A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles

This paper presents a comparative study on the energy, exergetic and thermo-economic performance of a novelty thermal power system integrated by a supercritical CO2 Brayton cycle, and a recuperative organic Rankine cycle (RORC) or a simple organic Rankine cycle (SORC). A thermodynamic model was deve...

Full description

Autores:
Cardenas Gutierrez, Javier
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/1029
Acceso en línea:
https://hdl.handle.net/20.500.12834/1029
Palabra clave:
Energy Mechanical engineering Thermodynamics Energy conservation Gas turbine Organic Rankine cycle Supercritical CO2 Brayton cycle Exergetic analysis Energy analysis Thermo-economic indicators PSO optimization
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_f4f8e8544c33777e354ecc58abe52135
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/1029
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles
title A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles
spellingShingle A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles
Energy Mechanical engineering Thermodynamics Energy conservation Gas turbine Organic Rankine cycle Supercritical CO2 Brayton cycle Exergetic analysis Energy analysis Thermo-economic indicators PSO optimization
title_short A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles
title_full A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles
title_fullStr A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles
title_full_unstemmed A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles
title_sort A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles
dc.creator.fl_str_mv Cardenas Gutierrez, Javier
dc.contributor.author.none.fl_str_mv Cardenas Gutierrez, Javier
dc.contributor.other.none.fl_str_mv Valencia Ochoa, Guillermo
Duarte-Forero, Jorge
dc.subject.keywords.spa.fl_str_mv Energy Mechanical engineering Thermodynamics Energy conservation Gas turbine Organic Rankine cycle Supercritical CO2 Brayton cycle Exergetic analysis Energy analysis Thermo-economic indicators PSO optimization
topic Energy Mechanical engineering Thermodynamics Energy conservation Gas turbine Organic Rankine cycle Supercritical CO2 Brayton cycle Exergetic analysis Energy analysis Thermo-economic indicators PSO optimization
description This paper presents a comparative study on the energy, exergetic and thermo-economic performance of a novelty thermal power system integrated by a supercritical CO2 Brayton cycle, and a recuperative organic Rankine cycle (RORC) or a simple organic Rankine cycle (SORC). A thermodynamic model was developed applying the mass, energy and exergy balances to all the equipment, allowing to calculate the exergy destruction in the components. In addition, a sensitivity analysis allowed studying the effect of the primary turbine inlet temperature (TIT, PHIGH, rP and TC) on the net power generated, the thermal and exergy efficiency, and some thermo-economic indicators such as the payback period (PBP), the specific investment cost (SIC), and the levelized cost of energy (LCOE), when cyclohexane, acetone and toluene are used as working fluids in the bottoming organic Rankine cycle. The parametric study results show that cyclohexane is the organic fluid that presents the best thermo-economic performance, and the optimization with the PSO method conclude a 2308.91 USD/kWh in the SIC, 0.22 USD/ kWh in the LCOE, and 9.89 year in the PBP for the RORC system. Therefore, to obtain technical and economic viability, and increase the industrial applications of these thermal systems, thermo-economic optimizations must be proposed to obtain lower values of the evaluated performance indicators.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-07-10
dc.date.submitted.none.fl_str_mv 2020-04-08
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:35:27Z
dc.date.available.none.fl_str_mv 2022-11-15T21:35:27Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/1029
dc.identifier.doi.none.fl_str_mv 10.1016/j.heliyon.2020.e04459
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/1029
identifier_str_mv 10.1016/j.heliyon.2020.e04459
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Elsevier Ltd
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1029/1/1-s2.0-S2405844020313037-main.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1029/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1029/3/license.txt
bitstream.checksum.fl_str_mv 3c124c060589af8f0811a2b1da89f5b2
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203411346751488
