Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study
In this article, we studied the antimicrobial activity of TiO2 sensitized by the Zn(II)-tetracarboxy-phthalocyanine (TcPcZn) complex using TiO2-Degussa P25 as a semiconductor source. The TiO2 thin films were deposited by the doctor blade method and were sensitized by the chemisorption process. The o...
- Autores:
-
Vallejo, William
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/1157
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/1157
- Palabra clave:
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_c034bb94014259bee8a6daf0243e77f8 |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/1157 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study |
title |
Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study |
spellingShingle |
Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study |
title_short |
Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study |
title_full |
Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study |
title_fullStr |
Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study |
title_full_unstemmed |
Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study |
title_sort |
Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study |
dc.creator.fl_str_mv |
Vallejo, William |
dc.contributor.author.none.fl_str_mv |
Vallejo, William |
dc.contributor.other.none.fl_str_mv |
Navarro, Karen Díaz-Uribe, Carlos Ximena Zarate, Eduardo Schott, Romero, Eduard |
description |
In this article, we studied the antimicrobial activity of TiO2 sensitized by the Zn(II)-tetracarboxy-phthalocyanine (TcPcZn) complex using TiO2-Degussa P25 as a semiconductor source. The TiO2 thin films were deposited by the doctor blade method and were sensitized by the chemisorption process. The obtained compounds were characterized using Fourier transform infrared spectroscopy, UV−vis spectrophotometry, Raman spectroscopy, diffuse reflectance spectroscopy, and scanning electron microscopy. Furthermore, we studied the stability of the adsorbed sensitizer on the semiconductor surface by using the density functional theory (DFT). Additionally, we determined the antimicrobial activity of TcPcZn−TiO2 against methicillin-resistant Staphylococcus aureus (MRSA). The Raman and optical results confirmed the sensitizing process. The TcPcZn−TiO2 thin films showed radiation absorption in the visible range of the electromagnetic spectrum (600−750 nm), and the dye anchored on the TiO2 surface had a band gap of 1.58 eV. The DFT study showed that TcPcZn supported on any phase of Degussa P25 is stable, making them suitable to act as catalysts in the proposed reactions. Finally, the TcPcZn−TiO2 thin films reached 76.5% of inhibition activity against MRSA. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-05-20 |
dc.date.submitted.none.fl_str_mv |
2021-02-04 |
dc.date.accessioned.none.fl_str_mv |
2022-12-20T00:09:24Z |
dc.date.available.none.fl_str_mv |
2022-12-20T00:09:24Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Vallejo, W., Navarro, K., Díaz-Uribe, C., Schott, E., Zarate, X., & Romero, E. (2021). Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study. ACS Omega, 6(21), 13637–13646. https://doi.org/10.1021/acsomega.1c00658 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/1157 |
dc.identifier.doi.none.fl_str_mv |
