Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods

Bone substitutes based on xenografts have been used for a long time in bone regeneration thanks to their inductive capacity for bone tissue regeneration. Some bone-based scaffolds have been modified by adding collagen and other proteins to improve their regenerative capacity and prevent migration an...

Full description

Autores:
Valencia Llano, Carlos Humberto
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/785
Acceso en línea:
https://hdl.handle.net/20.500.12834/785
Palabra clave:
biocompatibility
bone substitutes
collagen
xenografts
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_f4c81701cbc06da4ba4649b9bacaeafc
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/785
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods
title Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods
spellingShingle Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods
biocompatibility
bone substitutes
collagen
xenografts
title_short Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods
title_full Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods
title_fullStr Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods
title_full_unstemmed Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods
title_sort Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods
dc.creator.fl_str_mv Valencia Llano, Carlos Humberto
dc.contributor.author.none.fl_str_mv Valencia Llano, Carlos Humberto
dc.contributor.other.none.fl_str_mv López Tenorio, Diego
Grande Tovar, Carlos David
dc.subject.keywords.spa.fl_str_mv biocompatibility
bone substitutes
collagen
xenografts
topic biocompatibility
bone substitutes
collagen
xenografts
description Bone substitutes based on xenografts have been used for a long time in bone regeneration thanks to their inductive capacity for bone tissue regeneration. Some bone-based scaffolds have been modified by adding collagen and other proteins to improve their regenerative capacity and prevent migration and aggregation, especially particles. However, rejection of this graft has been reported due to protein residues caused by poor material preparation. We compared the in vitro and in vivo biological response of two commercial xenografts (InterOss®, F1 and InterOss® Collagen, F2) and a commercial porcine collagen membrane (InterCollagen® Guide, F3) as a rapid degradation control. Fourier Transform Infrared Spectroscopy (FT-IR) analysis evidenced the presence of hydroxyl, orthophosphate, and carbonate groups of the xenografts and amide groups of collagen. Thermogravimetric analysis (TGA) of the xenografts demonstrated their thermal stability and the presence of a few amounts of organic material. The study by differential scanning calorimetry showed the presence of endothermic peaks typical of the dehydration of the xenografts (F1 and F2) and for the collagen membrane (F3), the beginning of structural three-dimensional protein changes. Subsequently, in vitro biocompatibility tests were carried out for the materials with Artemia salina and MTT cell viability with HeLa cells, demonstrating the high biocompatibility of the materials. Finally, in vivo biocompatibility was studied by implanting xenografts in biomodels (Wistar rats) at different periods (30, 60, and 90 days). The F1 xenograft (InterOss) remained remarkably stable throughout the experiment (90 days). F2 (InterOss Collagen) presented a separation of its apatite and collagen components at 60 days and advanced resorption at 90 days of implantation. Finally, the collagen membrane (F3) presented faster resorption since, at 90 days, only some tiny fragments of the material were evident. All the in vivo and in vitro test results demonstrated the biocompatibility of the xenografts, demonstrating the potential of these materials for tissue engineering.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:16:35Z
dc.date.available.none.fl_str_mv 2022-11-15T19:16:35Z
dc.date.issued.none.fl_str_mv 2022-06-30
dc.date.submitted.none.fl_str_mv 2022-06-13
