Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence
A tunable quantum cascade laser (QCL) spectrometer was used to develop methods for detecting and quantifying high explosives (HE) in soil based on multivariate analysis (MVA) and artificial intelligence (AI). For quantification, mixes of 2,4-dinitrotoluene (DNT) of concentrations from 0% to 20% w/w...
- Autores:
-
Pacheco-Londoño, Leonardo C.
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/1002
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/1002
- Palabra clave:
- quantum cascade laser; remote detection; partial least squares; high explosives; artificial intelligence; machine learning
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_dcdad5870568bd69ca270453f5d2c58e |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/1002 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence |
title |
Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence |
spellingShingle |
Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence quantum cascade laser; remote detection; partial least squares; high explosives; artificial intelligence; machine learning |
title_short |
Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence |
title_full |
Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence |
title_fullStr |
Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence |
title_full_unstemmed |
Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence |
title_sort |
Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence |
dc.creator.fl_str_mv |
Pacheco-Londoño, Leonardo C. |
dc.contributor.author.none.fl_str_mv |
Pacheco-Londoño, Leonardo C. |
dc.contributor.other.none.fl_str_mv |
Warren, Eric Galán-Freyle, Nataly J. Villarreal-González, Reynaldo Aparicio-Bolaño, Joaquín A. Ospina-Castro, María L. Shih, Wei-Chuan Hernández-Rivera, Samuel P. |
dc.subject.keywords.spa.fl_str_mv |
quantum cascade laser; remote detection; partial least squares; high explosives; artificial intelligence; machine learning |
topic |
quantum cascade laser; remote detection; partial least squares; high explosives; artificial intelligence; machine learning |
description |
A tunable quantum cascade laser (QCL) spectrometer was used to develop methods for detecting and quantifying high explosives (HE) in soil based on multivariate analysis (MVA) and artificial intelligence (AI). For quantification, mixes of 2,4-dinitrotoluene (DNT) of concentrations from 0% to 20% w/w with soil samples were investigated. Three types of soils, bentonite, synthetic soil, and natural soil, were used. A partial least squares (PLS) regression model was generated for predicting DNT concentrations. To increase the selectivity, the model was trained and evaluated using additional analytes as interferences, including other HEs such as pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), and non-explosives such as benzoic acid and ibuprofen. For the detection experiments, mixes of di erent explosives with soils were used to implement two AI strategies. In the first strategy, the spectra of the samples were compared with spectra of soils stored in a database to identify the most similar soils based on QCL spectroscopy. Next, a preprocessing based on classical least squares (Pre-CLS) was applied to the spectra of soils selected from the database. The parameter obtained based on the sum of the weights of Pre-CLS was used to generate a simple binary discrimination model for distinguishing between contaminated and uncontaminated soils, achieving an accuracy of 0.877. In the second AI strategy, the same parameter was added to a principal component matrix obtained from spectral data of samples and used to generate multi-classification models based on di erent machine learning algorithms. A random forest model worked best with 0.996 accuracy and allowing to distinguish between soils contaminated with DNT, TNT, or RDX and uncontaminated soils. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-06-20 |