10.1021/acsomega.1c00658 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
identifier_str_mv |
Vallejo, W., Navarro, K., Díaz-Uribe, C., Schott, E., Zarate, X., & Romero, E. (2021). Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study. ACS Omega, 6(21), 13637–13646. https://doi.org/10.1021/acsomega.1c00658 10.1021/acsomega.1c00658 Universidad del Atlántico Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/1157 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Química |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
ACS Omega |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1157/1/acsomega.1c00658.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1157/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1157/3/license.txt |
bitstream.checksum.fl_str_mv |
6698a5de6d3d3a85eed7598504047e22 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203408591093760 |
spelling |
Vallejo, William515f7221-38e6-4d06-8d1f-bf35a10ac2bbNavarro, KarenDíaz-Uribe, CarlosXimena Zarate, Eduardo Schott,Romero, Eduard2022-12-20T00:09:24Z2022-12-20T00:09:24Z2021-05-202021-02-04Vallejo, W., Navarro, K., Díaz-Uribe, C., Schott, E., Zarate, X., & Romero, E. (2021). Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study. ACS Omega, 6(21), 13637–13646. https://doi.org/10.1021/acsomega.1c00658https://hdl.handle.net/20.500.12834/115710.1021/acsomega.1c00658Universidad del AtlánticoRepositorio Universidad del AtlánticoIn this article, we studied the antimicrobial activity of TiO2 sensitized by the Zn(II)-tetracarboxy-phthalocyanine (TcPcZn) complex using TiO2-Degussa P25 as a semiconductor source. The TiO2 thin films were deposited by the doctor blade method and were sensitized by the chemisorption process. The obtained compounds were characterized using Fourier transform infrared spectroscopy, UV−vis spectrophotometry, Raman spectroscopy, diffuse reflectance spectroscopy, and scanning electron microscopy. Furthermore, we studied the stability of the adsorbed sensitizer on the semiconductor surface by using the density functional theory (DFT). Additionally, we determined the antimicrobial activity of TcPcZn−TiO2 against methicillin-resistant Staphylococcus aureus (MRSA). The Raman and optical results confirmed the sensitizing process. The TcPcZn−TiO2 thin films showed radiation absorption in the visible range of the electromagnetic spectrum (600−750 nm), and the dye anchored on the TiO2 surface had a band gap of 1.58 eV. The DFT study showed that TcPcZn supported on any phase of Degussa P25 is stable, making them suitable to act as catalysts in the proposed reactions. Finally, the TcPcZn−TiO2 thin films reached 76.5% of inhibition activity against MRSA.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ACS OmegaZn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental StudyPúblico generalinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede Norte(1) Dordel, J.; Kim, C.; Chung, M.; Pardos de la Gándara, M.; Holden, M. T. J.; Parkhill, J.; de Lencastre, H.; Bentley, S. D.; Tomasz, A. Novel Determinants of Antibiotic Resistance: Identification of Mutated Loci in Highly Methicillin-Resistant Subpopulations of Methicillin-Resistant Staphylococcus Aureus. MBio 2014, 5, No. e01000.