spelling Cardenas Gutierrez, Javier2c3e35c2-45ea-4342-ad1b-802ca53f8f0fValencia Ochoa, GuillermoDuarte-Forero, Jorge2022-11-15T21:35:27Z2022-11-15T21:35:27Z2020-07-102020-04-08https://hdl.handle.net/20.500.12834/102910.1016/j.heliyon.2020.e04459Universidad del AtlánticoRepositorio Universidad del AtlánticoThis paper presents a comparative study on the energy, exergetic and thermo-economic performance of a novelty thermal power system integrated by a supercritical CO2 Brayton cycle, and a recuperative organic Rankine cycle (RORC) or a simple organic Rankine cycle (SORC). A thermodynamic model was developed applying the mass, energy and exergy balances to all the equipment, allowing to calculate the exergy destruction in the components. In addition, a sensitivity analysis allowed studying the effect of the primary turbine inlet temperature (TIT, PHIGH, rP and TC) on the net power generated, the thermal and exergy efficiency, and some thermo-economic indicators such as the payback period (PBP), the specific investment cost (SIC), and the levelized cost of energy (LCOE), when cyclohexane, acetone and toluene are used as working fluids in the bottoming organic Rankine cycle. The parametric study results show that cyclohexane is the organic fluid that presents the best thermo-economic performance, and the optimization with the PSO method conclude a 2308.91 USD/kWh in the SIC, 0.22 USD/ kWh in the LCOE, and 9.89 year in the PBP for the RORC system. Therefore, to obtain technical and economic viability, and increase the industrial applications of these thermal systems, thermo-economic optimizations must be proposed to obtain lower values of the evaluated performance indicators.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Elsevier LtdA comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cyclesPúblico generalEnergy Mechanical engineering Thermodynamics Energy conservation Gas turbine Organic Rankine cycle Supercritical CO2 Brayton cycle Exergetic analysis Energy analysis Thermo-economic indicators PSO optimizationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede Norte[1] H. Jouhara, M.A. Sayegh, Energy efficient thermal systems and processes, Therm. Sci. Eng. Prog. 7 (125–130) (2018) 1–5.[2] S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort, Techno-economic survey of organic rankine cycle (ORC) systems, Renew. Sustain. Energy Rev. 22 (2013) 168–186.[3] E.H. Wang, et al., Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine, Appl. Therm. Eng. 67 (1–2) (2014) 168–178.[4] J. Bao, L. Zhao, A review of working fluid and expander selections for organic Rankine cycle, Renew. Sustain. Energy Rev. 24 (2013) 325–342.[5] G. Valencia, A. Fontalvo, Y. C ardenas, J. Duarte, C. Isaza, Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC, Energies 12 (12) (2019).[6] A. Landelle, N. Tauveron, P. Haberschill, R. Revellin, S. Colasson, Organic Rankine cycle design and performance comparison based on experimental database, Appl. Energy 204 (2017) 1172–1187.[7] V. Dostal, M.J. Driscoll, P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Massachusetts Institute of Technology, Department of Nuclear Engineering, 2004.[8] S. Su arez de la Fuente, D. Roberge, A.R. Greig, “Safety and CO2 emissions: implications of using organic fluids in a ship’s waste heat recovery system, Mar. Pol. 75 (2017) 191–203.[9] P. Garg, P. Kumar, K. Srinivasan, Supercritical carbon dioxide Brayton cycle for concentrated solar power, J. Supercrit. Fluids 76 (2013) 54–60.[10] J. Sarkar, Second law analysis of supercritical CO2 recompression Brayton cycle, Energy 34 (9) (2009) 1172–1178.[11] Z. Liu, Z. Liu, X. Yang, H. Zhai, X. Yang, Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system, Energy Convers. Manag. 205 (2020) 112391.[12] V. Dostal, P. Hejzlar, M.J. Driscoll, The supercritical carbon dioxide power cycle: comparison to other advanced power cycles, Nuclear technology 154 (3) (2006) 283–301[13] B.D. Iverson, T.M. Conboy, J.J. Pasch, A.M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy, Appl. Energy 111 (2013) 957–970.[14] A. Toffolo, A. Lazzaretto, G. Manente, M. Paci, A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems, Appl. Energy 121 (2014) 219–232.[15] G. Valencia, C. Pe~naloza, J. Forero, Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine, Energies 12 (Oct. 2019) 4165.[16] R.S. El-Emam, I. Dincer, Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle, Appl. Therm. Eng. 59 (1–2) (2013) 435–444.[17] G. Valencia, C. Pe~naloza, J. Forero, Thermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under different compressor inlet air temperatures, Energies 12 (Dec. 2019) 4643.[18] G. Valencia, J. Duarte, C. Isaza-Roldan, Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC, Appl. Sci. 9 (19) (2019).[19] G.V. Ochoa, J.C. Gutierrez, J.D. Forero, Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine, Resources 9 (1) (2020).[20] G.V. Ochoa, J.P. Rojas, J.D. Forero, Advance exergo-economic analysis of a waste heat recovery system using ORC for a bottoming natural gas engine, Energies 13 (1) (2020) 267.[21] G. Ochoa, C. Pe~naloza, J. Rojas, Thermoeconomic modelling and parametric study of a simple ORC for the recovery of waste heat in a 2 MW gas engine under different working fluids, Appl. Sci. 9 (Oct. 2019) 4526.[22] M. Khaljani, R. Khoshbakhti Saray, K. Bahlouli, Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle, Energy Convers. Manag. 97 (2015) 154–165.[23] G.G. Esquivel-Pati~no, M. Serna-Gonz alez, F. N apoles-Rivera, Thermal integration of natural gas combined cycle power plants with CO2 capture systems and organic Rankine cycles, Energy Convers. Manag. 