Activated carbon from cassava peel: a promising electrode material for supercapacitors

Supercapacitors are conventional devices in electrical circuits that produce electrical pulses at high power levels in short periods. Electrodes for supercapacitors were prepared with activated carbon. Activated carbon was obtained from cassava peels treated by chemical activation with potassium hyd...

Full description

Autores:
Ospino, Julie
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/1154
Acceso en línea:
https://hdl.handle.net/20.500.12834/1154
Palabra clave:
supercapacitors, energy storage, biomass energy, cassava peels
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_f682d00c5cf14e1b7866fcb0c26b4b02
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/1154
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Activated carbon from cassava peel: a promising electrode material for supercapacitors
title Activated carbon from cassava peel: a promising electrode material for supercapacitors
spellingShingle Activated carbon from cassava peel: a promising electrode material for supercapacitors
supercapacitors, energy storage, biomass energy, cassava peels
title_short Activated carbon from cassava peel: a promising electrode material for supercapacitors
title_full Activated carbon from cassava peel: a promising electrode material for supercapacitors
title_fullStr Activated carbon from cassava peel: a promising electrode material for supercapacitors
title_full_unstemmed Activated carbon from cassava peel: a promising electrode material for supercapacitors
title_sort Activated carbon from cassava peel: a promising electrode material for supercapacitors
dc.creator.fl_str_mv Ospino, Julie
dc.contributor.author.none.fl_str_mv Ospino, Julie
dc.contributor.other.none.fl_str_mv Parra-Barraza, Juliana Paola
Cervera, Sigifredo
Coral-Escobar, Euler E.
Vargas-Ceballos, Oscar Ándres
dc.subject.keywords.spa.fl_str_mv supercapacitors, energy storage, biomass energy, cassava peels
topic supercapacitors, energy storage, biomass energy, cassava peels
description Supercapacitors are conventional devices in electrical circuits that produce electrical pulses at high power levels in short periods. Electrodes for supercapacitors were prepared with activated carbon. Activated carbon was obtained from cassava peels treated by chemical activation with potassium hydroxide (KOH) and phosphoric acid (H3PO4), each at two different concentrations and at one carbonization temperature. The electrochemical performance of the prepared electrodes was obtained by means of cyclic voltammetry and galvanostatic charge-discharge in a 3-electrode system with an electrolytic solution of sulfuric acid (H2SO4) 1 M. Cyclic voltammetry allowed identifying the behavior of supercapacitors in a potential window of -0.4V to 0.6V. Activated carbon derived from cassava peel with the highest specific surface area (398.46 m2 /g) has exhibited the maximum specific capacitance of 64.18 F/g.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-08-10
dc.date.submitted.none.fl_str_mv 2019-11-10
dc.date.accessioned.none.fl_str_mv 2022-12-19T22:23:21Z
dc.date.available.none.fl_str_mv 2022-12-19T22:23:21Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Ospino, J., Parra-Barraza, J. P., Cervera, S., Coral-Escobar, E. E., & Vargas-Ceballos, O. Ándres. (2020). Activated carbon from cassava peel: a promising electrode material for supercapacitors. Revista Facultad De Ingeniería Universidad De Antioquia, (102), 88–95. https://doi.org/10.17533/udea.redin.20200803
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/1154
dc.identifier.doi.none.fl_str_mv 10.17533/udea.redin.20200803
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv Ospino, J., Parra-Barraza, J. P., Cervera, S., Coral-Escobar, E. E., & Vargas-Ceballos, O. Ándres. (2020). Activated carbon from cassava peel: a promising electrode material for supercapacitors. Revista Facultad De Ingeniería Universidad De Antioquia, (102), 88–95. https://doi.org/10.17533/udea.redin.20200803
10.17533/udea.redin.20200803
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/1154
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Química
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Revista Facultad de Ingeniería
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1154/1/340431-Article%20Text-203492-4-10-20210819.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1154/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1154/3/license.txt
bitstream.checksum.fl_str_mv b3da99bfa8a99de11f927822e0d0fa41
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203415417323520
spelling Ospino, Julie24bdc78a-e847-4f61-a4a3-a47c0b1a958cParra-Barraza, Juliana PaolaCervera, SigifredoCoral-Escobar, Euler E.Vargas-Ceballos, Oscar Ándres2022-12-19T22:23:21Z2022-12-19T22:23:21Z2019-08-102019-11-10Ospino, J., Parra-Barraza, J. P., Cervera, S., Coral-Escobar, E. E., & Vargas-Ceballos, O. Ándres. (2020). Activated carbon from cassava peel: a promising electrode material for supercapacitors. Revista Facultad De Ingeniería Universidad De Antioquia, (102), 88–95. https://doi.org/10.17533/udea.redin.20200803https://hdl.handle.net/20.500.12834/115410.17533/udea.redin.20200803Universidad del AtlánticoRepositorio Universidad del AtlánticoSupercapacitors are conventional devices in electrical circuits that produce electrical pulses at high power levels in short periods. Electrodes for supercapacitors were prepared with activated carbon. Activated carbon was obtained from cassava peels treated by chemical activation with potassium hydroxide (KOH) and phosphoric acid (H3PO4), each at two different concentrations and at one carbonization temperature. The electrochemical performance of the prepared electrodes was obtained by means of cyclic voltammetry and galvanostatic charge-discharge in a 3-electrode system with an electrolytic solution of sulfuric acid (H2SO4) 1 M. Cyclic voltammetry allowed identifying the behavior of supercapacitors in a potential window of -0.4V to 0.6V. Activated carbon derived from cassava peel with the highest specific surface area (398.46 m2 /g) has exhibited the maximum specific capacitance of 64.18 F/g.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Revista Facultad de IngenieríaActivated carbon from cassava peel: a promising electrode material for supercapacitorssupercapacitors, energy storage, biomass energy, cassava peelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería QuímicaSede NorteA. Burke, “Ultracapacitors: Why, how, and where is the technology,” Journal of Power Sources, vol. 91, no. 1, November 2000. [Online]. Available: https://doi.org/10.1016/S0378-7753(00)00485-7T. Chen and L. Dai, “Carbon nanomaterials for high-performance supercapacitors,” Materials Today, vol. 16, no. 7-8, July 2013. [Online]. Available: https://doi.org/10.1016/j.mattod.2013.07.002O. Ioannidou and A. Zabaniotou, “Agricultural residues as precursors for activated carbon production — A review,” Renewable & Sustainable Energy Reviews, vol. 11, no. 9, December 2007. [Online]. Available: https://doi.org/10.1016/j.rser.2006.03.013T. E. Rufford, D. Hulicova, Z. Zhu, and G. Qing, “Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors,” Electrochemistry Communications, vol. 10, no. 10, October 2008. [Online]. Available: https://doi.org/10.1016/j.elecom. 2008.08.022I. I. Gurten, S. M.vHolmes, A. Banford, and Z. Aktas, “The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea,” Applied Surface Science, vol. 357, December 01 2015. [Online]. Available: https://doi.org/10.1016/j.apsusc.2015.09.067Z. Qiu and et al., “Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors,” Journal of Power Sources, vol. 376, February 01 2018. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2017. 11.077X. Tian and et al., “Flute type micropores activated carbon from cotton stalk for high performance supercapacitors,” Journal of Power Sources, vol. 359, August 15 2017. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2017.05.054W. Sun, S. M. Lipka, C. Swartz, D. Williams, and F. Yang, “Hemp-derived activated carbons for supercapacitors,” Carbon, vol. 103, July 2016. [Online]. Available: https://doi.org/10.1016/j.carbon. 2016.02.090A. Jain and S. K. Tripathi, “Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode,” Materials Science and Engineering B, vol. 183, April 2014. [Online]. Available: https://doi.org/10.1016/j. mseb.2013.12.004B. C. Smith, Infrared spectral interpretation: A systematic approach. Boca Raton, USA: CRC Press, 1998.M. Molina, F. RodRíguez, F. Caturla, and M. J. Sellés, “Porosity in granular carbons activated with phosphoric acid,” Carbon, vol. 33, no. 8, 1995. [Online]. Available: https://doi.org/10.1016/ 0008-6223(95)00059-MB. S. Girgis, S. S. Yunis, and A. M. Soliman, “Characteristics of activated carbon from peanut hulls in relation to conditions of preparation,” Materials Letter, vol. 57, no. 1, November 2002. [Online]. Available: https://doi.org/10.1016/S0167-577X(02)00724-3M. Jagtoyen and F. Derbyshire, “Activated carbons from yellow poplar and white oak by H3PO4 activation,” Carbon, vol. 36, no. 7-8, 1998. [Online]. Available: https://doi.org/10.1016/S0008-6223(98) 00082-7Y. Sudaryanto, S. B. Hartono, W. Irawaty, H.Hindarso, and S. Ismadji, “High surface area activated carbon prepared from cassava peel by chemical activation,” Bioresource Technology, vol. 97, no. 5, March 2006. [Online]. Available: https://doi.org/10.1016/j.biortech.2005. 04.029S. Li and et al., “An all-in-one material with excellent electrical double-layer capacitance and pseudocapacitance performances for supercapacitor,” Applied Surface Science, vol. 453, September 30 2018. [Online]. Available: https://doi.org/10.1016/j.apsusc.2018.05. 088A. Evan, S. Wang, F. Edi, and S. Ismadji, “Preparation of capacitor’s electrode from cassava peel waste,” Bioresource Technology, vol. 101, no. 10, May 2010. [Online]. Available: https://doi.org/10.1016/j. biortech.2009.12.123L. Wei and G. Yushin, “Nanostructured activated carbons from natural precursors for electrical double layer capacitors,” Nano Energy, vol. 1, no. 4, July 2012. [Online]. Available: https: //doi.org/10.1016/j.nanoen.2012.05.002M. Dhelipan, A. Arunchander, A. K. Sahu, and D. Kalpana, “Activated carbon from orange peels as supercapacitor electrode and catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell,” Journal of Saudi Chemical Society, vol. 21, no. 4, May 2017. [Online]. Available: https://doi.org/10.1016/j.jscs.2016.12.003http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL340431-Article Text-203492-4-10-20210819.pdf340431-Article Text-203492-4-10-20210819.pdfapplication/pdf240610https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1154/1/340431-Article%20Text-203492-4-10-20210819.pdfb3da99bfa8a99de11f927822e0d0fa41MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1154/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1154/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1154oai:repositorio.uniatlantico.edu.co:20.500.12834/11542022-12-19 17:23:22.221DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==