(2) de Oliveira, S. C. P. S.; Monteiro, J. S. C.; Pires-Santos, G. M.; Sampaio, F. J. P.; Soares, A. P.; Soares, L. G. P.; Pinheiro, A. L. B. LED Antimicrobial Photodynamic Therapy with Phenothiazinium Dye against Staphylococcus Aureus : An in Vitro Study. J. Photochem. Photobiol., B 2017, 175, 46−50.Kuehnert, M. J.; Hill, H. A.; Kupronis, B. A.; Tokars, J. I.; Solomon, S. L.; Jernigan, D. B. Methicillin-resistant-Staphylococcus aureusHospitalizations, United States. Emerging Infect. Dis. 2005, 11, 868−872.Klein, E.; Smith, D. L.; Laxminarayan, R. Hospitalizations and Deaths Caused by Methicillin-ResistantStaphylococcus aureus, United States, 1999-2005. Emerging Infect. Dis. 2007, 13, 1840−1846.Ki, V.; Rotstein, C. Bacterial Skin and Soft Tissue Infections in Adults: A Review of Their Epidemiology, Pathogenesis, Diagnosis, Treatment and Site of Care. Can. J. Infect. Dis. Med. Microbiol. 2008, 19, 173.Chambers, H. F.; DeLeo, F. R. Waves of Resistance: Staphylococcus Aureus in the Antibiotic Era. Nat. Rev. Microbiol. 2009, 7, 629−641.Rayner, C.; Munckhof, W. J. Antibiotics Currently Used in the Treatment of Infections Caused by Staphylococcus Aureus. Intern. Med. J. 2005, 35, S3−S16.Kaur, D.; Chate, S. Study of Antibiotic Resistance Pattern in Methicillin Resistant Staphylococcus Aureus with Special Reference to Newer Antibiotic. J. Global Infect. Dis. 2015, 7, 78−84.Wong, K. K. Y.; Liu, X. Silver Nanoparticles - The Real “Silver Bullet” in Clinical Medicine? Medchemcomm 2010, 1, 125−131.Díez-Pascual, A. M. Antibacterial Action of Nanoparticle Loaded Nanocomposites Based on Graphene and Its Derivatives: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 3563.Dizaj, S. M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M. H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng., C 2014, 44, 278−284.Fakhri, A.; Behrouz, S.; Pourmand, M. Synthesis, Photocatalytic and Antimicrobial Properties of SnO2, SnS2 and SnO2/SnS2 Nanostructure. J. Photochem. Photobiol., B 2015, 149, 45−50El-Nahhal, I. M.; Salem, J.; Anbar, R.; Kodeh, F. S.; Elmanama, A. Preparation and Antimicrobial Activity of ZnO-NPs Coated Cotton/Starch and Their Functionalized ZnO-Ag/Cotton and Zn(II) Curcumin/Cotton Materials. Sci. Rep. 2020, 10, 5410.Joost, U.; Juganson, K.; Visnapuu, M.; Mortimer, M.; Kahru, A.; Nõmmiste, E.; Joost, U.; Kisand, V.; Ivask, A. Photocatalytic Antibacterial Activity of Nano-TiO2 (Anatase)-Based Thin Films: Effects on Escherichia Coli Cells and Fatty Acids. J. Photochem. Photobiol., B 2015, 142, 178−185.Azizi-Lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M. Antimicrobial Activity of Titanium Dioxide and Zinc Oxide Nanoparticles Supported in 4A Zeolite and Evaluation the Morphological Characteristic. Sci. Rep. 2019, 9, 17439.Yang, Z.; Hao, X.; Chen, S.; Ma, Z.; Wang, W.; Wang, C.; Yue, L.; Sun, H.; Shao, Q.; Murugadoss, V.; Guo, Z. Long-Term Antibacterial Stable Reduced Graphene Oxide Nanocomposites Loaded with Cuprous Oxide Nanoparticles. J. Colloid Interface Sci. 2019, 533, 13−23.Senarathna, U. L. N. H.; Fernando, S. S. N.; Gunasekara, T. D. C. P.; Weerasekera, M. M.; Hewageegana, H. G. S. P.; Arachchi, N. D. H.; Siriwardena, H. D.; Jayaweera, P. M. Enhanced Antibacterial Activity of TiO2 Nanoparticle Surface Modified with Garcinia Zeylanica Extract. Chem. Cent. J. 2017, 11, 7.Sułek, A.; Pucelik, B.; Kuncewicz, J.; Dubin, G.; Dąbrowski, J. M. Sensitization of TiO2 by Halogenated Porphyrin Derivatives for Visible Light Biomedical and Environmental Photocatalysis. Catal. Today 2019, 335, 538−549.Krishna, V.; Bai, W.; Han, Z.; Yano, A.; Thakur, A.; Georgieva, A.; Tolley, K.; Navarro, J.; Koopman, B.; Moudgil, B. Contaminant- Activated Visible Light Photocatalysis. Sci. Rep. 2018, 8, 1894.Yemmireddy, V. K.; Hung, Y.