CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps

A model has been developed to characterize the cavitation phenomenon in dredging centrifugal pumps. The operating parameters of a cutter type dredger: swing speed, dredging depth, and inclination, impeller rpm, as well as slurry characterizations such as density and velocity, are introduced, to dete...

Full description

Autores:
Ramirez, R.
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/915
Acceso en línea:
https://hdl.handle.net/20.500.12834/915
Palabra clave:
Cavitation; Centrifugal pump; CFD; Dredging; Slurry
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_c7234848fd0202bd47e5afea22d8f65c
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/915
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps
title CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps
spellingShingle CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps
Cavitation; Centrifugal pump; CFD; Dredging; Slurry
title_short CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps
title_full CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps
title_fullStr CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps
title_full_unstemmed CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps
title_sort CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps
dc.creator.fl_str_mv Ramirez, R.
dc.contributor.author.none.fl_str_mv Ramirez, R.
dc.contributor.other.none.fl_str_mv Avila, E.
Lopez, L.
Bula, A.
Duarte Forero, J.
dc.subject.keywords.spa.fl_str_mv Cavitation; Centrifugal pump; CFD; Dredging; Slurry
topic Cavitation; Centrifugal pump; CFD; Dredging; Slurry
description A model has been developed to characterize the cavitation phenomenon in dredging centrifugal pumps. The operating parameters of a cutter type dredger: swing speed, dredging depth, and inclination, impeller rpm, as well as slurry characterizations such as density and velocity, are introduced, to determine how they influence the operation of the dredge pump. The geometric characterization of the hydraulic transport system of the dredger was performed. With the dredge operational ´s parameters, along with the geometric characterization, the pump is modeled in CFD turbomachinery software. To validate the operational points, the CFD model considers the RNG k-e model and the cavitating-multiphase flow. Through the central composite experiment design, the operating conditions range of the dredger is determined, in which the pump can operate and cavitate. This allows validating the model for different operational points. Finally, multiple regression shows the influence of each of the variables in the response obtained. Furthermore, the regression allows an understanding that operating conditions of the dredger must be adjusted to mitigate the phenomenon of cavitation in the dredging process.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-12-25
dc.date.submitted.none.fl_str_mv 2019-01-06
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:55:57Z
dc.date.available.none.fl_str_mv 2022-11-15T20:55:57Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/915
dc.identifier.doi.none.fl_str_mv 10.1016/j.aej.2019.12.041
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/915
identifier_str_mv 10.1016/j.aej.2019.12.041
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Elsevier B.V.
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/915/1/1-s2.0-S1110016819301899-main.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/915/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/915/3/license.txt
bitstream.checksum.fl_str_mv 7c370faecfc8a2eb5c271e4eb8a66598
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203423206146048
spelling Ramirez, R.58ef64be-ec7d-49d0-8237-e93b7fd3e6b9Avila, E.Lopez, L.Bula, A.Duarte Forero, J.2022-11-15T20:55:57Z2022-11-15T20:55:57Z2019-12-252019-01-06https://hdl.handle.net/20.500.12834/91510.1016/j.aej.2019.12.041Universidad del AtlánticoRepositorio Universidad del AtlánticoA model has been developed to characterize the cavitation phenomenon in dredging centrifugal pumps. The operating parameters of a cutter type dredger: swing speed, dredging depth, and inclination, impeller rpm, as well as slurry characterizations such as density and velocity, are introduced, to determine how they influence the operation of the dredge pump. The geometric characterization of the hydraulic transport system of the dredger was performed. With the dredge operational ´s parameters, along with the geometric characterization, the pump is modeled in CFD turbomachinery software. To validate the operational points, the CFD model considers the RNG k-e model and the cavitating-multiphase flow. Through the central composite experiment design, the operating conditions range of the dredger is determined, in which the pump can operate and cavitate. This allows validating the model for different operational points. Finally, multiple regression shows the influence of each of the variables in the response obtained. Furthermore, the regression allows an understanding that operating conditions of the dredger must be adjusted to mitigate the phenomenon of cavitation in the dredging process.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Elsevier B.V.CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumpsPúblico generalCavitation; Centrifugal pump; CFD; Dredging; Slurryinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede Norte[1] S.A. Miedema, A head loss model for slurry transport in the heterogeneous regime, Ocean Eng. 106 (2015) 360–370, https:// doi.org/10.1016/j.oceaneng.2015.07.015.[2] J. Tang, Q. Wang, Z. Bi, Expert system for operation optimization and control of cutter suction dredger, Expert Syst. Appl. 34 (2) (2008) 2180–2192, https://doi.org/10.1016/j. eswa.2007.02.025.[3] J. Tang, Q. Wang, T. Zhong, Automatic monitoring and control of cutter suction dredger, Autom. Constr. 18 (2) (2009) 194–203, https://doi.org/10.1016/j.autcon.2008.07.006[4] J. Tang, Q. Wang, Online fault diagnosis and prevention expert system for dredgers, Expert Syst. Appl. 34 (1) (2008) 511–521, https://doi.org/10.1016/j.eswa.2006.09.032.[5] S. Chandel, S.N. Singh, V. Seshadri, A comparative study on the performance characteristics of centrifugal and progressive cavity slurry pumps with high concentration fly ash slurries, Part. Sci. Technol. 29 (4) (2011) 378–396, https://doi.org/10.1080/ 02726351.2010.503264.[6] C. Camargo, C. Garcı´a, J.E. Duarte Forero, A. Rinco´ n, Modelo estadı´stico para la caracterizacio´ n y optimizacio´ n en bombas perife´ ricas, Revista Cientı´fica Ingenierı´a y Desarrollo 36 (1) (2017) 18–39, https://doi.org/10.14482/inde.36.1.10939.[7] M.C. Roco, G.R. Addie, R. Visintainer, Study on casing performances in centrifugal slurry pumps, Part. Sci. Technol. 3 (1) (1985) 65–88, https://doi.org/10.1080/02726358508906428.[8] K.C. Wilson, R. Clift, A. Sellgren, Operating points for pipelines carrying concentrated heterogeneous slurries, Powder Technol. 123 (1) (2002) 19–24, https://doi.org/10.1016/S0032-5910(01) 00423-5.[9] S.R. Shah, S.V. Jain, R.N. Patel, V.J. Lakhera, CFD for centrifugal pumps: a review of the state-of-the-art, Procedia Eng. 51 (2013) 715–720, https://doi.org/10.1016/j. proeng.2013.01.102.[10] Z.F. Yao, Z.J. Yang, F.J. Wang, Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller, Eng. Appl. Comput. Fluid Mech. 10 (1) (2016) 452–465, https://doi.org/10.1080/ 19942060.2016.1189362.[11] X.W. Luo, J.I. Bin, Y. Tsujimoto, A review of cavitation in hydraulic machinery, J. Hydrodyn. Ser. B 28 (3) (2016) 335–358, https://doi.org/10.1016/S1001-6058(16)60638-8.[12] Z.H.U. Bing, H.X. Chen, Cavitating suppression of low specific speed centrifugal pump with gap drainage blades, J. Hydrodyn. Ser. B 24 (5) (2012) 729–736, https://doi.org/10.1016/S1001-6058 (11)60297-7.[13] A. Peters, H. Sagar, U. Lantermann, O. el Moctar, Numerical modelling and prediction of cavitation erosion, Wear 338 (2015) 189–201, https://doi.org/10.1016/j.wear.2015.06.009.[14] X.P. Long, Q.Q. Wang, L.Z. Xiao, J.Q. Zhang, M.S. Xu, W.F. Wu, B. Ji, Numerical analysis of bubble dynamics in the diffuser of a jet pump under variable ambient pressure, J. Hydrodyn. Ser. B 29 (3) (2017) 510–519, https://doi.org/10.1016/S1001-6058 (16)60763-1.[15] H. Liu, Y. Wang, D. Liu, S. Yuan, J. Wang, Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps, J. Mech. Sci. Technol. 27 (9) (2013) 2743–2750, https://doi.org/10.1007/s12206-013-0720-8.[16] X. Long, H. Cheng, B. Ji, R.E. Arndt, X. Peng, Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil, Int. J. Multiph. Flow 100 (2018) 41–56, https://doi.org/10.1016/ j.ijmultiphaseflow.2017.12.002.[17] F. Bakir, R. Rey, A.G. Gerber, T. Belamri, B. Hutchinson, Numerical and experimental investigations of the cavitating behavior of an inducer, Int. J. Rotating Mach. 10 (1) (2004) 15– 25, https://doi.org/10.1155/S1023621X04000028.[18] P. Limbach, R. Skoda, Numerical and experimental analysis of cavitating flow in a low specific speed centrifugal pump with different surface roughness, ASME J. Fluids Eng. 139 (10) (2017) 101201, https://doi.org/10.1115/1.4036673.[19] F. Zhang, S. Yuan, Q. Fu, J. Pei, M. Bo¨ hle, X. Jiang, Cavitation-induced unsteady flow characteristics in the first stage of a centrifugal charging pump, ASME J. Fluids Eng. 139 (1) (2017) 011303, https://doi.org/10.1115/1.4034362.[20] D.S. Zhang, W.D. Shi, G.J. Zhang, J. Chen, B.B. van Esch, Numerical analysis of cavitation shedding flow around a threedimensional hydrofoil using an improved filter-based model, J. Hydrodyn. Ser. B 29 (2) (2017) 361–375, https://doi.org/10.1016/ S1001-6058(16)60746-1.[21] Y. Wang, H. Liu, D. Liu, S. Yuan, J. Wang, L. Jiang, Application of the two-phase three-component computational model to predict cavitating flow in a centrifugal pump and its validation, Comput. Fluids 131 (2016) 142–150, https://doi.org/ 10.1016/j.compfluid.2016.03.022.[22] H.L. Liu, D.X. Liu, Y. Wang, X.F. Wu, J.Wang, Application of modified j-x model to predicting cavitating flow in centrifugal pump, Water Sci. Eng. 6 (3) (2013) 331–339, https://doi.org/ 10.3882/j.issn.1674-2370.2013.03.009.[23] H. Si, Y. Fuxiang, G. Jing, Numerical simulation of 3D unsteady flow in centrifugal pump by dynamic mesh technique, Procedia Eng. 61 (2013) 270–275, https://doi.org/ 10.1016/j.proeng.2013.08.015.[24] O. Coutier-Delgosha, R. Fortes-Patella, J.L. Reboud, M. Hofmann, B. Stoffel, Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition, ASME J. Fluids Eng. 125 (6) (2003) 970– 978, https://doi.org/10.1115/1.1596238.[25] W.G. Li, Modeling viscous oil cavitating flow in a centrifugal pump, ASME J. Fluids Eng. 138 (1) (2016) 011303, https://doi. org/10.1115/1.4031061.[26] A.A. Babajani, M. Jafari, P.H. Sefat, Numerical investigation of distance effect between two Searasers for hydrodynamic performance, Alex. Eng. J. 55 (3) (2016) 2257–2268, https:// doi.org/10.1016/j.aej.2016.05.022.[27] D.A. Wilson, Pipeline dredge analytical program with comparison to field data, J. Pipeline Syst. Eng. Pract. 2 (3) (2011) 107–112, https://doi.org/10.1061/(ASCE)PS.1949- 1204.0000078[28] S.A. Miedema, An analysis of slurry transport at low line speeds, in: ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2014-23437, 2014, https://doi.org/10.1115/OMAE2014-23437.[29] J. Capecelatro, O. Desjardins, Eulerian-Lagrangian modeling of turbulent liquid–solid slurries in horizontal pipes, Int. J. Multiph. Flow 55 (2013) 64–79, https://doi.org/10.1016/j. ijmultiphaseflow.2013.04.006.[30] M.K. Gopaliya, D.R. Kaushal, Analysis of effect of grain size on various parameters of slurry flow through pipeline using CFD, Part. Sci. Technol. 33 (4) (2015) 369–384, https://doi.org/ 10.1080/02726351.2014.971988.[31] D.R. Kaushal, T. Thinglas, Y. Tomita, S. Kuchii, H. Tsukamoto, CFD modeling for pipeline flow of fine particles at high concentration, Int. J. Multiph. Flow 43 (2012) 85–100, https://doi.org/10.1016/j.ijmultiphaseflow.2012.03.005[32] Cormagdalena, Actualizacio´ n del PMA de los dragados de relimpia y mantenimiento del Canal del Dique, Barranquilla, 2004.[33] I. Quintero, Estudio del Transporte de Sedimentos en el Rı´o Grande de la Magdalena: Canal de acceso al Puerto de Barranquilla, Doctoral dissertation, Universidad Nacional Auto´noma de Me´xico, 2015.[34] A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluids Eng. 124 (3) (2002) 617–624, https://doi.org/10.1115/1.1486223.[35] G. Fu, A. Untaroiu, An optimum design approach for textured thrust bearing with elliptical-shape dimples using computational fluid dynamics and design of experiments including cavitation, J. Eng. Gas Turbines Power 139 (9) (2017) 092502, https://doi.org/ 10.1115/1.4036188.[36] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2017.[37] M. Bilgili, B. Sahin, Comparative analysis of regression and artificial neural network models for wind speed prediction, Meteorol. Atmos. Phys. 109 (1) (2010) 61–72, https://doi.org/ 10.1007/s00703-010-0093-9.[38] D. Kang, K. Yokota, Analytical study of cavitation surge in a hydraulic system, J. Fluids Eng. 136 (10) (2014) 101103, https:// doi.org/10.1115/1.4027220.[39] Y. Li, Z. Zhu, W. He, Z. He, Numerical simulation and experimental research on the influence of solid-phase characteristics on centrifugal pump performance, Chin. J. Mech. Eng. 25 (6) (2012) 1184–1189, https://doi.org/10.3901/ cjme.2012.06.1184.[40] W. Zhao, G. Zhao, Numerical investigation on the transient characteristics of sediment-laden two-phase flow in a centrifugal pump, J. Mech. Sci. Technol. 32 (1) (2018) 167–176, https://doi. org/10.1007/s12206-017-1218-6.[41] I.J. Karassik, J.P. Messina, P. Cooper, C.C. Heald, Pump Handbook, Vol. 3, McGraw-Hill, New York, 2001.http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S1110016819301899-main.pdf1-s2.0-S1110016819301899-main.pdfapplication/pdf3296962https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/915/1/1-s2.0-S1110016819301899-main.pdf7c370faecfc8a2eb5c271e4eb8a66598MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/915/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/915/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/915oai:repositorio.uniatlantico.edu.co:20.500.12834/9152022-11-15 15:55:58.821DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==