151 (2017) 334–342.[24] J. Song, X. Li, X. Ren, C. Gu, Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC), Energy 143 (2018) 406–416.[25] S. Katuli c, M. Cehil, D.R. Schneider, “Thermodynamic efficiency improvement of combined cycle power plant’s bottom cycle based on organic working fluids, Energy 147 (2018) 36–50.[26] S. Shaaban, Analysis of an integrated solar combined cycle with steam and organic Rankine cycles as bottoming cycles, Energy Convers. Manag. 126 (2016) 1003–1012.[27] H. Singh, R.S. Mishra, Performance analysis of solar parabolic trough collectors driven combined supercritical CO2 and organic Rankine cycle, Eng. Sci. Technol. – Int. J. 21 (3) (2018) 451–464.[28] G.V. Ochoa, C. Isaza-Roldan, J.D. Forero, A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2- megawatt four-stroke internal combustion engine, Heliyon 5 (10) (Oct. 2019), e02700.[29] T. Paanu, P. Aho, J.K. Ekman, H. Saveljeff, S. Niemi, Effect of the Exhaust Gas Side Fouling on the Performance of a Plate and Shell Type Heat Exchanger, Vaasan yliopisto, 2015.[30] V. Zare, S.M.S. Mahmoudi, M. Yari, M. Amidpour, “Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle, Energy 47 (1) (2012) 271–283.[31] A. Bejan, G. Tsatsaronis, M.J. Moran, Optimization and thermal Design, Willey, 1996.[32] V. Zare, S.M.S. Mahmoudi, M. Yari, “An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle, Energy 61 (2013) 397–409.[33] H. Ghaebi, M. Amidpour, S. Karimkashi, O. Rezayan, Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover, Int. J. Energy Res. 35 (8) (2011) 697–709.[34] Z. Guo-Yan, W. En, T. Shan-Tung, “Techno-economic study on compact heat exchangers, Int. J. Energy Res. 32 (12) (2008) 1119–1127.[35] H. Nami, S.M.S. Mahmoudi, A. Nemati, Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2), Appl. Therm. Eng. 110 (2017) 1315–1330.[36] L.S. Vieira, J.L. Donatelli, M.E. Cruz, Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator, Appl. Therm. Eng. 26 (5–6) (2006) 654–662.[37] B.F. Tchanche, Low-grade Heat Conversion into Power Using Small Scale Organic Rankine Cycles, Ph.D Thesis, 2010.[38] Z. Han, P. Li, X. Han, Z. Mei, Z. Wang, Thermo-economic performance analysis of a regenerative superheating organic rankine cycle for waste heat recovery, Energies 10 (10) (2017) 1593.[39] M. Preißinger, D. Brüggemann, Thermoeconomic evaluation of modular organic Rankine cycles for waste heat recovery over a broad range of heat source temperatures and capacities, Energies 10 (3) (2017) 269.[40] L.G.O. Quinones, L.F.A. Viana, G.E.V. Ochoa, Thermal design and rating of a shell and tube heat exchanger using a matlab® GUI, Indian J. Sci. Technol. 10 (25) (2017) 1–9.[41] Y. Jiang, E. Liese, S.E. Zitney, D. Bhattacharyya, Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles, Appl. Energy 231 (2018) 1019–1032.[42] G. Valencia, J. Nú~nez, J. Duarte, Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines, Entropy 21 (7) (2019).[43] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1995, pp. 1942–1948.[44] R. V Rao, V.K. Patel, Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm, Int. J. Therm. Sci. 49 (9) (2010) 1712–1721.[45] V. Zare, A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants, Energy Convers. Manag. 105 (2015) 127–138.[46] R.V. Padilla, Y.C. Soo Too, R. Benito, W. Stein, Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, Appl. Energy 148 (2015) 348–365.[47] V. Eveloy, W. Karunkeyoon, P. Rodgers, A. Al Alili, “Energy, exergy and economic analysis of an integrated solid oxide fuel cell–gas turbine–organic Rankine power generation system, Int. J. Hydrogen Energy 41 (31) (2016) 13843–13858.[48] H.D.M. Hettiarachchi, M. Golubovic, W.M. Worek, Y. Ikegami, Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources, Energy 32 (9) (2007) 1698–1706.[49] M.H. Ahmadi, et al., Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas, J. Nat. Gas Sci. Eng. 34 (2016) 428–438.[50] Y. Feng, Y. Zhang, B. Li, J. Yang, Y. Shi, Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery, Energy 82 (2015) 664–677.[51] E. Cayer, N. Galanis, H. Nesreddine, Parametric study and optimization of a transcritical power cycle using a low temperature source, Appl. Energy 87 (4) (2010) 1349–1357.[52] S. Quoilin, S. Declaye, B.F. Tchanche, V. Lemort, Thermo-economic optimization of waste heat recovery Organic Rankine Cycles, Appl. Therm. Eng. 31 (14–15) (2011) 2885–2893.[53] L. Tocci, T. Pal, I. Pesmazoglou, B. Franchetti, Small scale organic rankine cycle (ORC): a techno-economic review, Energies 10 (4) (2017) 413.http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S2405844020313037-main.pdf1-s2.0-S2405844020313037-main.pdfapplication/pdf8033634https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1029/1/1-s2.0-S2405844020313037-main.pdf3c124c060589af8f0811a2b1da89f5b2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1029/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1029/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1029oai:repositorio.uniatlantico.edu.co:20.500.12834/10292022-11-15 16:35:28.44DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==