-C. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety- Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16, 617−631.Pham, T.-D.; Lee, B.-K. Disinfection of Staphylococcus Aureus in Indoor Aerosols Using Cu-TiO2 Deposited on Glass Fiber under Visible Light Irradiation. J. Photochem. Photobiol., A 2015, 307−308, 16−22.Meng, D.; Liu, X.; Xie, Y.; Du, Y.; Yang, Y.; Xiao, C. Antibacterial Activity of Visible Light-Activated TiO2 Thin Films with Low Level of Fe Doping. Adv. Mater. Sci. Eng. 2019, 2019, 5819805. (23) Matsunaga, T. Sterilization with Particule Photosemiconductor. J. Antibact. Antifungal Agents 1985, 13, 211−220.Ripolles-Avila, C.; Martinez-Garcia, M.; Hascoët, A.-S.; Rodríguez-Jerez, J. J. Bactericidal Efficacy of UV Activated TiO2 Nanoparticles against Gram-Positive and Gram-Negative Bacteria on Suspension. CyTA–J. Food 2019, 17, 408−418.Kubacka, A.; Diez, M. S.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J. P.; Barbas, C.; Martins Dos Santos, V. A. P.; Fernández-García, M.; Ferrer, M. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci. Rep. 2014, 4, 4134.Colmenares, J. C. Selective Redox Photocatalysis: Is There Any Chance for Solar Bio-Refineries? Curr. Opin. Green Sustain. Chem. 2019, 15, 38−46.Rasoulnezhad, H.; Hosseinzadeh, G.; Yekrang, J. Preparation and Characterization of Nanostructured S and Fe Co-Doped TiO 2 Thin Film by Ultrasonic-Assisted Spray Pyrolysis Method. J. Nanostruct. 2018, 8, 251−258Diaz-Uribe, C.; Vallejo, W.; Ramos, W. Methylene Blue Photocatalytic Mineralization under Visible Irradiation on TiO2 Thin Films Doped with Chromium. Appl. Surf. Sci. 2014, 319, 121−127.Cravanzola, S.; Cesano, F.; Gaziano, F.; Scarano, D.; Cravanzola, S.; Cesano, F.; Gaziano, F.; Scarano, D. Sulfur-Doped TiO2: Structure and Surface Properties. Catalysts 2017, 7, 214.Kuriakose, S.; Satpati, B.; Mohapatra, S. Enhanced Photocatalytic Activity of Co Doped ZnO Nanodisks and Nanorods Prepared by a Facile Wet Chemical Method. Phys. Chem. Chem. Phys. 2014, 16, 12741.Vallejo, W.; Díaz-Uribe, C.; Rios, K. Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition. Adv. Phys. Chem. 2017, 2017, 1−5.Loh, K.; Gaylarde, C. C.; Shirakawa, M. A. Photocatalytic Activity of ZnO and TiO2 “Nanoparticles” for Use in Cement Mixes. Constr. Build. Mater. 2018, 167, 853−859.Rawal, S. B.; Bera, S.; Lee, D.; Jang, D.-J.; Lee, W. I. Design of Visible-Light Photocatalysts by Coupling of Narrow Bandgap Semiconductors and TiO2: Effect of Their Relative Energy Band Positions on the Photocatalytic Efficiency. Catal. Sci. Technol. 2013, 3, 1822.Díaz-Uribe, C.; Viloria, J.; Cervantes, L.; Vallejo, W.; Navarro, K.; Romero, E.; Quiñones, C. Photocatalytic Activity of Ag-TiO2 Composites Deposited by Photoreduction under UV Irradiation. Int. J. Photoenergy 2018, 2018, 1−8.Türkyılmaz, Ş. Ş.; Güy, N.; Özacar, M. Photocatalytic Efficiencies of Ni, Mn, Fe and Ag Doped ZnO Nanostructures Synthesized by Hydrothermal Method: The Synergistic/Antagonistic Effect between ZnO and Metals. J. Photochem. Photobiol., A 2017, 341, 