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Valencia-Llano, C.H.; López-Tenorio, D.; Grande-Tovar, C.D. Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods. Polymers 2022, 14, 2672. https:// doi.org/10.3390/polym14132672
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/785
dc.identifier.doi.none.fl_str_mv 10.3390/polym14132672
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv Valencia-Llano, C.H.; López-Tenorio, D.; Grande-Tovar, C.D. Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods. Polymers 2022, 14, 2672. https:// doi.org/10.3390/polym14132672
10.3390/polym14132672
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/785
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Polymers
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/785/1/polymers-14-02672.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/785/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/785/3/license.txt
bitstream.checksum.fl_str_mv 6bac86751a3232b641de0079c59758fa
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203414908764160
spelling Valencia Llano, Carlos Humberto5001100c-6436-4cba-b693-132c254d6451López Tenorio, DiegoGrande Tovar, Carlos DavidColombia2022-11-15T19:16:35Z2022-11-15T19:16:35Z2022-06-302022-06-13Valencia-Llano, C.H.; López-Tenorio, D.; Grande-Tovar, C.D. Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods. Polymers 2022, 14, 2672. https:// doi.org/10.3390/polym14132672https://hdl.handle.net/20.500.12834/78510.3390/polym14132672Universidad del AtlánticoRepositorio Universidad del AtlánticoBone substitutes based on xenografts have been used for a long time in bone regeneration thanks to their inductive capacity for bone tissue regeneration. Some bone-based scaffolds have been modified by adding collagen and other proteins to improve their regenerative capacity and prevent migration and aggregation, especially particles. However, rejection of this graft has been reported due to protein residues caused by poor material preparation. We compared the in vitro and in vivo biological response of two commercial xenografts (InterOss®, F1 and InterOss® Collagen, F2) and a commercial porcine collagen membrane (InterCollagen® Guide, F3) as a rapid degradation control. Fourier Transform Infrared Spectroscopy (FT-IR) analysis evidenced the presence of hydroxyl, orthophosphate, and carbonate groups of the xenografts and amide groups of collagen. Thermogravimetric analysis (TGA) of the xenografts demonstrated their thermal stability and the presence of a few amounts of organic material. The study by differential scanning calorimetry showed the presence of endothermic peaks typical of the dehydration of the xenografts (F1 and F2) and for the collagen membrane (F3), the beginning of structural three-dimensional protein changes. Subsequently, in vitro biocompatibility tests were carried out for the materials with Artemia salina and MTT cell viability with HeLa cells, demonstrating the high biocompatibility of the materials. Finally, in vivo biocompatibility was studied by implanting xenografts in biomodels (Wistar rats) at different periods (30, 60, and 90 days). The F1 xenograft (InterOss) remained remarkably stable throughout the experiment (90 days). F2 (InterOss Collagen) presented a separation of its apatite and collagen components at 60 days and advanced resorption at 90 days of implantation. Finally, the collagen membrane (F3) presented faster resorption since, at 90 days, only some tiny fragments of the material were evident. All the in vivo and in vitro test results demonstrated the biocompatibility of the xenografts, demonstrating the potential of these materials for tissue engineering.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PolymersBiocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo MethodsPúblico generalbiocompatibilitybone substitutescollagenxenograftsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede NorteBassi, A.P.F.; Bizelli, V.F.; Consolaro, R.B.; de Carvalho, P.S.P. Biocompatibility and Osteopromotor Factor of Bovine Integral Bone—A Microscopic and Histometric Analysis. Front. Oral Maxillofac. Med. 2021, 3, 1–11. [CrossRef]Hosseinpour, S.; Gaudin, A.; Peters, O.A. A Critical Analysis of Research Methods and Experimental Models to Study Biocompatibility of Endodontic Materials. Int. Endod. J. 2022, 1–24. [CrossRef]Zhao, R.; Yang, R.; Cooper, P.R.; Khurshid, Z.; Shavandi, A.; Ratnayake, J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021, 26, 3007. [CrossRef]Gill, S.; Prakash, M.; Forghany, M.; Vaderhobli, R.M. An Ethical Perspective to Using Bone Grafts in Dentistry. J. Am. Dent. Assoc. 2022, 153, 88–91. [CrossRef]Dorj, B.; Won, J.-E.; Purevdorj, O.; Patel, K.D.; Kim, J.-H.; Lee, E.-J.; Kim, H.-W. A Novel Therapeutic Design of Microporous- Structured Biopolymer Scaffolds for Drug Loading and Delivery. Acta Biomater. 2014, 10, 1238–1250. [CrossRef]Patel, K.D.; Kim, T.-H.; Mandakhbayar, N.; Singh, R.K.; Jang, J.-H.; Lee, J.-H.; Kim, H.-W. Coating Biopolymer Nanofibers with Carbon Nanotubes Accelerates Tissue Healing and Bone Regeneration through Orchestrated Cell-and Tissue-Regulatory Responses. Acta Biomater. 2020, 108, 97–110. [CrossRef]Catauro, M.; Tranquillo, E.; Poggetto, G.D.; Naviglio, S.; Barrino, F. Antibacterial Properties of Sol–Gel Biomaterials with Different Percentages of PEG or PCL. In Proceedings of the Macromolecular Symposia; Wiley Online Library: Hoboken, NJ, USA, 2020; Volume 389, p. 1900056.Wu, J.; Jiang, L.; Ju, L.; Zhang, Y.; Li, M.; Liu, X.; Qu, X. A Novel Compound Bone Articular Repair Material Combining Deproteinized Osteoarticulation with Calcium Phosphate Cement and BMP-9. Mater. Des. 2021, 210, 110021. [CrossRef]Rather, H.A.; Patel, R.; Yadav, U.C.S.; Vasita, R. Dual Drug-Delivering Polycaprolactone-Collagen Scaffold to Induce Early Osteogenic Differentiation and Coupled Angiogenesis. Biomed. Mater. 2020, 15, 45008. [CrossRef]Suh, H.; Han, D.; Park, J.; Lee, D.H.; Lee, W.S.; Han, C.D. A Bone Replaceable Artificial Bone Substitute: Osteoinduction by Combining with Bone Inducing Agent. Artif. Organs 2001, 25, 459–466. [CrossRef]Dumitrescu, C.R.; Neacsu, I.A.; Surdu, V.A.; Nicoara, A.I.; Iordache, F.; Trusca, R.; Ciocan, L.T.; Ficai, A.; Andronescu, E. Nano-Hydroxyapatite vs. Xenografts: Synthesis, Characterization, and in Vitro Behavior. Nanomaterials 2021, 11, 2289. [CrossRef]Kao, S.T.; Scott, D.D. A Review of Bone Substitutes. Oral Maxillofac. Surg Clin 2007, 19, 513–521. [CrossRef]Precheur, H.V. Bone Graft Materials. Dent. Clin. N. Am. 2007, 51, 729–746. [CrossRef]Sheikh, Z.; Sima, C.; Glogauer, M. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation. Materials 2015, 8, 2953–2993. [CrossRef]Keil, C.; Gollmer, B.; Zeidler-Rentzsch, I.; Gredes, T.; Heinemann, F. Histological Evaluation of Extraction Sites Grafted with Bio-Oss Collagen: Randomized Controlled Trial. Ann. Anat. 2021, 237, 151722. [CrossRef]Ryan, A.J.; Gleeson, J.P.; Matsiko, A.; Thompson, E.M.; O’Brien, F.J. Effect of Different Hydroxyapatite Incorporation Methods on the Structural and Biological Properties of Porous Collagen Scaffolds for Bone Repair. J. Anat. 2015, 227, 732–745. [CrossRef]Lee, D.S.H.; Pai, Y.; Chang, S. Physicochemical Characterization of InterOss® and Bio-Oss® Anorganic Bovine Bone Grafting Material for Oral Surgery–A Comparative Study. Mater. Chem. Phys. 2014, 146, 99–104. [CrossRef]Milhem, M.M.; Al-Hiyasat, A.S.; Darmani, H. Toxicity Testing of Restorative Dental Materials Using Brine Shrimp Larvae (Artemia salina). J. Appl. Oral Sci. 2008, 16, 297–301. [CrossRef]Demarchi, C.A.; Cruz, A.B.; da Silva Bitencourt, C.M.; Farias, I.V.; S´lawska-Waniewska, A.; Nedelko, N.; Dłuz˙ ewski, P.; Morawiec, K.; Calisto, J.F.F.; Martello, R.; et al. Eugenia Umbelliflora Mediated Reduction of Silver Nanoparticles Incorporated into O-Carboxymethylchitosan/y-Fe2O3: Synthesis, Antimicrobial Activity and Toxicity. Int. J. Biol. Macromol. 2020, 155, 614–624. [CrossRef]Shelembe, B.; Mahlangeni, N.; Moodley, R. Biosynthesis and Bioactivities of Metal Nanoparticles Mediated by Helichrysum Aureonitens. J. Anal. Sci. Technol. 