Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families

This article reveals an analysis of the quadratic systems that hold multiparametric families therefore, in the first instance the quadratic systems are identified and classified in order to facilitate their study and then the stability of the critical points in the finite plane, its bifurcations, st...

Full description

Autores:
Rodríguez Contreras, Jorge
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/1143
Acceso en línea:
https://hdl.handle.net/20.500.12834/1143
Palabra clave:
Quadratic Polynomial Systems, Critical Points, Bifurcations, Stable Manifold, Phase portraits of polynomial systems.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_c0109056e9a12f7502293d6c4a34108a
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/1143
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families
dc.title.alternative.spa.fl_str_mv Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families
title Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families
spellingShingle Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families
Quadratic Polynomial Systems, Critical Points, Bifurcations, Stable Manifold, Phase portraits of polynomial systems.
title_short Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families
title_full Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families
title_fullStr Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families
title_full_unstemmed Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families
title_sort Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families
dc.creator.fl_str_mv Rodríguez Contreras, Jorge
dc.contributor.author.none.fl_str_mv Rodríguez Contreras, Jorge
dc.contributor.other.none.fl_str_mv Reyes Linero, Alberto
Blanco Montes, Bladimir
B. Acosta-Humánez, Primitivo
dc.subject.keywords.spa.fl_str_mv Quadratic Polynomial Systems, Critical Points, Bifurcations, Stable Manifold, Phase portraits of polynomial systems.
topic Quadratic Polynomial Systems, Critical Points, Bifurcations, Stable Manifold, Phase portraits of polynomial systems.
description This article reveals an analysis of the quadratic systems that hold multiparametric families therefore, in the first instance the quadratic systems are identified and classified in order to facilitate their study and then the stability of the critical points in the finite plane, its bifurcations, stable manifold and lastly, the stability of the critical points in the infinite plane, afterwards the phase portraits resulting from the analysis of these families are graphed. To properly perform this study it was necessary to use some results of the non-linear systems theory, for this reason vital definitions and theorems were included because of their importance during the study of the multiparametric families. Algebraic aspects are also included.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-01-05
dc.date.submitted.none.fl_str_mv 2021-04-17
dc.date.accessioned.none.fl_str_mv 2022-12-19T02:42:38Z
dc.date.available.none.fl_str_mv 2022-12-19T02:42:38Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Contreras, J. R., Linero, A. R., Montes, B. B., & Acosta-Humánez, P. B. (2021). Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families. arXiv preprint arXiv:2103.02773.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/1143
dc.identifier.doi.none.fl_str_mv 10.37394/23206.2021.20.20
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv Contreras, J. R., Linero, A. R., Montes, B. B., & Acosta-Humánez, P. B. (2021). Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families. arXiv preprint arXiv:2103.02773.
10.37394/23206.2021.20.20
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/1143
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Matemáticas
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv World Scientific and Engineering Academy and Society
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1143/1/Transcritical_Bifurcations_and_Algebraic_Aspects_o.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1143/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1143/3/license.txt
bitstream.checksum.fl_str_mv 5f9886b3cee2080a2e4d956ec4197748
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203410815123456
spelling Rodríguez Contreras, Jorgec3f6fcbd-e002-4b97-ab75-4cdce01e825fReyes Linero, AlbertoBlanco Montes, BladimirB. Acosta-Humánez, Primitivo2022-12-19T02:42:38Z2022-12-19T02:42:38Z2021-01-052021-04-17Contreras, J. R., Linero, A. R., Montes, B. B., & Acosta-Humánez, P. B. (2021). Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families. arXiv preprint arXiv:2103.02773.https://hdl.handle.net/20.500.12834/114310.37394/23206.2021.20.20Universidad del AtlánticoRepositorio Universidad del AtlánticoThis article reveals an analysis of the quadratic systems that hold multiparametric families therefore, in the first instance the quadratic systems are identified and classified in order to facilitate their study and then the stability of the critical points in the finite plane, its bifurcations, stable manifold and lastly, the stability of the critical points in the infinite plane, afterwards the phase portraits resulting from the analysis of these families are graphed. To properly perform this study it was necessary to use some results of the non-linear systems theory, for this reason vital definitions and theorems were included because of their importance during the study of the multiparametric families. Algebraic aspects are also included.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2World Scientific and Engineering Academy and SocietyTranscritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric FamiliesTranscritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric FamiliesPúblico generalQuadratic Polynomial Systems, Critical Points, Bifurcations, Stable Manifold, Phase portraits of polynomial systems.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaMatemáticasSede NorteAcosta-Humanez P.B., Lazaro J.T., Morales-Ruiz J.J. & Pantazi Ch. ´ , On the integrability of polynomial fields in the plane by means of Picard-Vessiot theory, Discrete & Continuous Dynamical Systems-A 35 (2015): 1767–1800.. Available at arXiv:1012.4796.Acosta-Humanez P. B., Reyes Linero A. & Rodr ´ ´ıguez Contreras J., Algebraic and qualitative remarks about the family yy0 = (αxm+k−1 + βxm−k−1 )y + γx2m−2k−1 , preprint 2014. Available at arXiv:1807.03551.Rodr´ıguez Contreras J., Acosta-Humanez P. B. & Reyes Linero A. ´ , Algebraic and qualitative remarks about the family yy0 = (αxm+k−1 + βxm−k−1 )y + γx2m−2k−1 , Open Mathematics 17 (2019), 1220–1238.Acosta-Humanez P. B., Reyes Linero A. & Rodr ´ ´ıguez Contreras J.,Galoisian and Qualitative Approaches to Linear Polyanin-Zaitsev Vector Fields, Open Mathematics 16 (2018), 1204–1217. Available at arXiv:1807.05272.Acosta-Hum´anez P. B., Campo Donado M., Reyes Linero A., & Rodr´ıguez Contreras J., (2019). Algebraic and qualitative aspects of quadratic vector fields related with classical orthogonal polynomials. arXiv preprint arXiv:1906.09764.Rodr´ıguez Contreras J, Reyes Linero A., Campo Donado M., & Acosta-Hum´anez P. B. , (2020). Dynamical and Algebraic Analysis of Planar Polynomial Vector Fields Linked to Orthogonal Polynomials. Journal of Southwest Jiaotong University, 55(4).Torres Henao J. A. , Sistemas Din´amicos Planos. Universidad Nacional de Colombia, Facultad de Ciencias, Escuela de Matem´aticas, Medellin, Colombia (2013). http://bdigital.unal.edu.co/9478/V´ılchez Lobato M. L. , Velasco Morente F., Garc´ıa del Hoyo J. J.,Bifurcaciones transcr´ıticas y ciclos l´ımites en un modelo din´amico de competici´on entre dos especies. Una aplicaci´on a la pescadera de engraulis encrasicholus de la Regi´on Suratl´antica espan˜nola, (2002).Xiangdong, X., & Jianfeng, Z.,Plane Polynomial System and it’s Accompany System,Journal of Mathematical Study, 37(2) (2004), 161–166.Gaiko V.A., Multiple limit cycle bifurcations of the FitzHugh–Nagumo neuronal model, Nonlinear Analysis: Theory, Methods & Applications, 74(18), (2011) 7532–7542Perko,L., Differential Equations and Dynamical Systems (New York: Springer Verlag), 2001] Guckeinheimer, J., y Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields ( New York: Springer Verlag), 1983Dumortier F., Llibre J. & Artes J.,Qualitative Theory Of Planar Differential Systems, (Berlin: Springer), 2006Hale J.K & Koc¸ak H., Dynamics and Bifurcations, (Springer-Verlag), 1991.Herssens C., Maesschalck P., Artes J. C., Dumortier F. & Llibre J. ´ , P4 (http://mat.uab.es/ artes/p4/p4.htm), Dept. de Matem`atiques, Universitat Aut`onoma de Barcelona.Computational algebraic system, dynamic greometry software; GeogebraComputational algebraic system, dynamic greometry software; GeogebraAcosta-Hum´anez, M. F., Acosta-Hum´anez, P. B., & Tuir´an, Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 14, (2018) 099.Acosta-Humanez, P. B., Blazquez-Sanz, D., & Vargas-Contreras, C. A. On Hamiltonian potentials with quartic polynomial normal variational equations, Nonlinear Studies, 16(3), (2009) 299–314.Acosta-Hum´anez, P., & Bl´azquez-Sanz, D. Non-integrability of some hamiltonians with rational potentials, Discrete & Continuous Dynamical Systems-B, 10(2&3), (2008) 265–293.Acosta-Hum´anez, P. B. La teor´ıa de Morales-Ramis y el algoritmo de Kovacic. Lecturas Matem´aticas, 27(3), (2006) 21–56.Acosta-Hum´anez, P. B. Nonautonomous Hamiltonian Systems and Morales–Ramis Theory I. The case x¨ = f(x, t), SIAM Journal on Applied Dynamical Systems, 8(1), (2009) 279–297.Acosta-Hum´anez, P. B., & Pantazi, C. Darboux integrals for Schr¨odinger planar vector fields via Darboux transformations, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 8 (2012) 043.Acosta-Hum´anez, P. B., Alvarez-Ram´ırez, M.,& Delgado, J. ´ Non-integrability of some few body problems in two degrees of freedom, Qualitative theory of dynamical systems, 8(2), (2009) 209–239.Acosta-Hum´anez, P. B., Alvarez-Ram´ırez, M., Bl´azquez-Sanz, D., & Delgado, J. Nonintegrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum, Discrete & Continuous Dynamical Systems-A, 33(3), (2013) 965–986.Acosta-Hum´anez, P. B., L´azaro, J. T., Morales-Ruiz, J. J., & Pantazi, C. Differential Galois theory and non-integrability of planar polynomial vector fields, Journal of Differential Equations, 264(12), 7183–7212.Acosta-Hum´anez, P. B., & Bl´azquez-Sanz, D. A. V. I. D. Hamiltonian system and variational equations with polynomial coefficients Dynamic systems and applications, Dynamic, Atlanta, GA, 5, (2008) 6–10.Acosta-Hum´anez, P. B., Bl´azquez-Sanz, D., & Venegas-G´omez, H. Liouvillian solutions for second order linear differential equations with polynomial coefficients, S˜ao Paulo Journal of Mathematical Sciences, (2020) 1–20.Acosta-Hum´anez, P. B. M´etodos algebraicos en sistemas din´amicos, Ediciones Universidad del Atl´antico, EMALCA 2014.Acosta-Hum´anez, P. B., & Yagasaki, K. Nonintegrability of the unfoldings of codimension-two bifurcations, Nonlinearity, 33(4), (2020) 1366–1387.Abramowitz, M. and Stegun, I. Handbook of Mathematical Functions, ninth printing, New York: Dover (1972).http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALTranscritical_Bifurcations_and_Algebraic_Aspects_o.pdfTranscritical_Bifurcations_and_Algebraic_Aspects_o.pdfapplication/pdf5039758https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1143/1/Transcritical_Bifurcations_and_Algebraic_Aspects_o.pdf5f9886b3cee2080a2e4d956ec4197748MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1143/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1143/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1143oai:repositorio.uniatlantico.edu.co:20.500.12834/11432022-12-18 21:42:39.141DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==