39−50.Ayati, A.; Ahmadpour, A.; Bamoharram, F. F.; Tanhaei, B.; Mänttäri, M.; Sillanpää, M. A Review on Catalytic Applications of Au/ TiO2 Nanoparticles in the Removal of Water Pollutant. Chemosphere 2014, 107, 163−174.Ghazal, B.; Azizi, K.; Ewies, E. F.; Youssef, A. S. A.; Mwalukuku, V. M.; Demadrille, R.; Torres, T.; Makhseed, S. Push-Pull Zinc Phthalocyanine Bearing Hexa-Tertiary Substituted Carbazolyl Donor Groups for Dye-Sensitized Solar Cells. Molecules 2020, 25, 1692.Pirbazari, A. E. Sensitization of Tio2 Nanoparticles With Cobalt Phthalocyanine: An Active Photocatalyst for Degradation of 4- Chlorophenol under Visible Light. Procedia Mater. Sci. 2015, 11, 622−627.Díaz-Uribe, C.; Vallejo, W.; Campos, K.; Solano, W.; Andrade, J.; Muñoz-Acevedo, A.; Schott, E.; Zarate, X. Improvement of the photocatalytic activity of TiO 2 using Colombian Caribbean species ( Syzygium cumini ) as natural sensitizers: Experimental and theoretical studies. Dyes Pigm. 2018, 150, 370−376.Litter, M. I.; San Román, E.; Grela, t. l. M. A.; Meichtry, J. M.; Rodríguez, H. B. Sensitization of TiO2 by Dyes: A Way to Extend the Range of Photocatalytic Activity of TiO2 to the Visible Region. Visible Light-Active Photocatalysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp 253−282. (41) Vallejo, W.; Rueda, A.; Díaz-Uribe, C.; Grande, C.; Quintana, P. Photocatalytic activity of graphene oxide-TiO 2 thin films sensitized by natural dyes extracted from Bactris guineensis. R. Soc. Open Sci. 2019, 6, 181824.Diaz-Uribe, C.; Vallejo, W.; Camargo, G.; Muñoz-Acevedo, A.; Quiñones, C.; Schott, E.; Zarate, X. Potential use of an anthocyaninrich extract from berries of Vaccinium meridionale Swartz as sensitizer for TiO2 thin films - An experimental and theoretical study. J. Photochem. Photobiol., A 2019, 384. DOI: 10.1016/j.jphotochem. 2019.112050.Richhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B. Natural Dyes for Dye Sensitized Solar Cell: A Review. Renew. Sustain. Energy Rev. 2017, 69, 705−718.Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O’Shea, K.; Entezari, M. H.; Dionysiou, D. D. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal., B 2012, 125, 331−349.Huang, Z.; Zheng, B.; Zhu, S.; Yao, Y.; Ye, Y.; Lu, W.; Chen, W. Photocatalytic activity of phthalocyanine-sensitized TiO2-SiO2 microparticles irradiated by visible light. Mater. Sci. Semicond. Process. 2014, 25, 148−152.Luna-Flores, A.; Valenzuela, M. A.; Luna-López, J. A.; Hernández de la Luz, A. D.; Muñoz-Arenas, L. C.; Méndez- Hernández, M.; Sosa-Sánchez, J. L. Synergetic Enhancement of the Photocatalytic Activity of TiO2 with Visible Light by Sensitization Using a Novel Push-Pull Zinc Phthalocyanine. Int. J. Photoenergy 2017, 2017, 1604753.Chen, Z.; Zhou, S.; Chen, J.; Li, L.; Hu, P.; Chen, S.; Huang, M. An Effective Zinc Phthalocyanine Derivative for Photodynamic Antimicrobial Chemotherapy. J. Lumin. 2014, 152, 103−107.Denes, G. Phthalocyanines: Properties and Applications, Volume 4 Edited by C. C. Leznoff and A. B. P. Lever (York University, Canada). VCH: New York, 1996. vi + 524 pp. $150.00. ISBN 1-56081-916-2. J. Am. Chem. Soc. 1998, 120, 241−242.Liu, Q.; Pang, M.; Tan, S.; Wang, J.; Chen, Q.; Wang, K.; Wu, W.; Hong, Z. Potent Peptide-Conjugated Silicon Phthalocyanines for Tumor Photodynamic Therapy. J. Canc. 2018, 9, 310−320.Li, X.; Lee, S.; Yoon, J. Supramolecular Photosensitizers Rejuvenate Photodynamic Therapy. Chem. Soc. Rev. 2018, 47, 1174− 1188.Vallejo, W.; Cantillo, A.; Díaz-Uribe, C. Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films. Int. J. Photoenergy 2020, 2020, 1627498.Vallejo, W.; Diaz-Uribe, C.; Cantillo, Á. Methylene Blue Photocatalytic Degradation under Visible Irradiation on TiO2 Thin Films Sensitized with Cu and Zn Tetracarboxy-Phthalocyanines. J. Photochem. Photobiol., A 2015, 299, 80−86.Altın, İ.; Sökmen, M.; Bıyıklıoğlu, Z. Quaternized Zinc(II) Phthalocyanine-Sensitized TiO2: Surfactant-Modified Sol−Gel Synthesis, Characterization and Photocatalytic Applications. Desalin. Water Treat. 2016, 57, 16196−16207.Dindaş, G. B.; Şahin, Z.; Cengiz Yatmaz, H.; Işci, Ü. Cobalt Phthalocyanine-TiO 2 Nanocomposites for Photocatalytic Remediation of Textile Dyes under Visible Light Irradiation. J. Porphyr. Phthalocyanines 2019, 23, 561−568.Li, W.; Ni, C.; Lin, H.; Huang, C. P.; Shah, S. I. Size dependence of thermal stability of TiO2 nanoparticles. J. Appl. Phys. 2004, 96, 6663−6668.Zhang, J.; Sun, P.; Jiang, P.; Guo, Z.; Liu, W.; Lu, Q.; Cao, W. The formation mechanism of TiO2 polymorphs under hydrothermal conditions based on the structural evolution of [Ti(OH)h(H2O)6− h]4−h monomers. J. Mater. Chem. C 2019, 7, 5764−5771.Tetteh, E. K.; Rathilal, S.; Naidoo, D. B. Photocatalytic Degradation of Oily Waste and Phenol from a Local South Africa Oil Refinery Wastewater Using Response Methodology. Sci. Rep. 2020, 10, 8850.Li, S.; Zhao, Z.; Huang, Y.; Di, J.; Jia, Y.; Zheng, H. Hierarchically Structured WO3-CNT@TiO2NS Composites with Enhanced Photocatalytic Activity. J. Mater. Chem. A 2015, 3, 5467− 5473.Fujishima, A.; Zhang, X.; Tryk, D. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515−582.Mali, S. S.; Shinde, P. S.; Betty, C. A.; Bhosale, P. N.; Lee, W. J.; Patil, P. S. Nanocoral Architecture of TiO2 by Hydrothermal Process: Synthesis and Characterization. Appl. Surf. Sci. 2011, 257, 9737− 9746.Azizah, N.; Hashim, U.; Arshad, M. K. M.; Gopinath, S. C. B.; Nadzirah, S.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M. Surface Morphology of Titanium Dioxide (TiO2) Nanoparticles on Aluminum Interdigitated Device Electrodes (IDEs). AIP Conf. Proc. 2016, 1733, 020079.He, J.; Hagfeldt, A.; Lindquist, S.-E.; Grennberg, H.; Korodi, F.; Sun, L.; Åkermark, B. Phthalocyanine-Sensitized Nanostructured TiO2Electrodes Prepared by a Novel Anchoring Method. Langmuir 2001, 17, 2743−2747.Ashokkumar, R.; Kathiravan, A.; Ramamurthy, P. Zn- Phthalocyanine-Functionalized Nanometal and Nanometal-TiO2 Hybrids: Aggregation Behavior and Excited-State Dynamics. Phys. Chem. Chem. Phys. 2014, 16, 14139−14149.Mangialardo, S.; Larciprete, M. C.; Belardini, A.; Sibilia, C.; Bertolotti, M. Determination of the Aggregation Degree of Zinc- Phthalocyanines Derivatives into Polymeric Films via the Characterization of the Linear-Optical Absorption. Laser Phys. 2008, 18, 1371− 1377.Likodimos, V.; Stergiopoulos, T.; Falaras, P.; Harikisun, R.; Desilvestro, J.; Tulloch, G. Prolonged Light and Thermal Stress Effects on Industrial Dye-Sensitized Solar Cells: A Micro-Raman Investigation on the Long-Term Stability of Aged Cells. J. Phys. Chem. C 2009, 113, 9412−9422.Nazeeruddin, M. K.; Müller, E.; Humphry-Baker, R.; Vlachopoulos, N.; Grätzel, M. Redox Regulation in Ruthenium(II) Polypyridyl Complexes and Their Application in Solar Energy Conversion. J. Chem. Soc., Dalton Trans. 