Article Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies
Sca old development for cell regeneration has increased in recent years due to the high demand for more e cient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four d...
- Autores:
-
Grande Tovar, Carlos David
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/983
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/983
- Palabra clave:
- chitosan beads; graphene-oxide; titanium dioxide nanoparticles; nanocomposites; tissue engineering
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_c8337c4a1d720914e5c84c0ee57249a9 |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/983 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Article Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies |
title |
Article Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies |
spellingShingle |
Article Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies chitosan beads; graphene-oxide; titanium dioxide nanoparticles; nanocomposites; tissue engineering |
title_short |
Article Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies |
title_full |
Article Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies |
title_fullStr |
Article Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies |
title_full_unstemmed |
Article Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies |
title_sort |
Article Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies |
dc.creator.fl_str_mv |
Grande Tovar, Carlos David |
dc.contributor.author.none.fl_str_mv |
Grande Tovar, Carlos David |
dc.contributor.other.none.fl_str_mv |
Castro, Jorge Iván Valencia, Carlos Humberto Zapata, Paula A. Solano, Moisés A. Edwin Florez López, Edwin Chaur, Manuel N. Valencia Zapata, Mayra Eliana Mina Hernandez, José Herminsul |
dc.subject.keywords.spa.fl_str_mv |
chitosan beads; graphene-oxide; titanium dioxide nanoparticles; nanocomposites; tissue engineering |
topic |
chitosan beads; graphene-oxide; titanium dioxide nanoparticles; nanocomposites; tissue engineering |
description |
Sca old development for cell regeneration has increased in recent years due to the high demand for more e cient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four di erent chitosan (CS) bead formulations crosslinked with glutaraldehyde (GLA), including titanium dioxide nanoparticles (TiO2), and graphene oxide (GO) nanosheets, were prepared with potential biomedical applications in mind. The characterization of by FTIR spectroscopy, X-ray photoelectron spectroscopy (XRD), thermogravimetric analysis (TGA), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), demonstrated an e cient preparation of nanocomposites, with nanoparticles well-dispersed in the polymer matrix. In vivo, subdermal implantation of the beads inWistar rat0s tissue for 90 days showed a proper and complete healing process without any allergenic response to any of the formulations. Masson0s trichrome staining of the histological implanted tissues demonstrated the presence of a group of macrophage/histiocyte compatible cells, which indicates a high degree of biocompatibility of the beads. The materials were very stable under body conditions as the morphometry studies showed, but with low resorption percentages. These high stability beads could be used as biocompatible, resistant materials for long-term applications. The results presented in this study show the enormous potential of these chitosan nanocomposites in cell regeneration and biomedical applications. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-05-14 |
dc.date.submitted.none.fl_str_mv |
2020-04-17 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T21:22:14Z |
dc.date.available.none.fl_str_mv |
2022-11-15T21:22:14Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/983 |
dc.identifier.doi.none.fl_str_mv |
10.3390/molecules25102308 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/983 |
identifier_str_mv |
10.3390/molecules25102308 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Química |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
MDPI AG |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/983/1/molecules_25_02308_pdf.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/983/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/983/3/license.txt |
bitstream.checksum.fl_str_mv |
7cfd4ead0f7c0ca2edfc937e74bcbe0a 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1808413934498086912 |
spelling |
Grande Tovar, Carlos David9e800b3a-a886-44a8-9872-71464aa6e429Castro, Jorge IvánValencia, Carlos HumbertoZapata, Paula A.Solano, Moisés A.Edwin Florez López, EdwinChaur, Manuel N.Valencia Zapata, Mayra ElianaMina Hernandez, José Herminsul2022-11-15T21:22:14Z2022-11-15T21:22:14Z2020-05-142020-04-17https://hdl.handle.net/20.500.12834/98310.3390/molecules25102308Universidad del AtlánticoRepositorio Universidad del AtlánticoSca old development for cell regeneration has increased in recent years due to the high demand for more e cient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four di erent chitosan (CS) bead formulations crosslinked with glutaraldehyde (GLA), including titanium dioxide nanoparticles (TiO2), and graphene oxide (GO) nanosheets, were prepared with potential biomedical applications in mind. The characterization of by FTIR spectroscopy, X-ray photoelectron spectroscopy (XRD), thermogravimetric analysis (TGA), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), demonstrated an e cient preparation of nanocomposites, with nanoparticles well-dispersed in the polymer matrix. In vivo, subdermal implantation of the beads inWistar rat0s tissue for 90 days showed a proper and complete healing process without any allergenic response to any of the formulations. Masson0s trichrome staining of the histological implanted tissues demonstrated the presence of a group of macrophage/histiocyte compatible cells, which indicates a high degree of biocompatibility of the beads. The materials were very stable under body conditions as the morphometry studies showed, but with low resorption percentages. These high stability beads could be used as biocompatible, resistant materials for long-term applications. The results presented in this study show the enormous potential of these chitosan nanocomposites in cell regeneration and biomedical applications.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MDPI AGArticle Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo StudiesPúblico generalchitosan beads; graphene-oxide; titanium dioxide nanoparticles; nanocomposites; tissue engineeringinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede Norte1. Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J.M.; Sharifi, S.; Ramakrishna, S. A review of key challenges of electrospun sca olds for tissue-engineering applications. J. Tissue Eng. Regen. Med. 2016, 10, 715–738.2. Gomes, M.E.; Azevedo, H.S.; Moreira, A.R.; Ellä, V.; Kellomäki, M.; Reis, R.L. Starch-poly ("-caprolactone) and starch-poly (lactic acid) fibre-mesh sca olds for bone tissue engineering applications: Structure, mechanical properties and degradation behaviour. J. Tissue Eng. Regen. Med. 2008, 2, 243–252.3. Hollister, S.J. Porous sca old design for tissue engineering. Nat. Mater. 2005, 4, 518–524.4. Antunes, J.C.; Oliveira, J.M.; Reis, R.L.; Soria, J.M.; Gómez–Ribelles, J.L.; Mano, J.F. Novel poly (L-lactic acid)/hyaluronic acid macroporous hybrid sca olds: Characterization and assessment of cytotoxicity. J. Biomed. Mater. Res. Part A 2010, 94, 856–869.5. Stratton, S.; Shelke, N.B.; Hoshino, K.; Rudraiah, S.; Kumbar, S.G. Bioactive polymeric sca olds for tissue engineering. Bioact. Mater. 2016, 1, 93–108.6. Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric sca olds in tissue engineering application: A review. Int. J. Polym. Sci. 2011, 2011, 2906027. Muzzarelli, A.A.R.; Mehtedi, E.M.; Mattioli-Belmonte, M. Emerging Biomedical Applications of Nano-Chitins and Nano-Chitosans Obtained via Advanced Eco-Friendly Technologies from Marine Resources. Mar. Drugs 2014, 12, 5468–5502.8. Seol, Y.-J.; Lee, J.-Y.; Park, Y.-J.; Lee, Y.-M.; Rhyu, I.-C.; Lee, S.-J.; Han, S.-B.; Chung, C.-P. Chitosan sponges as tissue engineering sca olds for bone formation. Biotechnol. Lett. 2004, 26, 1037–1041.9. ¸Senel, S.; McClure, S.J. Potential applications of chitosan in veterinary medicine. Adv. Drug Deliv. Rev. 2004, 56, 1467–1480.10. Di Martino, A.; Sittinger, M.; Risbud, M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005, 26, 5983–5990.11. Aranaz, I.; Mengíbar, M.; Harris, R.; Paños, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, Á. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 2009, 3, 203–230.12. Archana, D.; Dutta, J.; Dutta, P.K. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 2013, 57, 193–203.13. Bui, V.K.H.; Park, D.; Lee, Y.-C. Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: A mini review of the research trends. Polymers 2017, 9, 21.14. Rizeq, B.R.; Younes, N.N.; Rasool, K.; Nasrallah, G.K. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int. J. Mol. Sci. 2019, 20, 5776.15. Mansoori, G.A. Principles of Nanotechnology: Molecular-Based Study of Condensed Matter in Small Systems;World Scientific Publishing Company: Hackensack, NJ, USA, 2005; p. 280.16. Saji, V.S.; Choe, H.C.; Yeung, K.W.K. Nanotechnology in biomedical applications: A review. Int. J. Nano Biomater. 2010, 3, 119–139.17. Tamayo Marín, A.J.; Londoño, R.S.; Delgado, J.; Navia Porras, P.D.; Valencia Zapata, E.M.; Mina Hernandez, H.J.; Valencia, H.C.; Grande Tovar, D.C. Biocompatible and Antimicrobial Electrospun Membranes Based on Nanocomposites of Chitosan/Poly (Vinyl Alcohol)/Graphene Oxide. Int. J. Mol. Sci. 2019, 20, 2987.18. López Tenorio, D.; Valencia, H.C.; Valencia, C.; Zuluaga, F.; Valencia, E.M.; Mina, H.J.; Grande Tovar, D.C. Evaluation of the Biocompatibility of CS-Graphene Oxide Compounds In Vivo. Int. J. Mol. Sci. 2019, 20, 1572.19. Grande Tovar, C.D.; Castro, J.I.; Valencia, C.H.; Navia Porras, D.P.; Hernandez, M.; Herminsul, J.; Valencia, M.E.; Velásquez, J.D.; Chaur, M.N. Preparation of Chitosan/Poly (Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications. Biomolecules 2019, 9, 684.20. Alireza, K.; Ali, M.G. Nanostructured Titanium Dioxide Materials: Properties, Preparation and Applications; World scientific: Hackensack, NJ, USA, 2011; ISBN 9814397172.21. Gerhardt, L.-C.; Jell, G.M.R.; Boccaccini, A.R. Titanium dioxide (TiO2) nanoparticles filled poly (D, L lactid acid)(PDLLA) matrix composites for bone tissue engineering. J. Mater. Sci. Mater. Med. 2007, 18, 1287–1298.22. Marszewski, M.; Jaroniec, M. Sca old-assisted synthesis of crystalline mesoporous titania materials. RSC Adv. 2015, 5, 61960–61972.23. Yin, Z.F.; Wu, L.; Yang, H.G.; Su, Y.H. Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys. 2013, 15, 4844–4858.24. Feng, B.; Weng, J.; Yang, B.C.; Qu, S.X.; Zhang, X.D. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 2003, 24, 4663–4670.25. Hanawa, T. A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal Implant. Sci. 2011, 41, 263–272.26. Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Amani, A.M.; Babapoor, A.; Arjmand, O. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: Review study. Drug Metab. Rev. 2019, 51, 12–41.27. Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105.28. Song, Y.; Wei, W.; Qu, X. Colorimetric biosensing using smart materials. Adv. Mater. 2011, 23, 4215–4236.29. Tao, Y.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase–like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.30. Mohanty, N.; Berry, V. Graphene-based single-bacterium resolution biodevice andDNAtransistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008, 8, 4469–4476.31. Kelly, K.F.; Billups, W.E. Synthesis of soluble graphite and graphene. Acc. Chem. Res. 2012, 46, 4–13.32. Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for e cient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62–73.33. Valencia, C.; Valencia, C.; Zuluaga, F.; Valencia, M.; Mina, J.; Grande-Tovar, C. Synthesis and Application of Sca olds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration. Molecules 2018, 23, 2651.34. Suk, J.W.; Piner, R.D.; An, J.; Ruo , R.S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557–6564.35. Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.36. Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol 2012, 25, 15–34.37. Kiew, S.F.; Kiew, L.V.; Lee, H.B.; Imae, T.; Chung, L.Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control. Release 2016, 226, 217–228.38. Pan, Y.; Sahoo, N.G.; Li, L. The application of graphene oxide in drug delivery. Expert Opin. Drug Deliv. 2012, 9, 1365–1376.Ji, H.; Sun, H.; Qu, X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv. Drug Deliv. Rev. 2016, 105, 176–189.40. Xu, Y.; Zeng, J.; Chen, W.; Jin, R.; Li, B.; Pan, Z. A holistic review of cement composites reinforced with graphene oxide. Constr. Build. Mater. 2018, 171, 291–302.41. Li, Y.; Wu, Q.; Zhao, Y.; Bai, Y.; Chen, P.; Xia, T.; Wang, D. Response of microRNAs to in vitro treatment with graphene oxide. ACS Nano 2014, 8, 2100–2110.42. Liao, K.-H.; Lin, Y.-S.; Macosko, C.W.; Haynes, C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607–2615.43. Chang, Y.; Yang, S.-T.; Liu, J.-H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011, 200, 201–210.44. Sharma, C.; Dinda, A.K.; Potdar, P.D.; Chou, C.-F.; Mishra, N.C. Fabrication and characterization of novel nano-biocomposite sca old of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C 2016, 64, 416–427.45. Durkut, S.; Elçin, Y.M.; Elçin, A.E. Biodegradation of chitosan-tripolyphosphate beads: In vitro and in vivo studies. Artif. Cells Blood Sub. 2006, 34, 263–276.46. Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym. 2010, 82, 227–232.47. Lim, S.M.; Song, D.K.; Oh, S.H.; Lee-Yoon, D.S.; Bae, E.H.; Lee, J.H. In vitro and in vivo degradation behavior of acetylated chitosan porous beads. J. Biomater. Sci. Polym. Ed. 2008, 19, 453–466.48. Kim, S.E.; Park, J.H.; Cho, Y.W.; Chung, H.; Jeong, S.Y.; Lee, E.B.; Kwon, I.C. Porous chitosan sca old containing microspheres loaded with transforming growth factor- 1: Implications for cartilage tissue engineering. J. Control. Release 2003, 91, 365–374.49. Kravanja, G.; Primožiˇc, M.; Knez, Ž.; Leitgeb, M. Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Molecules 2019, 24, 1960.50. Mohandas, A.; Deepthi, S.; Biswas, R.; Jayakumar, R. Chitosan based metallic nanocomposite sca olds as antimicrobial wound dressings. Bioact. Mater. 2018, 3, 267–277.51. Zapata, P.A.; Palza, H.; Delgado, K.; Rabagliati, F.M. Novel antimicrobial polyethylene composites prepared by metallocenic in situ polymerization with TiO2–based nanoparticles. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4055–4062.52. Bartelmess, J.; Giordani, S. Carbon nano-onions (multi-layer fullerenes): Chemistry and applications. Beilstein J. Nanotechnol. 2014, 5, 1980–1998.53. Gholampour, A.; Valizadeh Kiamahalleh, M.; Tran, D.N.H.; Ozbakkaloglu, T.; Losic, D. From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene-Cement Composites. ACS Appl. Mater. Interfaces 2017, 9, 43275–43286.54. Sánchez-Valdes, S.; Zapata-Domínguez, A.G.; Martinez-Colunga, J.G.; Mendez-Nonell, J.; Ramos deValle, L.F.; Espinoza-Martinez, A.B.; Morales-Cepeda, A.; Lozano-Ramirez, T.; Lafleur, P.G.; Ramirez-Vargas, E. Influence of functionalized polypropylene on polypropylene/graphene oxide nanocomposite properties. Polym. Compos. 2018, 39, 1361–1369.55. Ruiz, S.; Tamayo, A.J.; Delgado Ospina, J.; Navia Porras, P.D.; Valencia Zapata, E.M.; Mina Hernandez, H.J.; Valencia, H.C.; Zuluaga, F.; Grande Tovar, D.C. Antimicrobial Films Based on Nanocomposites of Chitosan/Poly(vinyl alcohol)/Graphene Oxide for Biomedical Applications. Biomolecules 2019, 9, 109.56. Kulkarni, V.H.; Kulkarni, P.V.; Keshavayya, J. Glutaraldehyde–crosslinked chitosan beads for controlled release of diclofenac sodium. J. Appl. Polym. Sci. 2007, 103, 211–217.57. Ngah, W.S.W.; Fatinathan, S. Adsorption of Cu (II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem. Eng. J. 2008, 143, 62–72.58. Monteiro, O.A.C., Jr.; Airoldi, C. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 1999, 26, 119–128.59. Mallakpour, S.; Zadehnazari, A. A facile, e cient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Prog. Org. Coatings 2014, 77, 679–684.60. Feng, F.; Liu, Y.; Zhao, B.; Hu, K. Characterization of half N-acetylated chitosan powders and films. Procedia Eng. 2012, 27, 718–732.61. Samuels, R.J. Solid state characterization of the structure of chitosan films. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1081–1105.62. Salmon, S.; Hudson, S.M. Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. J. Macromol. Sci. Part C Polym. Rev. 1997, 37, 199–276.63. Goumri, M.; Poilâne, C.; Ruterana, P.; Doudou, B.B.; Wéry, J.; Bakour, A.; Baitoul, M. Synthesis and characterization of nanocomposites films with graphene oxide and reduced graphene oxide nanosheets. Chinese J. Phys. 2017, 55, 412–422.64. Fu, G.; Vary, P.S.; Lin, C.-T. Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 2005, 109, 8889–8898.65. Amin, S.A.; Pazouki, M.; Hosseinnia, A. Synthesis of TiO2–Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli. Powder Technol. 2009, 196, 241–245.66. Khanna, P.K.; Singh, N.; Charan, S. Synthesis of nanoparticles of anatase-TiO2 and preparation of its optically transparent film in PVA. Mater. Lett. 2007, 61, 4725–4730.67. Mahshid, S.; Askari, M.; Ghamsari, M.S. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J. Mater. Process. Technol. 2007, 189, 296–300.68. Sangeetha, K.; Angelin Vinodhini, P.; Sudha, P.N.; Alsharani Faleh, A.; Sukumaran, A. Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium. Int. J. Biol. Macromol. 2019, 132, 939–953.69. Tang, C.; Chen, N.; Zhang, Q.; Wang, K.; Fu, Q.; Zhang, X. Preparation and properties of chitosan nanocomposites with nanofillers of di erent dimensions. Polym. Degrad. Stab. 2009, 94, 124–131.70. Pandele, A.M.; Ionita, M.; Crica, L.; Dinescu, S.; Costache, M.; Iovu, H. Synthesis, characterization, and in vitro studies of graphene oxide/chitosan-polyvinyl alcohol films. Carbohydr. Polym. 2014, 102, 813–820.71. Yang, X.; Tu, Y.; Li, L.; Shang, S.; Tao, X.Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 1707–1713.72. Celebi, H.; Kurt, A. E ects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr. Polym. 2015, 133, 284–293.73. Monier, M.; Ayad, D.M.;Wei, Y.; Sarhan, A.A. Immobilization of horseradish peroxidase on modified chitosan beads. Int. J. Biol. Macromol. 2010, 46, 324–330.74. Ma, Q.; Liang, T.; Cao, L.; Wang, L. Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. Int. J. Biol. Macromol. 2018, 108, 576–584.75. Yadav, I.; Nayak, S.K.; Rathnam, V.S.S.; Banerjee, I.; Ray, S.S.; Anis, A.; Pal, K. Reinforcing e ect of graphene oxide reinforcement on the properties of poly (vinyl alcohol) and carboxymethyl tamarind gum based phase-separated film. J. Mech. Behav. Biomed. Mater. 2018, 81, 61–71.76. Li, S.; Pan, X.; Wallis, L.K.; Fan, Z.; Chen, Z.; Diamond, S.A. Comparison of TiO2 nanoparticle and graphene–TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes. Chemosphere 2014, 112, 62–69.77. Tomihata, K.; Ikada, Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 1997, 18, 567–575.78. Pella, M.C.G.; Lima-Tenório, M.K.; Tenorio-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr. Polym. 2018, 196, 233–245.79. Fujita, M.; Ishihara, M.; Simizu, M.; Obara, K.; Ishizuka, T.; Saito, Y.; Yura, H.; Morimoto, Y.; Takase, B.; Matsui, T. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials 2004, 25, 699–706.80. Pawar, V.; Bulbake, U.; Khan,W.; Srivastava, R. Chitosan sponges as a sustained release carrier system for the prophylaxis of orthopedic implant-associated infections. Int. J. Biol. Macromol. 2019, 134, 100–112.81. Rinaudo, M.; Milas, M.; Le Dung, P. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int. J. Biol. Macromol. 1993, 15, 281–285.82. Mangadlao, J.D.; De Leon, A.C.C.; Felipe, M.J.L.; Cao, P.; Advincula, P.A.; Advincula, R.C. Grafted carbazole-assisted electrodeposition of graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 10266–10274.83. Fan, J.; Grande, C.D.; Rodrigues, D.F. Biodegradation of graphene oxide-polymer nanocomposite films in wastewater. Environ. Sci. Nano 2017, 4, 1808–1816.84. Grande, C.D.; Mangadlao, J.; Fan, J.; De Leon, A.; Delgado-Ospina, J.; Rojas, J.G.; Rodrigues, D.F.; Advincula, R. Chitosan Cross-Linked Graphene Oxide Nanocomposite Films with Antimicrobial Activity for Application in Food Industry. Macromol. Symp. 2017, 374, 1600114.85. Valencia Zapata, E.M.; Mina Hernandez, H.J.; Grande Tovar, D.C.; Valencia Llano, H.C.; Diaz Escobar, A.J.; Vázquez-Lasa, B.; San Román, J.; Rojo, L. Novel Bioactive and Antibacterial Acrylic Bone Cement Nanocomposites Modified with Graphene Oxide and Chitosan. Int. J. Mol. Sci. 2019, 20, 2938.86. Zhao, F.; Yu, B.; Yue, Z.; Wang, T.; Wen, X.; Liu, Z.; Zhao, C. Preparation of porous chitosan gel beads for copper ( II ) ion adsorption. J. Hazard. Mater. 2007, 147, 67–73.87. Jeon, C.; Wolfgang, H.H. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res. 2003, 37, 4770–4780.88. Nara, S.; Komiya, T. Studies on the Relationship Between Water-satured State and Crystallinity by the Di raction Method for Moistened Potato Starch. Starke 1983, 35, 407–410.http://purl.org/coar/resource_type/c_6501ORIGINALmolecules_25_02308_pdf.pdfmolecules_25_02308_pdf.pdfapplication/pdf6358501https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/983/1/molecules_25_02308_pdf.pdf7cfd4ead0f7c0ca2edfc937e74bcbe0aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/983/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/983/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/983oai:repositorio.uniatlantico.edu.co:20.500.12834/9832022-11-15 16:22:15.29DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |