Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO

Two equilibrium FCC catalysts of the octane-barrel (ECAT-D) and resid (ECAT-R) types were used in the cracking of a typical vacuum gasoil (VGO) and its saturated (SF), aromatic (AF), and resin (RF) fractions. The experiments were carried out in a batch, fluidized bed laboratory CREC Riser Simulator...

Full description

Autores:
Fals, Jayson
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/892
Acceso en línea:
https://hdl.handle.net/20.500.12834/892
Palabra clave:
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIATLANT2_ec2e91d09df5a87665419468db9d1353
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/892
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO
title Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO
spellingShingle Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO
title_short Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO
title_full Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO
title_fullStr Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO
title_full_unstemmed Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO
title_sort Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO
dc.creator.fl_str_mv Fals, Jayson
dc.contributor.author.none.fl_str_mv Fals, Jayson
dc.contributor.other.none.fl_str_mv Garcia, Juan Rafael
Falco, Marisa
Sedran, Ulises
description Two equilibrium FCC catalysts of the octane-barrel (ECAT-D) and resid (ECAT-R) types were used in the cracking of a typical vacuum gasoil (VGO) and its saturated (SF), aromatic (AF), and resin (RF) fractions. The experiments were carried out in a batch, fluidized bed laboratory CREC Riser Simulator reactor. The reaction temperature was 500 °C, the catalyst-to-oil relationship was 1, with 0.2 g of the catalyst being used in each experiment, and the reaction times were 0.7, 1.5, and 3 s. The ranking of the reactivities of the different feedstocks was SF > VGO > AF > RF over both catalysts. While the AF and RF fractions yielded more gasoline than the SF fraction, the latter showed the highest yields of LPG. The coke forming trend followed the order SF < VGO < AF < RF. Even though catalyst ECAT-D, with a higher and stronger acidity, was more active than catalyst ECAT-R, which has less acidity and better textural properties (higher mesoporosity and pore diameter), the latter was less affected by coke deposition, considering the changes in the specific surface area and acidic properties after use. Coke impacted more severely on Brönsted acid sites than on Lewis sites, particularly when the AF and RF fractions were used. The stronger acid sites were more severely affected by coke, particularly in catalyst ECAT-D. The negative effect on strong acidic sites was consistent with the increasing basic character of the feedstocks, following the order SF < VGO < AF < RF
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-10-23
dc.date.submitted.none.fl_str_mv 2020-08-18
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:50:00Z
dc.date.available.none.fl_str_mv 2022-11-15T20:50:00Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/892
dc.identifier.doi.none.fl_str_mv 10.1021/acs.energyfuels.0c02804
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/892
identifier_str_mv 10.1021/acs.energyfuels.0c02804
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Energy & Fuels
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/892/1/CONICET_Digital_Nro.eea751ea-6bcf-4642-a7bb-61350315af75_A.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/892/2/license.txt
bitstream.checksum.fl_str_mv a904d2f099127781da65a84d0ec6250c
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203412789592064