1997, 4571−4578.Falaras, P.; Gratzel, M.; Goff, A. H. L.; Nazeeruddin, M.; Vrachnou, E. Dye Sensitization of TiO2 Surfaces Studied by Raman Spectroscopy. J. Electrochem. Soc. 1993, 140, L92.Nagai, S.; Hirano, G.; Bessho, T.; Satori, K. Raman Spectroscopic Study of Dye Adsorption on TiO2 Electrodes of Dye-Sensitized Solar Cells. Vib. Spectrosc. 2014, 72, 66−71.Justh, N.; Bakos, L. P.; Hernádi, K.; Kiss, G.; Réti, B.; Erdélyi, Z.; Parditka, B.; Szilágyi, I. M. Photocatalytic Hollow TiO2 and ZnO Nanospheres Prepared by Atomic Layer Deposition. Sci. Rep. 2017, 7, 4337.Yang, L.; Gong, M.; Jiang, X.; Yin, D.; Qin, X.; Zhao, B.; Ruan, W. Investigation on SERS of different phase structure TiO2 nanoparticles. J. Raman Spectrosc. 2015, 46, 287−292.Naldoni, A.; Riboni, F.; Guler, U.; Boltasseva, A.; Shalaev, V. M.; Kildishev, A. V. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis. Nanophotonics 2016, 5, 112.Machado, A. E. H.; França, M. D.; Velani, V.; Magnino, G. A.; Velani, H. M. M.; Freitas, F. S.; Müller, P. S., Jr; Sattler, C.; Schmücker, M. Characterization and Evaluation of the Efficiency of TiO2/Zinc Phthalocyanine Nanocomposites as Photocatalysts for Wastewater Treatment Using Solar Irradiation. Int. J. Photoenergy 2008, 2008, 482373.Simmons, E. L. Relation of the Diffuse Reflectance Remission Function to the Fundamental Optical Parameters. Opt. Acta Int. J. Opt. 1972, 19, 845−851.Viezbicke, B. D.; Patel, S.; Davis, B. E.; Birnie, D. P. Evaluation of the Tauc Method for Optical Absorption Edge Determination: ZnO Thin Films as a Model System. Phys. Status Solidi 2015, 252, 1700−1710.Pal, M.; Pal, U.; Jiménez, J. M. G. Y.; Pérez-Rodríguez, F. Effects of Crystallization and Dopant Concentration on the Emission Behavior of TiO2:Eu Nanophosphors. Nanoscale Res. Lett. 2012, 7, 1.Guayaquil-Sosa, J. F.; Serrano-Rosales, B.; Valadés-Pelayo, P. J.; de Lasa, H. Photocatalytic Hydrogen Production Using Mesoporous TiO2 Doped with Pt. Appl. Catal., B 2017, 211, 337−348.Batista, P. S.; De Souza, D. R.; Maximiano, R. V.; Barbosa Neto, N. M.; Machado, A. E. H. Quantum Efficiency of Hydroxyl Radical Formation in a Composite Containing Nanocrystalline TiO2 e Zinc Phthalocyanine, and the Nature of the Incident Radiation. J. Mater. Sci. Res. 2013, 2, p82.Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919−9986.Duncan, W. R.; Stier, W. M.; Prezhdo, O. V. AbInitioNonadiabatic Molecular Dynamics of the Ultrafast Electron Injection across the Alizarin−TiO2Interface. J. Am. Chem. Soc. 2005, 127, 7941−7951.Herrmann, J.-M. Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912-2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill). Top. Catal. 2005, 34, 49−65.Mafukidze, D. M.; Mashazi, P.; Nyokong, T. Synthesis and Singlet Oxygen Production by a Phthalocyanine When Embedded in Asymmetric Polymer Membranes. Polymer 2016, 105, 203−213.Nwahara, N.; Britton, J.; Nyokong, T. Improving Singlet Oxygen Generating Abilities of Phthalocyanines: Aluminum Tetrasulfonated Phthalocyanine in the Presence of Graphene Quantum Dots and Folic Acid. J. Coord. Chem. 2017, 70, 1601−1616.Granados-Oliveros, G.; Páez-Mozo, E. A.; Martínez Ortega, F.; Piccinato, M.; Silva, F. N.; Guedes, C. L. B.; Di Mauro, E.; Costa, M. F. d.; Ota, A. T. Visible light production of superoxide anion with MCarboxyphenylporphyrins (M=H, Fe, Co, Ni, Cu, and Zn) free and anchored on TiO2: EPR characterization. J. Mol. Catal. A Chem. 2011, 339, 79−85.Zarate, X.; Schott-Verdugo, S.; Rodriguez-Serrano, A.; Schott, E. The Nature of the Donor Motif in Acceptor-Bridge-Donor Dyes as an Influence in the Electron Photo-Injection Mechanism in DSSCs. J. Phys. Chem. A 2016, 120, 1613−1624.Schweitzer, C.; Mehrdad, Z.; Noll, A.; Grabner, E.-W.; Schmidt, R. Mechanism of Photosensitized Generation of Singlet Oxygen during Oxygen Quenching of Triplet States and the General Dependence of the Rate Constants and Efficiencies of O2(1Σg+), O2(1Δg), and O2(3Σg-) Formation on Sensitizer Triplet State Energy and Oxidation Potential. J. Phys. Chem. A 2003, 107, 2192− 2198.Quiñones, C.; Ayala, J.; Vallejo, W. Methylene Blue Photoelectrodegradation under UV Irradiation on Au/Pd-Modified TiO2 Films. Appl. Surf. Sci. 2010, 257, 367−371.Patiño-Camelo, K.; Diaz-Uribe, C.; Gallego-Cartagena, E.; Vallejo, W.; Martinez, V.; Quiñones, C.; Hurtado, M.; Schott, E. Cyanobacterial Biomass Pigments as Natural Sensitizer for TiO2 Thin Films. Int. J. Photoenergy 2019, 2019, 1−9.Achar, B. N.; Fohlent, G. M.; Parker, J. A.; Keshavayya, J. Preparation and Structural Investigations of Copper(II), Cobalt(II), Nickel(II) and Zinc(II) Derivatives of 2,9,16,23-Phthalocyanine Tetracarboxylic Acid. Indian J. Chem. 1988, 27, 411−416.Vallejo, W.; Cantillo, A.; Salazar, B.; Diaz-Uribe, C.; Ramos, W.; Romero, E.; Hurtado, M. Comparative Study of ZnO Thin Films Doped with Transition Metals (Cu and Co) for Methylene Blue Photodegradation under Visible Irradiation. Catalysts 2020, 10, 528.Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D.; Shrivastava, S. Characterization of Enhanced Antibacterial Effects of Novel Silver Nanoparticles. Nanotechnol 2007, 18, 225103.Vallejo, W.; Díaz-Uribe, C.; Navarro, K.; Valle, R.; Arboleda, J. W.; Romero, E. Estudio de la actividad antimicrobiana de pelić ulas delgadas de dióxido de titanio modificado con plata. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2016, 40, 69.Horn, H.; Schwerdtfeger, C. F.; Meagher, E. P. Refinement of the Structure of Anatase at Several Temperatures *. Z. Kristallogr. 1972, 136, 273−281.Meagher, E. P.; Lager, G. A. Polyhedral Thermal Expansion in the TiO 2 Polymorphs; Refinement of the Crystal Structures of Rutile and Brookite at High Temperature. Can. Mineral. 1979, 17, 77−85.Garrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D. Pseudopotentials for High-Throughput DFT Calculations. Comput. Mater. Sci. 2014, 81, 446−452.Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin- Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502.Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33−38.Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford CT, 2009..http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALacsomega.1c00658.pdfacsomega.1c00658.pdfapplication/pdf3131904https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1157/1/acsomega.1c00658.pdf6698a5de6d3d3a85eed7598504047e22MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1157/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1157/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1157oai:repositorio.uniatlantico.edu.co:20.500.12834/11572022-12-19 19:09:25.17DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |