometric analysis and research review. Nuclear Engineering and Technology, 53, 699-714.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL16_IJEEP_13293_rodriguez_okey.pdf16_IJEEP_13293_rodriguez_okey.pdfapplication/pdf1450734https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/758/1/16_IJEEP_13293_rodriguez_okey.pdfb66c72b7b232d1af87a0e2357563ca5cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/758/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/758/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/758oai:repositorio.uniatlantico.edu.co:20.500.12834/7582022-11-14 16:44:33.566DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==