2022, 13, 1–11. [CrossRef]Bakker, A.D.; Klein-Nulend, J. Osteoblast Isolation from Murine Calvaria and Long Bones. In Bone Research Protocols, Methods in Molecular Biology; Helfrich, M., Ralston, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 816, pp. 19–30; ISBN 9781617794155.Werner, J.; Linner-Krˇcmar, B.; Friess, W.; Greil, P. Mechanical Properties and in Vitro Cell Compatibility of Hydroxyapatite Ceramics with Graded Pore Structure. Biomaterials 2002, 23, 4285–4294. [CrossRef]Jain, G.; Blaauw, D.; Chang, S. A Comparative Study of Two Bone Graft Substitutes—InterOss®Collagen and OCS-B Collagen®. J. Funct. Biomater. 2022, 13, 28. [CrossRef]Mujahid, M.; Sarfraz, S.; Amin, S. On the Formation of Hydroxyapatite Nano Crystals Prepared Using Cationic Surfactant. Mater. Res. 2015, 18, 468–472. [CrossRef]Lee, J.H.; Yi, G.S.; Lee, J.W.; Kim, D.J. Physicochemical Characterization of Porcine Bone-Derived Grafting Material and Comparison with Bovine Xenografts for Dental Applications. J. Periodontal Implant Sci. 2017, 47, 388–401. [CrossRef]Pullicino, E.; Zou, W.; Gresil, M.; Soutis, C. The Effect of Shear Mixing Speed and Time on the Mechanical Properties of GNP/Epoxy Composites. Appl. Compos. Mater. 2017, 24, 301–311. [CrossRef]Hu, G.; Nicholas, N.J.; Smith, K.H.; Mumford, K.A.; Kentish, S.E.; Stevens, G.W. Carbon Dioxide Absorption into Promoted Potassium Carbonate Solutions: A Review. Int. J. Greenh. Gas Control 2016, 53, 28–40. [CrossRef]Ahmadi, A.; Ahmadi, P.; Ehsani, A. Development of an Active Packaging System Containing Zinc Oxide Nanoparticles for the Extension of Chicken Fillet Shelf Life. Food Sci. Nutr. 2020, 8, 5461–5473. [CrossRef]Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR Analysis of Natural and Synthetic Collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [CrossRef]Chen, J.; Li, L.; Yi, R.; Xu, N.; Gao, R.; Hong, B. Extraction and Characterization of Acid-Soluble Collagen from Scales and Skin of Tilapia (Oreochromis Niloticus). LWT-Food Sci. Technol. 2016, 66, 453–459. [CrossRef]Safandowska, M.; Pietrucha, K. Effect of Fish Collagen Modification on Its Thermal and Rheological Properties. Int. J. Biol. Macromol. 2013, 53, 32–37. [CrossRef]León-Mancilla, B.H.; Araiza-Téllez, M.A.; Flores-Flores, J.O.; Piña-Barba, M.C. Physico-Chemical Characterization of Collagen Scaffolds for Tissue Engineering. J. Appl. Res. Technol. 2016, 14, 77–85. [CrossRef]Sionkowska, A.; Kozłowska, J. Characterization of Collagen/Hydroxyapatite Composite Sponges as a Potential Bone Substitute. Int. J. Biol. Macromol. 2010, 47, 483–487. [CrossRef]Rotini, A.; Manfra, L.; Canepa, S.; Tornambè, A.; Migliore, L. Can Artemia Hatching Assay Be a (Sensitive) Alternative Tool to Acute Toxicity Test? Bull. Environ. Contam. Toxicol. 2015, 95, 745–751. [CrossRef]Morgana, S.; Estévez-Calvar, N.; Gambardella, C.; Faimali, M.; Garaventa, F. A Short-Term Swimming Speed Alteration Test with Nauplii of Artemia Franciscana. Ecotoxicol. Environ. Saf. 2018, 147, 558–564. [CrossRef]Muhammad,W.; Ullah, N.; Khans, M.; Ahmad,W.; Khan, M.Q.; Abbasi, B.H. Why Brine Shrimp (Artemia salina) Larvae Is Used as a Screening System for Nanomaterials? The Science of Procedure and Nano-Toxicology: A Review. Int. J. Biosci. 2019, 14, 156–176.Vanhaecke, P.; Persoone, G. The ARC-Test: A Standardized Short-Term Routine Toxicity Test with Artemia Nauplii. Methodology and Evaluation. Ecotoxicological Test. Mar. Environ. 1984, 2, 143–157.Pelka, M.; Danzl, C.; Distler, W.; Petschelt, A. A New Screening Test for Toxicity Testing of Dental Materials. J. Dent. 2000, 28, 341–345. [CrossRef]Lagarto Parra, A.; Silva Yhebra, R.; Guerra Sardiñas, I.; Iglesias Buela, L. Comparative Study of the Assay of Artemia salina L. And the Estimate of the Medium Lethal Dose (LD50 Value) in Mice, to Determine Oral Acute Toxicity of Plant Extracts. Phytomedicine 2001, 8, 395–400. [CrossRef]El Fels, L.; Hafidi, M.; Ouhdouch, Y. Artemia salina as a New Index for Assessment of Acute Cytotoxicity during Co-Composting of Sewage Sludge and Lignocellulose Waste. Waste Manag. 2016, 50, 194–200. [CrossRef]Asadi Dokht Lish, R.; Johari, S.A.; Sarkheil, M.; Yu, I.J. On How Environmental and Experimental Conditions Affect the Results of Aquatic Nanotoxicology on Brine Shrimp (Artemia salina): A Case of Silver Nanoparticles Toxicity. Environ. Pollut. 2019, 255, 113358. [CrossRef]Pecoraro, R.; Scalisi, E.M.; Messina, G.; Fragalà, G.; Ignoto, S.; Salvaggio, A.; Zimbone, M.; Impellizzeri, G.; Brundo, M.V. Artemia salina: A Microcrustacean to Assess Engineered Nanoparticles Toxicity. Microsc. Res. Tech. 2020, 84, 531–536. [CrossRef]Madhav, M.R.; David, S.E.M.; Kumar, R.S.S.; Swathy, J.S.; Bhuvaneshwari, M.; Mukherjee, A.; Chandrasekaran, N. Toxicity and Accumulation of Copper Oxide (CuO) Nanoparticles in Different Life Stages of Artemia salina. Environ. Toxicol. Pharmacol. 2017, 52, 227–238. [CrossRef] [PubMed]Bhuvaneshwari, M.; Thiagarajan, V.; Nemade, P.; Chandrasekaran, N.; Mukherjee, A. Toxicity and Trophic Transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina: Effect of Dietary and Waterborne Exposure. Environ. Res. 2018, 160, 39–46. [CrossRef] [PubMed]Zhu, B.; Zhu, S.; Li, J.; Hui, X.;Wang, G.X. The Developmental Toxicity, Bioaccumulation and Distribution of Oxidized Single Walled Carbon Nanotubes in: Artemia salina. Toxicol. Res. 2018, 7, 897–906. [CrossRef] [PubMed]Alves, P.e.S.; Oliveira, M.d.D.A.d.; Marcos de Almeida, P.; Martins, F.A.; Amélia de Carvalho Melo Cavalcante, A.; de Jesus Aguiar dos Santos Andrade, T.; Feitosa, C.M.; Rai, M.; Campinho dos Reis, A.; Soares da Costa Júnior, J. Determination by Chromatography and Cytotoxotoxic and Oxidative Effects of Pyriproxyfen and Pyridalyl. Chemosphere 2019, 224, 398–406. [CrossRef]Sarmento, P.d.A.; Ataíde, T.d.R.; Pinto, A.P.d.S.; de Araújo-Júnior, J.X.; Lúcio, I.M.L.; Bastos, M.L.d.A. Avaliação Do Extrato Da Zeyheria Tuberculosa Na Perspectiva de Um Produto Para Cicatrização de Feridas. Rev. Lat. Am. Enfermagem 2014, 22, 165–172. [CrossRef]Morgan, D.M.L. Tetrazolium (MTT) Assay for Cellular Viability and Activity. In Polyamine Protocols; Springer: Berlin/Heidelberg, Germany, 1998; pp. 179–184.Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium Salts and Formazan Products in Cell Biology: Viability Assessment, Fluorescence Imaging, and Labeling Perspectives. Acta Histochem. 2018, 120, 159–167. [CrossRef]Milhan, N.V.M.; Carvalho, I.C.S.; do Prado, R.F.; Trichês, E.D.S.; Camargo, C.H.R.; Camargo, S.E.A. Analysis of Indicators of Osteogenesis, Cytotoxicity and Genotoxicity of an Experimental -TCP Compared to Other Bone Substitutes. Acta Sci. Heal. Sci. 2017, 39, 97–105. [CrossRef]Wang, T.Y.; Xu, S.L.; Wang, Z.P.; Guo, J.Y. Mega-Oss and Mega-TCP versus Bio-Oss Granules Fixed by Alginate Gel for Bone Regeneration. BDJ Open 2020, 6, 1–8. [CrossRef]Naujokat, H.; Rohwedder, J.; Gülses, A.; Cenk Aktas, O.; Wiltfang, J.; Açil, Y. CAD/CAM Scaffolds for Bone Tissue Engineering: Investigatuon of Biocompatibility of Selective Laser Melted Lightweight Titanium. IET Nanobiotechnol. 2020, 14, 584–589. [CrossRef]Jing, L.; Wei, Q.; Xiaoqi, R.; Hao, S.; Ting, Y.; Chengzhong, S.; Baoxing, L.; Yaping, Z. Calcined Bovine Bone Combined with Acellular Dermal Matrix for Maintaining the Alveolar Ridge in Dog. Chinese J. Tissue Eng. Res. 2022, 26, 3445–3449.Aslantürk, Ö.S. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Genotoxicity-A Predict. Risk Our Act. World 2018, 2, 64–80.Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [CrossRef] [PubMed]Adib, Y.; Bensussan, A.; Michel, L. CutaneousWound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators Inflamm. 2022, 2022, 5344085. [CrossRef] [PubMed]http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALpolymers-14-02672.pdfpolymers-14-02672.pdfapplication/pdf5458957https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/785/1/polymers-14-02672.pdf6bac86751a3232b641de0079c59758faMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/785/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/785/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/785oai:repositorio.uniatlantico.edu.co:20.500.12834/7852022-11-15 14:16:36.407DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==