dc.date.submitted.none.fl_str_mv |
2020-04-02 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T21:27:05Z |
dc.date.available.none.fl_str_mv |
2022-11-15T21:27:05Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/1002 |
dc.identifier.doi.none.fl_str_mv |
10.3390/app10124178 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/1002 |
identifier_str_mv |
10.3390/app10124178 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Química |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
MDPI AG |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1002/1/app10124178.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1002/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1002/3/license.txt |
bitstream.checksum.fl_str_mv |
b8d1336815c609455161ee63782be852 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203408555442176 |
spelling |
Pacheco-Londoño, Leonardo C.99ffd41f-d01c-4fa9-ad1a-7546da8394f4Warren, EricGalán-Freyle, Nataly J.Villarreal-González, ReynaldoAparicio-Bolaño, Joaquín A.Ospina-Castro, María L.Shih, Wei-ChuanHernández-Rivera, Samuel P.2022-11-15T21:27:05Z2022-11-15T21:27:05Z2020-06-202020-04-02https://hdl.handle.net/20.500.12834/100210.3390/app10124178Universidad del AtlánticoRepositorio Universidad del AtlánticoA tunable quantum cascade laser (QCL) spectrometer was used to develop methods for detecting and quantifying high explosives (HE) in soil based on multivariate analysis (MVA) and artificial intelligence (AI). For quantification, mixes of 2,4-dinitrotoluene (DNT) of concentrations from 0% to 20% w/w with soil samples were investigated. Three types of soils, bentonite, synthetic soil, and natural soil, were used. A partial least squares (PLS) regression model was generated for predicting DNT concentrations. To increase the selectivity, the model was trained and evaluated using additional analytes as interferences, including other HEs such as pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), and non-explosives such as benzoic acid and ibuprofen. For the detection experiments, mixes of di erent explosives with soils were used to implement two AI strategies. In the first strategy, the spectra of the samples were compared with spectra of soils stored in a database to identify the most similar soils based on QCL spectroscopy. Next, a preprocessing based on classical least squares (Pre-CLS) was applied to the spectra of soils selected from the database. The parameter obtained based on the sum of the weights of Pre-CLS was used to generate a simple binary discrimination model for distinguishing between contaminated and uncontaminated soils, achieving an accuracy of 0.877. In the second AI strategy, the same parameter was added to a principal component matrix obtained from spectral data of samples and used to generate multi-classification models based on di erent machine learning algorithms. A random forest model worked best with 0.996 accuracy and allowing to distinguish between soils contaminated with DNT, TNT, or RDX and uncontaminated soils.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MDPI AGMid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial IntelligencePúblico generalquantum cascade laser; remote detection; partial least squares; high explosives; artificial intelligence; machine learninginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede Norte1. Frische, T.; Höper, H. Soil microbial parameters and luminescent bacteria assays as indicators for in situ bioremediation of TNT-contaminated soils. Chemosphere 2003, 50, 415–4272. Correa-Torres, S.N.; Pacheco-Londono, L.C.; Espinosa-Fuentes, E.A.; Rodriguez, L.; Souto-Bachiller, F.A.; Hernandez-Rivera, S.P. TNT removal from culture media by three commonly available wild plants growing in the Caribbean. J. Environ. Monit. 2012, 14, 30–33.3. Hildenbrand, J.; Herbst, J.; Wöllenstein, J.; Lambrecht, A. Explosive detection using infrared laser spectroscopy. Proc. SPIE 2009, 7222, 72220B.4. Narang, U.; Gauger, P.R.; Ligler, F.S. A Displacement Flow Immunosensor for Explosive Detection Using Microcapillaries. Anal. Chem. 1997, 69, 2779–2785.5. Hilmi, A.; Luong, J.H.T. Micromachined Electrophoresis Chips with Electrochemical Detectors for Analysis of Explosive Compounds in Soil and Groundwater. Environ. Sci. Technol. 2000, 34, 3046–3050.6. Kumar, S.; Venkatramaiah, N.; Patil, S. Fluoranthene Based Derivatives for Detection of Trace Explosive Nitroaromatics. J. Phys. Chem. C 2013, 117, 7236–7245.7. Sheremata, T.W.; Halasz, A.; Paquet, L.; Thiboutot, S.; Ampleman, G.; Hawari, J. The Fate of the Cyclic Nitramine Explosive RDX in Natural Soil. Environ. Sci. Technol. 2001, 35, 1037–1040.8. Larson, S.L.; Martin, W.A.; Escalon, B.L.; Thompson, M. Dissolution, Sorption, and Kinetics Involved in Systems Containing Explosives, Water, and Soil. Environ. Sci. Technol. 2008, 42, 786–792.9. Marple, R.L.; LaCourse,W.R. Application of Photoassisted Electrochemical Detection to Explosive-Containing Environmental Samples. Anal. Chem. 2005, 77, 6709–6714.10. Gallagher, N.B.; Blake, T.A.; Gassman, P.L. Application of extended inverse scatter correction to mid-infrared reflectance spectra of soil. J. Chemom. 2005, 19, 271–281.11. Forouzangohar, M.; Kookana, R.S.; Forrester, S.T.; Smernik, R.J.; Chittleborough, D.J. Mid-infrared Spectroscopy and Chemometrics to Predict Diuron Sorption Coe cients in Soils. Environ. Sci. Technol. 2008, 42, 3283–3288.12. Gallagher, N.B.; Gassman, P.L.; Blake, T.A. Strategies for Detecting Organic Liquids on Soils Using Mid-Infrared Reflection Spectroscopy. Environ. Sci. Technol. 2008, 42, 5700–5705.13. Mukherjee, A.; Von der Porten, S.; Patel, C.K.N. Stando detection of explosive substances at distances of up to 150 m. Appl. Opt. 2010, 49, 2072–2078.14. Hernández, M.D.; Santiago, I.; Padilla, I.Y. Macro-sorption of 2,4-dinitrotoluene onto sandy and clay soils. Proc. SPIE 2006, 6217, 621736.15. Baez, B.; Correa, S.N.; Hernandez-Rivera, S.P.; de Jesus, M.; Castro, M.E.; Mina, N.; Briano, J.G. Transport of explosives I: TNT in soil and its equilibrium vapor. Proc. SPIE 2004, 5415, 1389–1399.16. Torres, A.; Padilla, I.; Hwang, S. Physical modeling of 2,4-DNT gaseous di usion through unsaturated soil. Proc. SPIE 2007, 6553, 65531Q.17. Herrera-Sandoval, G.M.; Ballesteros, L.M.; Mina, N.; Briano, J.; Castro, M.E.; Hernandez-Rivera, S.P. Raman signatures of TNT in contact with sand particles. Proc. SPIE 2005, 5794, 1245–1253.18. Blanco, A.; Mina, N.; Castro, M.E.; Castillo-Chara, J.; Hernandez-Rivera, S.P. E ect of environmental conditions on the spectroscopic signature of DNT in sand. Proc. SPIE 2005, 5794, 1281–1289.19. Ballesteros, L.M.; Herrera, G.M.; Castro, M.E.; Briano, J.; Mina, N.; Hernandez-Rivera, S.P. Spectroscopic signatures of PETN in contact with sand particles. Proc. SPIE 2005, 5794, 1254–1262.20. Hernandez-Rivera, S.P.; Manrique-Bastidas, C.A.; Blanco, A.; Primera, O.M.; Pacheco, L.C.; Castillo-Chara, J.; Castro, M.E.; Mina, N. Spectroscopic characterization of nitroaromatic landmine signature explosives. Proc. SPIE 2004, 5415, 474–485.21. Osorio, C.; Gomez, L.M.; Hernandez, S.P.; Castro, M.E. Time-of-flight mass spectroscopy measurements of TNT and RDX on soil surfaces. Proc. SPIE 2005, 5794, 803–811.22. Manrique-Bastidas, C.A.; Mina, N.; Castro, M.E.; Hernandez-Rivera, S.P. Raman microspectroscopy and FTIR crystallization studies of 2,4,6-TNT in soil. Proc. SPIE 2005, 5794, 1358–1365.23. Blanco, A.; Pacheco-Londoño, L.C.; Peña-Quevedo, A.J.; Hernández-Rivera, S.P. UV Raman detection of 2,4-DNT in contact with sand particles. Proc. SPIE 2006, 6217, 621737.24. Galán-Freyle, N.J.; Pacheco-Londoño, L.C.; Figueroa-Navedo, A.M.; Hernandez-Rivera, S.P. Stando Detection of Highly Energetic Materials Using Laser-Induced Thermal Excitation of Infrared Emission. Appl. Spectrosc. 2015, 69, 535–544.25. Galán-Freyle, N.J.; Ospina-Castro,M.L.;Medina-González, A.R.; Villarreal-González, R.; Hernández-Rivera, S.P.; Pacheco-Londoño, L.C. Artificial Intelligence AssistedMid-Infrared Laser Spectroscopy In Situ Detection of Petroleum in Soils. Appl. Sci. 2020, 10, 1319.26. Rüther, A.; Pfeifer, M.; Lórenz-Fonfría, V.A.; Lüdeke, S. pH Titration Monitored by Quantum Cascade Laser-Based Vibrational Circular Dichroism. J. Phys. Chem. B 2014, 118, 3941–3949.27. Lüdeke, S.; Pfeifer, M.; Fischer, P. Quantum-Cascade Laser-Based Vibrational Circular Dichroism. J. Am. Chem. Soc. 2011, 133, 5704–5707.28. Shi, Q.; Nelson, D.D.; McManus, J.B.; Zahniser, M.S.; Parrish, M.E.; Baren, R.E.; Shafer, K.H.; Harward, C.N. Quantum Cascade Infrared Laser Spectroscopy for Real-Time Cigarette Smoke Analysis. Anal. Chem. 2003, 75, 5180–5190.29. Wörle, K.; Seichter, F.; Wilk, A.; Armacost, C.; Day, T.; Godejohann, M.; Wachter, U.; Vogt, J.; Radermacher, P.; Mizaiko , B. Breath Analysis with Broadly Tunable Quantum Cascade Lasers. Anal. Chem. 2013, 85, 2697–2702.30. Galán-Freyle, N.J.; Pacheco-Londoño, L.C.; Román-Ospino, A.D.; Hernandez-Rivera, S.P. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations. Appl. Spectrosc. 2016, 70, 1511–1519.31. Padilla-Jiménez, A.C.; Ortiz-Rivera, W.; Rios-Velazquez, C.; Vazquez-Ayala, I.; Hernández-Rivera, S.P. Detection and discrimination of microorganisms on various substrates with quantum cascade laser spectroscopy. OPTICE 2014, 53, 061611.32. Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556.33. Hvozdara, L.; Pennington, N.; Kraft, M.; Karlowatz, M.; Mizaiko , B. Quantum cascade lasers for mid-infrared spectroscopy. Vib. Spectrosc. 2002, 30, 53–58.34. Ruiz-Caballero, J.L.; Blanco-Riveiro, L.A.; Ramirez-Marrero, I.A.; Perez-Almodovar, L.A.; Colon-Mercado, A.M.; Castro-Suarez, J.R.; Pacheco-Londoño, L.C.; Hernandez-Rivera, S.P. Enhanced RDX Detection Studies on Various Types of Substrates via Tunable Quantum Cascade Laser Spectrometer Coupled with Grazing Angle Probe. IOP Conf. Ser. Mater. Sci. Eng. 2019, 519, 012007.35. Pacheco-Londoño, L.C.; Galán-Freyle, N.J.; Figueroa-Navedo, A.M.; Infante-Castillo, R.; Ruiz-Caballero, J.L.; Hernández-Rivera, S.P. Quantum cascade laser back-reflection spectroscopy at grazing-angle incidence using the fast Fourier transform as a data preprocessing algorithm. J. Chemom. 2019, 33, e3167.36. Pacheco-Londoño, L.C.; Aparicio-Bolaño, J.A.; Galán-Freyle, N.J.; Román-Ospino, A.D.; Ruiz-Caballero, J.L.; Hernández-Rivera, S.P. Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics. Appl. Spectrosc. 2019, 73, 17–29.37. Pacheco-Londoño, L.C.; Ruiz-Caballero, J.L.; Ramírez-Cedeño, M.L.; Infante-Castillo, R.; Gálan-Freyle, N.J.; Hernández-Rivera, S.P. Surface Persistence of Trace Level Deposits of Highly Energetic Materials. Molecules 2019, 24, 3494.38. Pacheco-Londoño, L.C.; Castro-Suarez, J.R.; Galán-Freyle, N.J.; Figueroa-Navedo, A.M.; Ruiz-Caballero, J.L.; Infante-Castillo, R.; Hernández-Rivera, S.P. Mid-Infrared Laser Spectroscopy Applications I: Detection of Traces of High Explosives on Reflective and Matte Substrates. In Infrared Spectroscopy—Principles, Advances, and Applications; IntechOpen: London, UK, 2019.39. Phillips, M.C.; Bernacki, B.E. Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser. OPTICE 2012, 52, 061302.40. Pacheco-Londoño, L.C.; Castro-Suarez, J.R.; Hernández-Rivera, S.P. Detection of Nitroaromatic and Peroxide Explosives in Air Using Infrared Spectroscopy: QCL and FTIR. Adv. Opt. Technol. 2013, 2013, 532670.41. Sirkeli, V.P.; Yilmazoglu, O.; Preu, S.; Küppers, F.; Hartnagel, H.L. Proposal for a Monolithic Broadband Terahertz Quantum Cascade Laser Array Tailored to Detection of Explosive Materials. Sens. Lett. 2018, 16, 1–7.42. Pettersson, A.; Wallin, S.; Östmark, H.; Ehlerding, A.; Johansson, I.; Nordberg, M.; Ellis, H.; Al-Khalili, A. Explosives stando detection using Raman spectroscopy: From bulk towards trace detection. Proc. SPIE 2010, 7664, 76641K.43. Yang, C.S.C.; Brown, E.E.; Hommerich, U.; Jin, F.; Trivedi, S.B.; Samuels, A.C.; Snyder, A.P. Long-Wave, Infrared Laser-Induced Breakdown (LIBS) Spectroscopy Emissions from Energetic Materials. Appl. Spectrosc. 2012, 66, 1397–1402.44. Misra, A.K.; Sharma, S.K.; Acosta, T.E.; Porter, J.N.; Bates, D.E. Single-Pulse Stando Raman Detection of Chemicals from 120 m Distance During Daytime. Appl. Spectrosc. 2012, 66, 1279–1285.45. Gottfried, J.L.; De Lucia, F.C.;Munson, C.A.;Miziolek, A.W. Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 2008, 62, 353–363.46. Castro-Suarez, J.R.; Pacheco-Londoño, L.C.; Vélez-Reyes, M.; Diem, M.; Tague, T.J.; Hernandez-Rivera, S.P. FT-IR Stando Detection of Thermally Excited Emissions of Trinitrotoluene (TNT) Deposited on Aluminum Substrates. Appl. Spectrosc. 2013, 67, 181–186.47. Carter, J.C.; Angel, S.M.; Lawrence-Snyder, M.; Sca di, J.; Whipple, R.E.; Reynolds, J.G. Stando Detection of High Explosive Materials at 50 Meters in Ambient Light Conditions Using a Small Raman Instrument. Appl. Spectrosc. 2005, 59, 769–775.48. Averett, L.A.; Gri ths, P.R. Mid-Infrared Di use Reflection of a Strongly Absorbing Analyte on Non-Absorbing and Absorbing Matrices. Part II: Thin Liquid Layers on Powdered Substrates. Appl. Spectrosc. 2008, 62, 383–388.49. Pacheco-Londoño, L.; Ortiz-Rivera, W.; Primera-Pedrozo, O.; Hernández-Rivera, S. Vibrational spectroscopy stando detection of explosives. Anal. Bioanal. Chem. 2009, 395, 323–335.50. Van Neste, C.W.; Senesac, L.R.; Thundat, T. Stando Spectroscopy of Surface Adsorbed Chemicals. Anal. Chem. 2009, 81, 1952–1956.51. Moros, J.; Lorenzo, J.A.; Lucena, P.; Miguel Tobaria, L.; Laserna, J.J. Simultaneous Raman Spectroscopy– Laser-Induced Breakdown Spectroscopy for Instant Stando Analysis of Explosives Using a Mobile Integrated Sensor Platform. Anal. Chem. 2010, 82, 1389–1400.52. Moros, J.; Laserna, J.J. New Raman–Laser-Induced Breakdown Spectroscopy Identity of Explosives Using Parametric Data Fusion on an Integrated Sensing Platform. Anal. Chem. 2011, 83, 6275–6285.53. Ortiz-Rivera, W.; Pacheco-Londoño, L.; Castro-Suarez, J.; Felix-Rivera, H.; Hernandez-Rivera, S. Vibrational Spectroscopy Stando Detection of Threat Chemicals; SPIE: Bellingham, WA, USA, 2011; Volume 8031.54. Miyazawa, M.; Pavan, M.A.; de Oliveira, E.L.; Ionashiro, M.; Silva, A.K. Gravimetric determination of soil organic matter. Braz. Arch. Biol. Technol. 2000, 43, 475–478.55. Weiner, E.R. Applications of Environmental Chemistry: A Practical Guide for Environmental Professionals; Lewis Pub.: Boca Raton, FL, USA, 2000.56. Yanjun, C.; Achari, G.; Langford, C.H. Protocols for the analysis of transformer oil and its degradation in soil by hydrogen peroxide. Can. J. Civ. Eng. 2009, 36, 1547–1557.57. Lorber, A. Error propagation and figures of merit for quantification by solving matrix equations. Anal. Chem. 1986, 58, 1167–1172.58. Ferreira, M.H.; Braga, J.W.B.; Sena, M.M. Development and validation of a chemometric method for direct determination of hydrochlorothiazide in pharmaceutical samples by di use reflectance near-infrared spectroscopy. Microelectron. J. 2013, 109, 158–164.59. Olivieri, A.C.; Faber, N.M.; Ferré, J.; Boqué, R.; Kalivas, J.H.; Mark, H. Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report). Pure Appl. Chem. 2006, 78, 633.60. Felipe-Sotelo, M.; Cal-Prieto, M.J.; Ferre, J.; Boque, R.; Andrade, J.M.; Carlosena, A. Linear PLS regression to cope with interferences of major concomitants in the determination of antimony by ETAAS. J. Anal. Spectrom. 2006, 21, 61–68.61. Galan-Freyle, N.J.; Figueroa-Navedo, A.M.; Pacheco-Londoño, Y.C.; Ortiz-Rivera,W.; Pacheco-Londoño, L.C.; Hernández-Rivera, S.P. Chemometrics-enhanced fiber-optic Raman detection, discrimination and quantification of chemical agents simulants concealed in commercial bottles. Anal. Chem. Res. 2014, 2, 15–22.62. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, Prague, Czech Republic, 23 September 2013.63. Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I. J. Opt. Soc. Am 1948, 38, 448.64. Bull, C.R. Compensation for particle size e ects in near-infrared reflectance. Analyst 1991, 116, 781–786.65. Sirita, J.; Phanichphant, S.; Meunier, F.C. Quantitative Analysis of Adsorbate Concentrations by Di use Reflectance FT-IR. Anal. Chem. 2007, 79, 3912–3918.66. Igne, B.; Hurburgh, C.R. Local chemometrics for samples and variables: Optimizing calibration and standardization processes. J. Chemom. 2010, 24, 75–86.http://purl.org/coar/resource_type/c_6501ORIGINALapp10124178.pdfapp10124178.pdfapplication/pdf2060852https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1002/1/app10124178.pdfb8d1336815c609455161ee63782be852MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1002/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1002/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1002oai:repositorio.uniatlantico.edu.co:20.500.12834/10022022-11-15 16:27:06.664DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |