Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene

This article studies the effects of arsine on the synthesis and thermal degradation of 4 samples of virgin polypropylene (PP-virgin) and proposes reaction mechanisms that allow understanding of its behaviour. Different points are monitored during the polypropylene synthesis to perform TGA, DSC, FT-I...

Full description

Autores:
Hernández Fernández, Joaquín
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/772
Acceso en línea:
https://hdl.handle.net/20.500.12834/772
Palabra clave:
arsine
ligands
polypropylene
catalyst
degradation
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_dc6065facbc7038b27dda523e4023a70
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/772
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene
title Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene
spellingShingle Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene
arsine
ligands
polypropylene
catalyst
degradation
title_short Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene
title_full Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene
title_fullStr Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene
title_full_unstemmed Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene
title_sort Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene
dc.creator.fl_str_mv Hernández Fernández, Joaquín
dc.contributor.author.none.fl_str_mv Hernández Fernández, Joaquín
dc.contributor.other.none.fl_str_mv Guerra, Yoleima
Puello Polo, Esneyder
Marquez, Edgar
dc.subject.keywords.spa.fl_str_mv arsine
ligands
polypropylene
catalyst
degradation
topic arsine
ligands
polypropylene
catalyst
degradation
description This article studies the effects of arsine on the synthesis and thermal degradation of 4 samples of virgin polypropylene (PP-virgin) and proposes reaction mechanisms that allow understanding of its behaviour. Different points are monitored during the polypropylene synthesis to perform TGA, DSC, FT-IR, RDX, and MFI analyses later. The content of AsH3 in polypropylene varies between 0.05 and 4.73 ppm, and of arsenic in virgin PP residues between 0.001 and 4.32 ppm for PP0 and PP10, increasing in fluidity index from 3.0 to 24.51. The origin of thermo-oxidative degradation is explained by the reaction mechanisms of the Molecule AsH3 with the active titanium center of the ZN catalyst and the subsequent oxidation to form radical complexes. OO-AsH-TiCl4-MgCl2 and (OO-as-OO)2 -TiCl4-MgCl2, which, by radical reactions, give rise to the formation of functional groups aldehyde, ketone, alcohol, carboxylic acid, CO, CO2, PP-Polyol, PP-Polyether, and PP-Isopropylethers. These species caused the TG and DTG curves to increase degradation peaks in pp samples.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:12:22Z
dc.date.available.none.fl_str_mv 2022-11-15T19:12:22Z
dc.date.issued.none.fl_str_mv 2022-07-31
dc.date.submitted.none.fl_str_mv 2022-06-20
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. https:// doi.org/10.3390/polym14153123
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/772
dc.identifier.doi.none.fl_str_mv 10.3390/polym14153123
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. https:// doi.org/10.3390/polym14153123
10.3390/polym14153123
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/772
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Química
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Polymers
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/772/1/processes-10-01748.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/772/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/772/3/license.txt
bitstream.checksum.fl_str_mv 30beff561b69b48e4acf70d2982db729
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203416867504128
spelling Hernández Fernández, Joaquín0e5612fc-442e-4fe9-a79e-d9772e613cdcGuerra, YoleimaPuello Polo, EsneyderMarquez, EdgarColombia2022-11-15T19:12:22Z2022-11-15T19:12:22Z2022-07-312022-06-20Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. https:// doi.org/10.3390/polym14153123https://hdl.handle.net/20.500.12834/77210.3390/polym14153123Universidad del AtlánticoRepositorio Universidad del AtlánticoThis article studies the effects of arsine on the synthesis and thermal degradation of 4 samples of virgin polypropylene (PP-virgin) and proposes reaction mechanisms that allow understanding of its behaviour. Different points are monitored during the polypropylene synthesis to perform TGA, DSC, FT-IR, RDX, and MFI analyses later. The content of AsH3 in polypropylene varies between 0.05 and 4.73 ppm, and of arsenic in virgin PP residues between 0.001 and 4.32 ppm for PP0 and PP10, increasing in fluidity index from 3.0 to 24.51. The origin of thermo-oxidative degradation is explained by the reaction mechanisms of the Molecule AsH3 with the active titanium center of the ZN catalyst and the subsequent oxidation to form radical complexes. OO-AsH-TiCl4-MgCl2 and (OO-as-OO)2 -TiCl4-MgCl2, which, by radical reactions, give rise to the formation of functional groups aldehyde, ketone, alcohol, carboxylic acid, CO, CO2, PP-Polyol, PP-Polyether, and PP-Isopropylethers. These species caused the TG and DTG curves to increase degradation peaks in pp samples.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PolymersEffects of Different Concentrations of Arsine on the Synthesis and Final Properties of PolypropylenePúblico generalarsineligandspolypropylenecatalystdegradationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede NorteQuinteros, J.G. Sintesis y Aplicaciones de Ligandos Arsinas. Estudios de Sistemas Catalíticos de Pd y Au; Universidad Nacional de Córdoba: Córdoba, Spain, 2016.Gras, R.; Luong, J.; Hawryluk, M.; Monagle, M. Analysis of part-per-billion level of arsine and phosphine in light hydrocarbons by capillary flow technology and dielectric barrier discharge detector. J. Chromatogr. A 2010, 1217, 348–352. [CrossRef] [PubMed]Zhang, J.; Li, X. Hydrogen bonding in the complexes formed by arsine and H-X molecules: A theoretical study. Chem. Phys. Lett. 2019, 735, 136767. [CrossRef]Burt, J.; Levason,W.; Reid, G. Coordination chemistry of the main group elements with phosphine, arsine and stibine ligands. Coord. Chem. Rev. 2014, 260, 65–115. [CrossRef]Green, J. Transition Metals in the Synthesis of Complex Organic Molecules. J. Am. Chem. Soc. 2010, 132, 1443. [CrossRef]Orpen, A.G.; Connelly, N.G. Structural systematics: The role of PA. sigma.* orbitals in metal-phosphorus .pi.-bonding in redox-related pairs of M-PA3 complexes (A = R, Ar, OR; R = alkyl). Organometallics 1990, 9, 1206–1210. [CrossRef]Crabtree, R.H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [CrossRef]McCleverty, J.A.; Meyer, T.J. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology. J. Am. Chem. Soc. 2004, 126. [CrossRef]Treichel, P.M. Phosphine, Arsine, and Stibine Complexes of the Transition Elementes; Elsevier Scientific Publishing Co.: Amsterdam, The Netherlands, 1979; Volume 9. [CrossRef]Wilkinson, G.; Gillard, R.D.; McCleverty, J.A. Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds; Pergamon Press: Oxford, UK, 1987; Available online: https://inis.iaea.org/search/search. aspx?orig_q=RN:19039703 (accessed on 1 November 2021).Rodríguez, M.E. Funcionalización de Ligandos Coordinados; Universidad de Coruña: Coruña, Spain, 2017.Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmos. Pollut. Res. 2021, 12, 167–176. [CrossRef]Carrizo, D.S. Estudios Computacionales en Catálisis Homogénea con Metales de Transición: Reacción de Stille, Activación de Enlaces C-H y -Eliminación; Universidad Nacional de Córdoba: Córdoba, Spain, 2016.Arlinghaus, R.T.; Andrews, L. Infrared spectra of the PH3, AsH3, and SbH 3-HX hydrogen bonded complexes in solid argon J. Chem. Phys. 1984, 81, 4341–4351. [CrossRef]Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [CrossRef]Kurahashi, E.; Wada, T.; Nagai, T.; Chammingkwan, P.; Terano, M.; Taniike, T. Synthesis of polypropylene functionalized with a trace amount of reactive functional groups and its utilization in graft-type nanocomposites. Polymer 2018, 158, 46–52. [CrossRef]Karol, F.J.; Jacobson, F.I. Catalysis and the Unipol Process. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1986; Volume 25. [CrossRef]Mier, J.; Artiaga, R.; Soto, L.G. Síntesis de Polímeros. Pesos moleculares. Conformación y configuración. Elementos Estructurales con Materiales Polímeros: Ferrol; Universidad de Coruña: Coruña, Spain, 1997; pp. 11–48.Bailar, J.C.; Emeléus, H.J.; Nyholm, R.; Trotman-Dickenson, A.F. Comprehensive Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1973; Volume 3. [CrossRef]Nikolaeva, M.; Mikenas, T.; Matsko, M.; Zakharov, V. Effect of AlEt3 and an External Donor on the Distribution of Active Sites According to Their Stereospecificity in Propylene Polymerization over TiCl4/MgCl2 Catalysts with Different Titanium Content. Macromol. Chem. Phys. 2016, 217, 1384–1395. [CrossRef]Panchenko, V.N.; Vorontsova, L.V.; Zakharov, V.A. Ziegler-Natta catalysts for propylene polymerization—Interaction of an external donor with the catalyst. Polyolefins J. 2017, 4, 87–97. [CrossRef]Vizen, E.I.; Rishina, L.A.; Sosnovskaja, L.N.; Dyachkovsky, F.S.; Dubnikova, I.L.; Ladygina, T.A. Study of hydrogen effect in propylene polymerization on (with) the MgC12- Supported Ziegler-Natta catalyst-Part 2. Effect of Cs2 on polymerization centres. Eur. Polym. J 1994, 30, 1315–1318.Kallio, K.; Wartmann, A.; Reichert, K.-H. Reactivation of a Poisoned Metallocene Catalyst by Irradiation with Visible Light. Macromol. Rapid Commun. 2002, 23, 187–190. [CrossRef]Bahri-Laleh, N. Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl. Surf. Sci. 2016, 379, 395–401. [CrossRef]Asynkiewicz, S.P. Reactions of organoaluminium compounds with electron donors. Pure Appl. Chem. 1972, 30, 509–522. [CrossRef]Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478. [CrossRef] [PubMed]Li, Z.; Yin, Y.; Wang, X.; Tu, D.M.; Kao, K.C. Formation and inhibition of free radicals in electrically stressed and aged insulating polymers. J. Appl. Polym. Sci. 2003, 89, 3416–3425. [CrossRef]Cavallo, L.; Del Piero, S.; Ducéré, J.M.; Fedele, R.; Melchior, A.; Morini, G.; Piemontesi, F.; Tolazzi, M. Key interactions in heterogeneous Ziegler-Natta catalytic systems: Structure and energetics of TiCL4-lewis base complexes. J. Phys. Chem. C 2007, 111, 4412–4419. [CrossRef]Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Mirmohammadi, S.A. A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler-Natta catalyst. J. Organomet. Chem. 2012, 719, 74–79. [CrossRef]Correa, A.; Bahri-Laleh, N.; Cavallo, L. How well can DFT reproduce key interactions in Ziegler-Natta systems? Macromol. Chem. Phys. 2013, 214, 1980–1989. [CrossRef]Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [CrossRef]Arshouee, G.H.; Zarand, S.M.G. Determination of Catalyst Residence Time, Heat Generation, and Monomer Conversion via Process Variables during Propylene Polymerization by a Mathematical Model. Theor. Found. Chem. Eng. 2021, 55, 140–152. [CrossRef]Hernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442. [CrossRef] [PubMed]Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027. [CrossRef] [PubMed]Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [CrossRef]Zhang, S.; Li, B.; Lin, M.; Li, Q.; Gao, S.; Yi,W. Effect of a novel phosphorus-containing compound on the flame retardancy and thermal degradation of intumescent flame retardant polypropylene. J. Appl. Polym. Sci. 2011, 122, 3430–3439. [CrossRef]Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef]Bremner, T.; Rudin, A.; Cook, D.G. Melt flow index values and molecular weight distributions of commercial thermoplastics. J. Appl. Polym. Sci. 1990, 41, 1617–1627. [CrossRef]Ivin, K.J.; Rooney, J.J.; Stewart, C.D.; Green, M.L.H.; Mahtab, R. Mechanism for the stereospecific polymerization of olefins by Ziegler–Natta catalysts. J. Chem. Soc. Chem. Commun. 1978, 14, 604–606. [CrossRef]Padilla Paz, R.M. Síntesis y Estudio de Cpmplejos Organometálicos de Iridio con N-Aril-4,5-dimetilen-1,3-oxazolidin-2-onas y Complejos de Cobre con Furoiltioureas; Universidad Autónoma del estado de Hidalgo: Hidalgo, Mexico, 2006.Castro, C.A.; Eguren, L.; Korswagen, R.P. Catalizadores Ziegler-Natta utilizados para polimerizar propileno y etileno. Rev. De Química 1987, 1, 5–13.Natta, G.; Pasquon, I.; Giachetti, E. Kinetics of the stereospecific polymerization of polypropylene to isotactic polymers. In Stereoregular Polymers and Stereospecific Polymerizations; Elsevier: Amsterdam, The Netherlands, 1967. [CrossRef]Chien, J.C.W.; Bres, P. Magnesium Chloride Supported High Mileage Catalysts for Olefin Polymerization. XIII. Effect of External Lewis Base on Ethylene Polymerization. J. Polym. Sci. Part A Polym. Chem. 1986, 24, 1967–1988. [CrossRef]Bhaduri, S.; Mukhopadhyay, S.; Kulkarni, S.A. Role of titanium oxidation states in polymerization activity of Ziegler-Natta catalyst: A density functional study. J. Organomet. Chem. 2006, 691, 2810–2820. [CrossRef]Mukhopadhyay, S.; Kulkarni, S.A.; Bhaduri, S. Density functional study on the role of electron donors in propylene polymerization using Ziegler-Natta catalyst. J. Organomet. Chem. 2005, 690, 1356–1365. [CrossRef]Jensen, V.R.; Borve, K.J.; Ystenesg, M. Ziegler-Natta Ethylene Insertion Reaction for a Five-Coordinate Titanium Chloride Complex Bridged to an Aluminum Hydride Cocatalyst. J. Am. Chem. Soc. 1995, 117, 4109–4117. [CrossRef]Zakharov, I.I.; Zakharov, V.A.; Zhidomirov, G.M. Quantum chemical studies of propene, ethylene, acetylene and dihydrogen reactivity in the insertion reaction into the titanium-alkyl bond. Macromol. Theory Simul. 1996, 5, 837–843. [CrossRef]Cavallo, L.; Guerra, G.; Corradini, P. Mechanisms of Propagation and Termination Reactions in Classical Heterogeneous Ziegler�����Natta Catalytic Systems: A Nonlocal Density Functional Study. J. Am. Chem. Soc. 1998, 120, 2428–2436. [CrossRef]Cheremisinoff, N.P. Handbook of Polymer Science and Technology: Synthesis and Properties; JohnWiley & Sons Ltd.: London, UK, 1989.Gordy, W. A Relation between Bond Force Constants, Bond Orders, Bond Lengths, and the Electronegativities of the Bonded Atoms. J. Chem. Phys. 1946, 14, 305–320. [CrossRef]Myneni, S.C.B.; Traina, S.J.;Waychunas, G.A.; Logan, T.J. Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim. Cosmochim. Acta 1998, 62, 3499–3514. [CrossRef]Mowery, D.M.; Assink, R.A.; Derzon, D.K.; Klamo, S.B.; Clough, R.L.; Bernstein, R. Solid-State 13C NMR Investigation of the Oxidative Degradation of Selectively Labeled Polypropylene by Thermal Aging and -Irradiation. Macromolecules 2005, 38, 5035–5046. [CrossRef]Hamid, S.H. Handbook of Polymer Degradation, 2nd ed.; Marcel Dekker: New York, NY, USA, 2000.Carlsson, D.J.; Wiles, D.M. The Photooxidative Degradation of Polypropylene. Part I. Photooxidation and Photoinitiation Processes. J. Macromol. Sci. Part C Polym. Rev. 1976, 14, 65–106. [CrossRef]Rangaraj, V.M.; Singh, S.; Devaraju, S.; Wadi, V.S.; Alhassan, S.; Anjum, D.H.; Mittal, V. Polypropylene/phosphazene nanotube nanocomposites: Thermal, mechanical, and flame retardation studies. J. Appl. Polym. Sci. 2020, 137, 49525. [CrossRef]Kurt, G.; Kasgoz, A. Effects of molecular weight and molecular weight distribution on creep properties of polypropylene homopolymer. J. Appl. Polym. Sci. 2021, 138, 50722. [CrossRef]Schoolenberg, G.E.; Vink, P. Ultra-violet degradation of polypropylene: 1. Degradation profile and thickness of the embrittled surface layer. Polymer 1991, 32, 432–437. [CrossRef]Rouillon, C.; Bussiere, P.O.; Desnoux, E.; Collin, S.; Vial, C.; Therias, S.; Gardette, J.L. Is carbonyl index a quantitative probe to monitor polypropylene photodegradation? Polym. Degrad. Stab. 2016, 128, 200–208. [CrossRef]Zhang, T.; Chen, K.; Zhang, Z.; Shi, R. Quantitative relationship between melting peak temperature and carbonyl index of polypropylene during UV aging based on date fitting. IOP Conf. Ser. Mater. Sci. Eng. 2018, 322, 022016. [CrossRef]http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALprocesses-10-01748.pdfprocesses-10-01748.pdfapplication/pdf2095658https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/772/1/processes-10-01748.pdf30beff561b69b48e4acf70d2982db729MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/772/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/772/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/772oai:repositorio.uniatlantico.edu.co:20.500.12834/7722022-11-15 14:12:23.187DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==