spelling Fals, Jayson0cb0269f-bd3a-43cb-9406-3da86b5fff90Garcia, Juan RafaelFalco, MarisaSedran, Ulises2022-11-15T20:50:00Z2022-11-15T20:50:00Z2020-10-232020-08-18https://hdl.handle.net/20.500.12834/89210.1021/acs.energyfuels.0c02804Universidad del AtlánticoRepositorio Universidad del AtlánticoTwo equilibrium FCC catalysts of the octane-barrel (ECAT-D) and resid (ECAT-R) types were used in the cracking of a typical vacuum gasoil (VGO) and its saturated (SF), aromatic (AF), and resin (RF) fractions. The experiments were carried out in a batch, fluidized bed laboratory CREC Riser Simulator reactor. The reaction temperature was 500 °C, the catalyst-to-oil relationship was 1, with 0.2 g of the catalyst being used in each experiment, and the reaction times were 0.7, 1.5, and 3 s. The ranking of the reactivities of the different feedstocks was SF > VGO > AF > RF over both catalysts. While the AF and RF fractions yielded more gasoline than the SF fraction, the latter showed the highest yields of LPG. The coke forming trend followed the order SF < VGO < AF < RF. Even though catalyst ECAT-D, with a higher and stronger acidity, was more active than catalyst ECAT-R, which has less acidity and better textural properties (higher mesoporosity and pore diameter), the latter was less affected by coke deposition, considering the changes in the specific surface area and acidic properties after use. Coke impacted more severely on Brönsted acid sites than on Lewis sites, particularly when the AF and RF fractions were used. The stronger acid sites were more severely affected by coke, particularly in catalyst ECAT-D. The negative effect on strong acidic sites was consistent with the increasing basic character of the feedstocks, following the order SF < VGO < AF < RFapplication/pdfengEnergy & FuelsPerformance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGOPúblico generalinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede Norteinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2(1) Xu, C.; Gao, J.; Zhao, S.; Lin, S. Correlation between feedstock SARA components and FCC product yields. Fuel 2005, 84, 669−674(2) Speight, J. The Chemistry and Technology of Petroleum, Fifth ed.; CRC Press-Taylor & Francis Group: Boca Raton, LA, 2014(3) Mendes, F. L.; Texeira da Silva, V.; Pacheco, M. E.; de Rezende Pinho, A.; Henriques, C. A. Hydrotreating of fast pyrolysis oil: A comparison of carbons and carboncovered alumina as supports for Ni2P. Fuel 2020, 264, 116764(4) Jimenez-García, G.; Aguilar-Lo ́ pez, R.; Maya-Yescas, R. The ́ fluidized-bed catalytic cracking unit building its future environment. Fuel 2011, 90, 3531−3541(5) Palos, R.; Gutierrez, A.; Fernandez, M. L.; Trueba, D.; Bilbao, J.; ́ Arandes, J. M. Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit. Fuel Process. Technol. 2020, 205, 106454.(6) Jimenez-García, G.; de Lasa, H.; Maya-Yescas, R. Simultaneous ́ estimation of kinetics and catalysts activity during cracking of 1,3,5- tri-isopropyl benzene on FCC catalyst. Catal. Today 2014, 220-222, 178.178. (7) Matheus, C. R. V.; Aguiar, E. F. S. The role of MPV reaction in the synthesis of propene from ethanol through the acetone route. Catal. Commun. 2020, 145, 106096.(8) Chemical Reactor Technology for Environmentally Safe Reactors and Products; de Lasa, H., Dogu, G., Ravella, A. Eds.; Kluwer, Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. 225.(9) Sadeghbeigi, R., Fluid Catalytic Cracking Handbook, Third ed.; Elsevier, 2012.(10) Gilbert, W.; Morgado, E.; de Abreu, M.; de la Puente, G.; Passamonti, F.; Sedran, U. A novel fluid catalytic cracking approach for producing low aromatic LCO. Fuel Process. Technol. 2011, 92, 2235−2240.(11) Al-Absi, A.; Aitani, A.; Al-Khattaf, S. Thermal and catalytic cracking of whole crude oils at high severity. J. Anal. Appl. Pyrolysis 2020, 145, 104705.(12) Lappas, A.; Patiaka, D.; Dimitriadis, B.; Vasalos, I. Separation characterization and catalytic cracking kinetics of aromatic fractions obtained from FCC feedstocks. Appl. Catal., A 1997, 152, 7−26.(13) Sanchez-Minero, F.; Ancheyta, J.; Silva-Oliver, G.; Flores-Valle, S. Predicting SARA composition of crude oil by means of NMR. Fuel 2013, 110, 318−321.2013, 110, 318−321. (14) Fan, T.; Buckley, J. Rapid and accurate SARA analysis of medium gravity crude oils. Energy Fuels 2002, 16, 1571−1575.(15) Florez, M.; Guerrero, J.; Cabanzo, R.; Mejía-Ospino, E. SARA analysis and Conradson carbon residue prediction of Colombian crude oils using PLSR and Raman spectroscopy. J. Pet. Sci. Eng. 2017, 156, 966−970.(16) Sahu, R.; Song, B.; Im, J.; Jeon, Y.; Lee, C. A review of recent advances in catalytic hydrocracking of heavy residues. J. Ind. Eng. Chem. 2015, 27, 12−24.(17) Petti, T.; Tomczak, Z.; Pereira, C.; Cheng, W. Investigation of nickel species on commercial FCC equilibrium catalysts-implications on catalyst performance and laboratory evaluation. Appl. Catal., A 1998, 169, 95−109.(18) Yuxia, Z.; Quansheng, D.; Wei, L.; Liwen, T.; Jun, L. Studies of iron effects on FCC catalysts. Fluid Catalytic Cracking VII Materials, Methods and Process Innovations; Elsevier, 2007; Vol. 166, pp 201− 212.(19) ASTM D2007-11: Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method; ASTM International, 2016.016. (20) Fals, J.; García, J. R.; Falco, M.; Sedran, U. Coke from SARA fractions in VGO. Impact on Y zeolite acidity and physical properties. Fuel 2018, 225, 26−34.(21) Mullins, O.; Sheu, E.; Hammami, A.; Marshall, A. Asphaltenes, heavy oils and petroleomics; Springer: New York, NY, 2007.(22) Nalwaya, V.; Tantayakom, V.; Piumsomboon, P.; Fogler, S. Studies on asphaltenes through analysis of polar fractions. Ind. Eng. Chem. Res. 1999, 38, 964−972.(23) Pereira, J. C.; Lopez, I.; Salas, R.; Silva, F.; Fernandez, C.; Urbina, C.; Lopez, J. C. Resins: The molecules responsible for the stability/instability phenomena of asphaltenes. Energy Fuels 2007, 21, 1317−1321.(24) Al-Khattaf, S.; de Lasa, H. The role of diffusion in alkylbenzenes catalytic cracking. Appl. Catal., A 2002, 226, 139−153(25) Scherzer, J. Octane-enhancing, zeolitic FCC catalysts: scientific and technical aspects. Catal. Rev.: Sci. Eng. 1989, 31, 215−354.(26) Karakhanov, E.; Glotov, A.; Nikiforova, A.; Vutolkina, A.; Ivanov, A.; Kardashev, S.; Maksimov, A.; Lysenko, S. Catalytic cracking additives based on mesoporous MCM-41 for sulfur removal. Fuel Process. Technol. 2016, 153, 50−57.(27) Bobkova, T.; Potapenko, O.; Doronin, V.; Sorokina, T. Transformations of n-undecane−indole model mixtures over the cracking catalysts resistant to nitrogen compounds. Fuel Process. Technol. 2018, 172, 172−178.(28) Glotov, A.; Levshakov, N.; Vutolkina, A.; Lysenko, S.; Karakhanov, E.; Vinokurov, V. Aluminosilicates supported Lacontaining sulfur reduction additives for FCC catalyst: Correlation between activity, support structure and acidity. Catal. Today 2019, 329, 135−141.(29) Pujro, R.; Falco, M.; Devard, A.; Sedran, U. Reactivity of the saturated, aromatic, and resin fractions of ATR resids under FCC conditions. Fuel 2014, 119, 219−225.(30) Martinez, C.; Verboekend, D.; Perez-Ramírez, J.; Corma, A. ́ Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. Catal. Sci. Technol. 2013, 3, 972−981.(31) García, J. R.; Falco, M.; Sedran, U. Impact of the desilication treatment of Y zeolite on the catalytic cracking of bulky hydrocarbon molecules. Top. Catal. 2016, 59, 268−277.(32) Wojciechowski, B.; Corma, A. Catalytic Cracking: Catalysts. Chemistry, and Kinetics; Marcel Dekker: New York, NY, 1986.(33) Guisnet, M.; Magnoux, P. Organic chemistry of coke formation. Appl. Catal., A 2001, 212, 83−96.(34) Ochoa, A.; Vicente, H.; Sierra, I.; Arandes, J. M.; Castaño, P. Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance. Energy 2020, 209, 118467(35) Cerqueira, H.; Caeiro, G.; Costa, L.; Ribeiro, F. R. Deactivation of FCC catalysts. J. Mol. Catal. A: Chem. 2008, 292, 1−13.(36) Guisnet, M.; Costa, L.; Ribeiro, F. R. Prevention of zeolite deactivation by coking. J. Mol. Catal. A: Chem. 2009, 305, 69−83(37) Ibarra, A.; Veloso, A.; Bilbao, J.; Arandes, J.; Castaño, P. Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions. Appl. Catal., B 2016, 182, 336−346.(38) Passamonti, F. J.; Puente, G. d. l.; Sedran, U. Comparison between MAT flow fixed bed and batch fluidized bed reactors in the evaluation of FCC catalysts. 1. Conversion and yields of the main hydrocarbon groups. Energy Fuels 2009, 23, 1358−1363.(39) Sanchez-Castillo, M. A.; Madon, R. J.; Dumesic, J. A. Role of rare earth cations in Y zeolite for hydrocarbon cracking. J. Phys. Chem. B 2005, 109, 2164−2175.(40) Trigueiro, F.; Monteiro, D.; Zotin, F.; Sousa-Aguiar, E. F. Thermal stability of Y zeolites containing different rare earth cations. J. Alloys Compd. 2002, 344, 337−341.(41) Pekediz, A.; Kraemer, D.; Chabot, J.; de Lasa, H. Mixing Patterns in a Novel Riser Simulator. In Chemical Reactor Technology for Environmentally Safe Reactors and Products; de Lasa, H., Dogu, G., Ravella, A., Eds.; Kluwer, Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. 225, pp 133−146(42) Anderson, P.; Sharkey, J.; Walsh, R. Calculation of the research octane number of motor gasolines from gas chromatographic data and a new approach to motor gasoline quality control. J. Inst. Petr. 1972, 58, 83−94.(43) Johnson, M. F. L. Estimation of the zeolite content of a catalyst from nitrogen adsorption isotherms. J. Catal. 1978, 52, 425−431(44) Emeis, C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347−54.(45) Aguayo, A.; Castaño, P.; Mier, D.; Gayubo, A.; Olazar, M.; Bilbao, J. Effect of cofeeding butane with methanol on the deactivation by coke of a HZSM-5 zeolite catalyst. Ind. Eng. Chem. Res. 2011, 50, 9980−9988(46) Castaño, P.; Elordi, G.; Olazar, M.; Bilbao, J. Imaging the profiles of deactivating species on the catalyst used for the cracking of waste polyethylene by combined microscopies. ChemCatChem 2012, 4, 631−635.(47) Behera, B.; Ray, S.; Singh, I. Structural characterization of FCC feeds from Indian refineries by NMR spectroscopy. Fuel 2008, 87, 2322−2333.(48) Bozzano, G.; Dente, M.; Carlucci, F. The effect of naphthenic components in the visbreaking modeling. Comput. Chem. Eng. 2005, 29, 1439−1446(49) Stratiev, D.; Shishkova, I.; Tsaneva, T.; Mitkova, M.; Yordanov, D. Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions. Fuel 2016, 170, 115−129(50) Ancheyta-Juarez, J.; Lopez-Isunza, F.; Aguilar-Rodriguez, E. Correlations for predicting the effect of feedstock properties on catalytic cracking kinetic parameters. Ind. Eng. Chem. Res. 1998, 37, 4637−4640.(51) Nilsson, P.; Otterstedt, J. Effect of composition of the feedstock on the catalytic cracking of heavy vacuum gas oil. Appl. Catal. 1987, 33, 145−156.(52) Gao, J.; Xu, C.; Lin, S.; Yang, G.; Guo, Y. Simulations of gas− liquid−solid 3-phase flow and reaction in FCC riser reactors. AIChE J. 2001, 47, 677−692.(53) Passamonti, F.; de La Puente, G.; Gilbert, W.; Morgado, E.; Sedran, U. Comparison between fixed fluidized bed (FFB) and batch fluidized bed reactors in the evaluation of FCC catalysts. Chem. Eng. J. 2012, 183, 433−447.(54) Meirer, F.; Kalirai, S.; Morris, D.; Soparawalla, S.; Liu, Y.; Mesu, G.; Andrews, J.; Weckhuysen, B. Life and death of a single catalytic cracking particle. Sci. Adv. 2015, 1, e1400199(55) Falco, M.; Morgado, E.; Amadeo, N.; Sedran, U. Accessibility in alumina matrices of FCC catalysts. Appl. Catal., A 2006, 315, 29−34.(56) Garcia, J. R.; Bertero, M.; Falco, M.; Sedran, U. Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication. Appl. Catal., A 2015, 503, 1−8.(57) Garcia, J. R.; Falco, M.; Sedran, U. Intracrystalline mesoporosity over Y zeolites: PASCA evaluation of the secondary cracking inhibition in the catalytic cracking of hydrocarbons. Ind. Eng. Chem. Res. 2017, 56, 1416−1423.(58) Garcia, J. R.; Falco, M.; Sedran, U. Intracrystalline mesoporosity over Y zeolites. Processing of VGO and resid-VGO mixtures in FCC. Catal. Today 2017, 296, 247−253(59) Bertero, M.; Garcia, J. R.; Falco, M.; Sedran, U. Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis. Renewable Energy 2019, 132, 11−18.(60) Bertero, M.; Garcia, J. R.; Falco, M.; Sedran, U. Conversion of cow manure pyrolytic tar under FCC conditions over modified equilibrium catalysts. Waste Biomass Valorization 2020, 11, 2925− 2933.(61) Mochizuki, H.; Yokoi, T.; Imai, H.; Namba, S.; Kondo, J. N.; Tatsumi, T. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Appl. Catal., A 2012, 449, 188−197.(62) Stratiev, D.; Galkin, V.; Shishkova, I.; Minkov, D.; Stanulov, K. Yield of products from catalytic cracking of vacuum gasoils. Chem. Technol. Fuels Oils 2007, 43, 311−318.(63) Jacobs, P. A.; Martens, J. A. Chapter 12 introduction to acid catalysis with zeolites in hydrocarbon reactions. Stud. Surf. Sci. Catal. 1991, 58, 445−496.http://purl.org/coar/resource_type/c_6501ORIGINALCONICET_Digital_Nro.eea751ea-6bcf-4642-a7bb-61350315af75_A.pdfCONICET_Digital_Nro.eea751ea-6bcf-4642-a7bb-61350315af75_A.pdfapplication/pdf1002053https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/892/1/CONICET_Digital_Nro.eea751ea-6bcf-4642-a7bb-61350315af75_A.pdfa904d2f099127781da65a84d0ec6250cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/892/2/license.txt67e239713705720ef0b79c50b2ececcaMD5220.500.12834/892oai:repositorio.uniatlantico.edu.co:20.500.12834/8922022-11-15 15:50:01.721DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==