Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres

Chitosan (CS) has special properties such as biocompatibility, biodegradability, antibacterial, and biological activity which make this material is currently studied in various applications, including tissue engineering. There are different methods to modify the morphology of CS. Most use chemical c...

Full description

Autores:
Zamora Lagos, Sara Isabel
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/901
Acceso en línea:
https://hdl.handle.net/20.500.12834/901
Palabra clave:
chitosan; spheres; morphology; physical; crosslinking; biomedical; application
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_e4269cbf6bd51e81333d5346cff0bba2
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/901
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres
title Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres
spellingShingle Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres
chitosan; spheres; morphology; physical; crosslinking; biomedical; application
title_short Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres
title_full Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres
title_fullStr Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres
title_full_unstemmed Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres
title_sort Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres
dc.creator.fl_str_mv Zamora Lagos, Sara Isabel
dc.contributor.author.none.fl_str_mv Zamora Lagos, Sara Isabel
dc.contributor.other.none.fl_str_mv Murillo Salas, Jefferson
Valencia Zapata, Mayra Eliana
Mina Hernández, José Herminsul
Grande Tovar, Carlos David
dc.subject.keywords.spa.fl_str_mv chitosan; spheres; morphology; physical; crosslinking; biomedical; application
topic chitosan; spheres; morphology; physical; crosslinking; biomedical; application
description Chitosan (CS) has special properties such as biocompatibility, biodegradability, antibacterial, and biological activity which make this material is currently studied in various applications, including tissue engineering. There are different methods to modify the morphology of CS. Most use chemical crosslinking agents, however, those methods have disadvantages such as low polymer degradability and unwanted side effects. The objective of this research was to obtain CS spheres through the physical crosslinking of commercial CS without using crosslinking agents through a simple coacervation method. A central composite experimental design was used to optimize the synthesis of the CS spheres and by the response surface methodology it was possible to obtain CS spheres with the smallest diameter and the most regular morphology. With the optimal formulation (CS solution 1.8% (w/v), acetic acid (AAC) solution 1% (w/v), sodium hydroxide (NaOH) solution 13% (w/v), relative humidity of (10%) and needle diameter of 0.6 mm), a final sphere diameter of 1 mm was obtained. Spheres were characterized by physical, chemical, thermal, and biological properties in simulated body fluid (SBF). The results obtained allowed us to understand the effect of the studied variables on the spheres’ diameter. An optimized condition facilitated the change in the morphology of the CS while maintaining its desirable properties for use in tissue engineering.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-11-20
dc.date.submitted.none.fl_str_mv 2020-09-21
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:51:43Z
dc.date.available.none.fl_str_mv 2022-11-15T20:51:43Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/901
dc.identifier.doi.none.fl_str_mv 10.3390/biomimetics5040063
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/901
identifier_str_mv 10.3390/biomimetics5040063
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Química
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Biominetics
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/901/1/Optimization_by_Central_Composite_Experimental_Des.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/901/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/901/3/license.txt
bitstream.checksum.fl_str_mv a24e08bb1b5b9850c3c2d27c1fd8a9c5
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203410625331200
spelling Zamora Lagos, Sara Isabelbff3ade9-de23-427b-8d21-6e754f98300aMurillo Salas, JeffersonValencia Zapata, Mayra ElianaMina Hernández, José HerminsulGrande Tovar, Carlos David2022-11-15T20:51:43Z2022-11-15T20:51:43Z2020-11-202020-09-21https://hdl.handle.net/20.500.12834/90110.3390/biomimetics5040063Universidad del AtlánticoRepositorio Universidad del AtlánticoChitosan (CS) has special properties such as biocompatibility, biodegradability, antibacterial, and biological activity which make this material is currently studied in various applications, including tissue engineering. There are different methods to modify the morphology of CS. Most use chemical crosslinking agents, however, those methods have disadvantages such as low polymer degradability and unwanted side effects. The objective of this research was to obtain CS spheres through the physical crosslinking of commercial CS without using crosslinking agents through a simple coacervation method. A central composite experimental design was used to optimize the synthesis of the CS spheres and by the response surface methodology it was possible to obtain CS spheres with the smallest diameter and the most regular morphology. With the optimal formulation (CS solution 1.8% (w/v), acetic acid (AAC) solution 1% (w/v), sodium hydroxide (NaOH) solution 13% (w/v), relative humidity of (10%) and needle diameter of 0.6 mm), a final sphere diameter of 1 mm was obtained. Spheres were characterized by physical, chemical, thermal, and biological properties in simulated body fluid (SBF). The results obtained allowed us to understand the effect of the studied variables on the spheres’ diameter. An optimized condition facilitated the change in the morphology of the CS while maintaining its desirable properties for use in tissue engineering.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiomineticsOptimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan SpheresPúblico generalchitosan; spheres; morphology; physical; crosslinking; biomedical; applicationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede Norte1. Ahsan, S.M.; Thomas, M.; Reddy, K.K.; Sooraparaju, S.G.; Asthana, A.; Bhatnagar, I. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol. 2018, 110, 97–109.2. Logithkumar, R.; Keshavnarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 2016, 151, 172–1883. Jose, S.; Fangueiro, J.F.; Smitha, J.; Cinu, T.A.; Chacko, A.J.; Premaletha, K.; Souto, E.B. Predictive modeling of insulin release profile from crosslinked chitosan microspheres. Eur. J. Med. Chem. 2013, 60, 249–253.4. Saranya, T.S.; Rajan, V.K.; Biswas, R.; Jayakumar, R.; Sathianarayanan, S. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int. J. Biol. Macromol. 2018, 110, 227–233.5. Zhong, R.; Zhong, Q.; Huo, M.; Yang, B.; Li, H. Preparation of biocompatible nano-ZnO/chitosan microspheres with multi-functions of antibacterial, UV-shielding and dye photodegradation. Int. J. Biol. Macromol. 2020, 146, 939–9456. Shu, X.; Zhu, K. Controlled drug release properties of ionically crosslinked chitosan beads: The influence of anion structure. Eur. J. Pharm. Biopharm. 2002, 54, 235–2437. Kucharska, M.; Walenko, K.; Butruk, B.; Brynk, T.; Heljak, M.; Ciach, T. Fabrication and characterization of chitosan microspheres agglomerated scaffolds for bone tissue engineering. Mater. Lett. 2010, 64, 1059–1062.8. Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015, 33, 362–369.9. Wegrzynowska-drzymalska, K.; Grebicka, P.; Mlynarczyk, D.T. Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications. Materials 2020, 13, 341310. Münster, L.; Capáková, Z.; Fišera, M.; Kuˇritka, I.; Vícha, J. Biocompatible dialdehyde cellulose/poly(vinyl alcohol) hydrogels with tunable properties. Carbohydr. Polym. 2019, 218, 333–34211. Luo, K.; Yang, Y.; Shao, Z. Physically Crosslinked Biocompatible Silk-Fibroin-Based Hydrogels with High Mechanical Performance. Adv. Funct. Mater. 2016, 26, 872–88012. Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 2019, 87, 20.13. Li, J.; Wu, X.; Wu, Y.; Tang, Z.; Sun, X.; Pan, M.; Chen, Y.; Li, J.; Xiao, R.; Wang, Z.; et al. Porous chitosan microspheres for application as quick in vitro and in vivo hemostat. Mater. Sci. Eng. C 2017, 77, 411–419.14. Meng, D.; Dong, L.; Wen, Y.; Xie, Q. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater. Sci. Eng. C 2015, 47, 266–27215. Abdel-Fattah, W.I.; Jiang, T.; El-Bassyouni, G.E.T.; Laurencin, C.T. Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering. Acta Biomater. 2007, 3, 503–51416. Zamora Lagos, S.I.; Murillo Salas, J.; Valencia Zapata, M.E.; Mina Hernandez, J.H.; Valencia, C.H.; Rojo, L.; Grande Tovar, C.D. Influence of the chitosan morphology on the properties of acrylic cements and their biocompatibility. RSC Adv. 2020, 10, 31156–3116417. Ohan, M.P.; Weadock, K.S.; Dunn, M.G. Synergistic effects of glucose and ultraviolet irradiation on the physical properties of collagen. J. Biomed. Mater. Res. 2002, 60, 384–39118. Becker, T.; Schlaak, M.; Strasdeit, H. Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives. React. Funct. Polym. 2000, 44, 289–29819. Lavertu, M.; Xia, Z.; Serreqi, A.N.; Berrada, M.; Rodrigues, A.; Wang, D.; Buschmann, M.D.; Gupta, A. A validated1H NMR method for the determination of the degree of deacetylation of chitosan. J. Pharm. Biomed. Anal. 2003, 32, 1149–115820. Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–291521. Navia Porras, D.P.; Gordillo Suárez,M.; Hernández Umaña, J.; Poveda Perdomo, L.G. Optimization of Physical, Optical and Barrier Properties of Films Made from Cassava Starch and Rosemary Oil. J. Polym. Environ. 2019, 27, 127–14022. Bhattarai, N.; Ramay, H.R.; Gunn, J.; Matsen, F.A.; Zhang, M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release 2005, 103, 609–62423. Tavares, L.; Zapata Noreña, C.P. Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocoll. 2019, 89, 360–36924. Tang, W.; Wang, C.; Chen, D. Kinetic studies on the pyrolysis of chitin and chitosan. Polym. Degrad. Stab. 2005, 87, 389–39425. Tavares, L.; Esparza Flores, E.E.; Rodrigues, R.C.; Hertz, P.F.; Noreña, C.P.Z. Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads. Food Hydrocoll. 2020, 106, 10587626. Sun, C.C.; Chou, S.F.; Lai, J.Y.; Cho, C.H.; Lee, C.H. Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating. Mater. Sci. Eng. C 2016, 63, 222–230.27. Colina, M.; Ayala, A.; Rincón, D.; Molina, J.; Medina, J.; Ynciarte, R.; Vargas, J.; Montilla, B. Evaluación de los procesos para la obtención química de quitina y quitosano a partir de desechos de cangejos. escala piloto e industrial. Rev. Iberoam. Polímeros 2014, 15, 21–43.28. Ways, T.M.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267.29. Kim, S. Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities. Int. J. Polym. Sci. 2018, 2018, 1708172.30. Gupta, K.C.; Jabrail, F.H. Effects of degree of deacetylation and crosslinking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohydr. Polym. 2006, 66, 43–54.31. Jayakumar, R.; Prabaharan, M.; Muzzarelli, R.A. Chitosan for Biomaterials II; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 3-540-26112-5.32. Dong, Y.; Ruan, Y.; Wang, H.; Zhao, Y.; Bi, D. Studies on glass transition temperature of chitosan with four techniques. J. Appl. Polym. Sci. 2004, 93, 1553–155833. Guinesi, L.S.; Cavalheiro, É.T.G. The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim. Acta 2006, 444, 128–13334. Moussout, H.; Ahlafi, H.; Aazza, M.; Amechrouq, A. Al2O3 /chitosan nanocomposite: Preparation, characterization and kinetic study of its thermal degradation. Thermochim. Acta 2018, 668, 169–17735. Domalik-Pyzik, P.; Chłopek, J.; Pielichowska, K. Chitosan-Based Hydrogels: Preparation, Properties, and Applications; Springer: Cham, Switzerland, 2018; pp. 1–2936. Gámiz-González, M.A.; Correia, D.M.; Lanceros-Mendez, S.; Sencadas, V.; Gómez Ribelles, J.L.; Vidaurre, A. Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr. Polym. 2017, 167, 52–58.37. Nam, Y.S.; Park, W.H.; Ihm, D.; Hudson, S.M. Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr. Polym. 2010, 80, 291–295.38. Kittur, F.S.; Harish Prashanth, K.V.; Udaya Sankar, K.; Tharanathan, R.N. Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr. Polym. 2002, 49, 185–19339. Takara, E.A.; Marchese, J.; Ochoa, N.A. NaOH treatment of chitosan films: Impact on macromolecular structure and film properties. Carbohydr. Polym. 2015, 132, 25–3040. Ibrahim, K.A.; El-Eswed, B.I.; Abu-Sbeih, K.A.; Arafat, T.A.; Al Omari, M.M.H.; Darras, F.H.; Badwan, A.A. Preparation of chito-oligomers by hydrolysis of chitosan in the presence of zeolite as adsorbent. Mar. Drugs 2016, 14, 4341. ASTM International. ASTM F1635-16, Standard Test Method for in vitro Degradation Testing of Hydrolytically Degradable; ASTM International: West Conshohocken, PA, USA, 2018; pp. 1–742. Wu, J.; Ma, G.H.; Zhao, X.; Wang, Y.Q. Biomedical application of soft nano-/microparticles. In Nano/Micro Science and Technology in Biorheology: Principles, Methods, and Applications; Springer: Tokyo, Japan, 2015; pp. 261–294. ISBN 9784431548867.43. Badawy, M.E.I.; Taktak, N.E.M.; Awad, O.M.; Elfiki, S.A.; El-Ela, N.E.A. Preparation and Characterization of Biopolymers Chitosan/Alginate/Gelatin Gel Spheres Crosslinked by Glutaraldehyde. J. Macromol. Sci. Part B 2017, 56, 359–37244. Hezma, A.M.; Elkhooly, T.A.; El-Bahy, G.S. Fabrication and characterization of bioactive chitosan microspheres incorporated with mesoporous silica nanoparticles for biomedical applications. J. Porous Mater. 2020, 27, 555–56245. Azizian, S.; Hadjizadeh, A.; Niknejad, H. Chitosan-gelatin porous scaffold incorporated with Chitosan nanoparticles for growth factor delivery in tissue engineering. Carbohydr. Polym. 2018, 202, 315–322.http://purl.org/coar/resource_type/c_6501ORIGINALOptimization_by_Central_Composite_Experimental_Des.pdfOptimization_by_Central_Composite_Experimental_Des.pdfapplication/pdf7767968https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/901/1/Optimization_by_Central_Composite_Experimental_Des.pdfa24e08bb1b5b9850c3c2d27c1fd8a9c5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/901/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/901/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/901oai:repositorio.uniatlantico.edu.co:20.500.12834/9012022-11-15 15:51:44.874DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==