Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile
The Loa River is the only perennial artery that crosses the Atacama Desert in northern Chile. It plays an important role in the ecological and economic development of the most water-stressed region, revealing the impact of the mining industry, which exacerbate regional water shortages for many organ...
- Autores:
-
Zárate, Ana
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/919
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/919
- Palabra clave:
- Desert river, Bacterial assemblages, Fragile environment, Core taxa, Network connectivity
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_bed57c81e2de3666d584ffd94026c1f0 |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/919 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile |
title |
Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile |
spellingShingle |
Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile Desert river, Bacterial assemblages, Fragile environment, Core taxa, Network connectivity |
title_short |
Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile |
title_full |
Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile |
title_fullStr |
Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile |
title_full_unstemmed |
Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile |
title_sort |
Connectivity of bacterial assemblages along the Loa River in the Atacama Desert, Chile |
dc.creator.fl_str_mv |
Zárate, Ana |
dc.contributor.author.none.fl_str_mv |
Zárate, Ana |
dc.contributor.other.none.fl_str_mv |
Dorador, Cristina Araya, Ruben Guajardo, Mariela Florez, July Z. Icaza, Gonzalo Cornejo, Diego Valdés, Jorge |
dc.subject.keywords.spa.fl_str_mv |
Desert river, Bacterial assemblages, Fragile environment, Core taxa, Network connectivity |
topic |
Desert river, Bacterial assemblages, Fragile environment, Core taxa, Network connectivity |
description |
The Loa River is the only perennial artery that crosses the Atacama Desert in northern Chile. It plays an important role in the ecological and economic development of the most water-stressed region, revealing the impact of the mining industry, which exacerbate regional water shortages for many organisms and ecological processes. Despite this, the river system has remained understudied. To our knowledge, this study provides the first effort to attempt to compare the microbial communities at spatial scale along the Loa River, as well as investigate the physicochemical factors that could modulate this important biological component that still remains largely unexplored. The analysis of the spatial bacterial distribution and their interconnections in the water column and sediment samples from eight sites located in three sections along the river catchment (upper, middle and lower) was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. Among a total of 543 ASVs identified at the family level, over 40.5% were cosmopolitan in the river and distributed within a preference pattern by the sediment substrate with 162 unique ASVs, while only 87 were specific to the column water. Bacterial diversity gradually decreased from the headwaters, where the upper section had the largest number of unique families. Distinct groupings of bacterial communities often associated with anthropogenic disturbance, including Burkholderiaceae and Flavobacteriaceae families were predominant in the less-impacted upstream section. Members of the Arcobacteraceae and Marinomonadaceae were prominent in the agriculturally and mining-impacted middle sector while Rhodobacteraceae and Coxiellaceae were most abundant families in downstream sites. Such shifts in the community structure were also related to the influence of salinity, chlorophyll, dissolvedoxygen and redox potential. Network analyses corroborated the strong connectivity and modular structure of bacterial communities across this desert river, shedding light on taxonomic relatedness of co-occurring species and highlighting the need for planning the integral conservation of this basin. |
publishDate |
2018 |
dc.date.submitted.none.fl_str_mv |
2018-09-11 |
dc.date.issued.none.fl_str_mv |
2020-10-01 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T20:57:27Z |
dc.date.available.none.fl_str_mv |
2022-11-15T20:57:27Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/919 |
dc.identifier.doi.none.fl_str_mv |
10.7717/peerj.9927 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/919 |
identifier_str_mv |
10.7717/peerj.9927 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
PeerJ |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/919/1/peerj-9927.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/919/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/919/3/license.txt |
bitstream.checksum.fl_str_mv |
f46dc5204fd5346cc768b70fb294a218 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203412661665792 |
spelling |
Zárate, Anafa7d043a-b652-4dc5-8f42-baf2ab4c8d14Dorador, CristinaAraya, RubenGuajardo, MarielaFlorez, July Z.Icaza, GonzaloCornejo, DiegoValdés, Jorge2022-11-15T20:57:27Z2022-11-15T20:57:27Z2020-10-012018-09-11https://hdl.handle.net/20.500.12834/91910.7717/peerj.9927Universidad del AtlánticoRepositorio Universidad del AtlánticoThe Loa River is the only perennial artery that crosses the Atacama Desert in northern Chile. It plays an important role in the ecological and economic development of the most water-stressed region, revealing the impact of the mining industry, which exacerbate regional water shortages for many organisms and ecological processes. Despite this, the river system has remained understudied. To our knowledge, this study provides the first effort to attempt to compare the microbial communities at spatial scale along the Loa River, as well as investigate the physicochemical factors that could modulate this important biological component that still remains largely unexplored. The analysis of the spatial bacterial distribution and their interconnections in the water column and sediment samples from eight sites located in three sections along the river catchment (upper, middle and lower) was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. Among a total of 543 ASVs identified at the family level, over 40.5% were cosmopolitan in the river and distributed within a preference pattern by the sediment substrate with 162 unique ASVs, while only 87 were specific to the column water. Bacterial diversity gradually decreased from the headwaters, where the upper section had the largest number of unique families. Distinct groupings of bacterial communities often associated with anthropogenic disturbance, including Burkholderiaceae and Flavobacteriaceae families were predominant in the less-impacted upstream section. Members of the Arcobacteraceae and Marinomonadaceae were prominent in the agriculturally and mining-impacted middle sector while Rhodobacteraceae and Coxiellaceae were most abundant families in downstream sites. Such shifts in the community structure were also related to the influence of salinity, chlorophyll, dissolvedoxygen and redox potential. Network analyses corroborated the strong connectivity and modular structure of bacterial communities across this desert river, shedding light on taxonomic relatedness of co-occurring species and highlighting the need for planning the integral conservation of this basin.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PeerJConnectivity of bacterial assemblages along the Loa River in the Atacama Desert, ChilePúblico generalDesert river, Bacterial assemblages, Fragile environment, Core taxa, Network connectivityinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede NorteAdhikari NP, Liu Y, Liu K, Zhang F, Adhikari S, Chen Y, Liu X. 2019. Bacterial community composition and diversity in Koshi River, the largest river of Nepal. Ecological Indicators 104:501–511 DOI 10.1016/j.ecolind.2019.05.009.Aravena R, Suzuki O. 1990. Isotopic evolution of river water in the Northern Chile region. Water Resources Research 26:2887–2895 DOI 10.1029/WR026i012p02887.Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9:53–60 DOI 10.1890/100014.Azua-Bustos A, González-Silva C. 2014. Biotechnological applications derived from microorganisms of the Atacama desert. BioMed Research International 909312 DOI 10.1155/2014/909312.Bai Y, Qi W, Liang J, Qu J. 2014. Using high-throughput sequencing to assess the impacts of treated and untreated wastewater discharge on prokaryotic communities in an urban river. Applied Microbiology and Biotechnology 98:1841–1851 DOI 10.1007/s00253-013-5116-2Banerjee S, Schlaeppi K, Van der Heijden MGA. 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology 16:567–576 DOI 10.1038/s41579-018-0024-1.Bastian M, Heymann S. 2009. Gephi: an open source software for exploring and manipulating networks. ICWSM 8:361–362.Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F. 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience 1:95–100 DOI 10.1038/ngeo101.Besemer K, Singer G, Quince C, Bertuzzo E, Sloan W, Battin TJ. 2013. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proceedings Biological Sciences/The Royal Society 280:20131760 DOI 10.1098/rspb.2013.1760.Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 10:P10008.Böckelmann U, Manz W, Neu T, Szewzyk U. 2000. Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiology Ecology 33:157–170.Bugueño MP, Acevedo SE, Bonilla CA, Pizarro GE, Pasten PA. 2014. Differential arsenic binding in the sediments of two sites in Chile’s lower Loa River basin. Science of the Total Environment 466:387–396 DOI 10.1016/j.scitotenv.2013.06.114.Bull AT, Asenjo JA, Goodfellow M, Gómez-Silva B. 2016. The Atacama Desert: technical resources and the growing importance of novel microbial diversity. Annual Review of Microbiology 70:215–234 DOI 10.1146/annurev-micro-102215-095236.Bunn SE, Balcombe SR, Davies PM, Fellows CS, McKenzie-Smith FJ. 2006. Aquatic productivity and food webs of desert river ecosystems. In: Kingsford RT, ed. Ecology of Desert Rivers. Cambridge, UK: Cambridge University Press, 76–99.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13:581–583 DOI 10.1038/nmeth.3869.Camacho FM. 2012. Competing rationalities in water conflict: mining and the indigenous community in Chiu Chiu, El Loa Province, northern Chile. Singapore Journal of Tropical Geography 33:93–107 DOI 10.1111/j.1467-9493.2012.00451.xCavicchioli R, Bakken LR, Baylis M, Foreman CM, Karl DM, Koskella B, Welch DBM, Martiny JBH, Moran MA, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, Webb EA, Webster NS. 2019. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology 17:569–586 DOI 10.1038/s41579-019-0222-5.Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q. 2018. Bacterial communities in riparian sediments: a large-scale longitudinal distribution pattern and response to dam construction. Frontiers in Microbiology 9(999):1–15 DOI 10.3389/fmicb.2018.00999.Clarke KR, Gorley RN. 2006. Primer V6: User Manual/Tutorial. Plymouth: PRIMER-E.Collado GA, Valladares MA, Méndez MA. 2016. Unravelling cryptic species of freshwater snails (Caenogastropoda, Truncatelloidea) in the Loa River basin, Atacama Desert. Systematics and Biodiversity 14:417–429 DOI 10.1080/14772000.2016.1153526.De Filippis F, La Storia A, Villani F, Ercolini D. 2013. Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLOS ONE 8:e70222 DOI 10.1371/journal.pone.0070222.De Oliveira LFV, Margis R. 2015. The source of the river as a nursery for microbial diversity. PLOS ONE 10:e0120608 DOI 10.1371/journal.pone.0120608.Dixon P. 2003. Computer program review VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14:927–930 DOI 10.1111/j.1654-1103.2003.tb02228.xDoherty M, Yager PL, Moran MA, Coles VJ, Fortunato CS, Krusche AV, Medeiros PM, Payet JP, Richey JE, Satinsky BM, Sawakuchi HO, Ward ND, Crump BC. 2017. Bacterial biogeography across the Amazon River-Ocean continuum. Frontiers in Microbiology 8(882):1–17 DOI 10.3389/fmicb.2017.00882.Dorador C, Meneses D, Urtuvia V, Demergasso C, Vila I, Witzel KP, Imhoff JF. 2009. Diversity of Bacteroidetes in high-altitude saline evaporitic basins in northern Chile. Journal of Geophysical Research: Biogeosciences 114:1–11 DOI 10.1029/2008JG000837Dorador C, Vila I, Witzel K-P, Imhoff JF. 2013. Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fundamental and Applied Limnology 182:135–159 DOI 10.1127/1863-9135/2013/0393.Drury B, Rosi-Marshall E, Kelly JJ. 2013. Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Applied and Environmental Microbiology 79:1897–1905 DOI 10.1128/AEM.03527-12Ettamimi S, Carlier JD, Cox CJ, Elamine Y, Hammani K, Ghazal H, Costa MC. 2019. A meta-taxonomic investigation of the prokaryotic diversity of water bodies impacted by acid mine drainage from the São Domingos mine in southern Portugal. Extremophiles 23:821–834 DOI 10.1007/s00792-019-01136-1.Fernandez AB, Rasuk MC, Visscher PT, Contreras M, Novoa F, Poire DG, Patterson MM, Ventosa A, Farias ME. 2016. Microbial diversity in sediment ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Frontiers in Microbiology 7:1–18 DOI 10.3389/fmicb.2016.01284.Fluke J, González-Pinzón R, Thomson B. 2019. Riverbed sediments control the spatiotemporal variability of E. coli in a highly managed, arid river. Frontiers in Water 1:1–12 DOI 10.3389/frwa.2019.00004.Fruchterman TMJ, Reingold EM. 1991. Graph drawing by force-directed placement. Software—Practice and Experience 21:1129–1164 DOI 10.1002/spe.4380211102Gao Y, Wang C, Zhang W, Di P, Yi N, Chen C. 2017. Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in southeast. Environmental Pollution 230:469–478 DOI 10.1016/j.envpol.2017.06.081Graham EB, Crump AR, Resch CT, Fansler S, Arntzen E, Kennedy DW, Fredrickson JK, Stegen JC. 2017. Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes. Environmental Microbiology 19:1552–1567 DOI 10.1111/1462-2920.13720.Hou D, Zhang P, Zhang J, Zhou Y, Yang Y, Mao Q, Tsang DCW, Núñez Delgado A, Luo L. 2019. Spatial variation of sediment bacterial community in an acid mine drainage contaminated area and surrounding river basin. Journal of Environmental Management 251(109542):1–7 DOI 10.1016/j.jenvman.2019.109542.Hu A, Ju F, Hou L, Li J, Yang X, Wang H, Mulla SI, Sun Q, Bürgmann H, Yu CP. 2017. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environmental Microbiology 19:4993–5009 DOI 10.1111/1462-2920.13942.Ibekwe AM, Ma J, Murinda SE. 2016. Bacterial community composition and structure in an Urban River impacted by different pollutant sources. Science of the Total Environment 566–567:1176–1185 DOI 10.1016/j.scitotenv.2016.05.168.Jacobson PJ, Jacobson KM. 2013. Hydrologic controls of physical and ecological processes in Namib Desert ephemeral rivers: implications for conservation and management. Journal of Arid Environments 93:80–93 DOI 10.1016/j.jaridenv.2012.01.010.Jani K, Ghattargi V, Pawar S, Inamdar M, Shouche Y, Sharma A. 2018. Anthropogenic activities induce depletion in microbial communities at urban sites of the river ganges. Current Microbiology 75:79–83 DOI 10.1007/s00284-017-1352-5.Jordan T, Lameli CH, Kirk-Lawlor N, Godfrey L. 2015. Architecture of the aquifers of the Calama Basin, Loa catchment basin, northern Chile. Geosphere 11:1438–1474 DOI 10.1130/GES01176.1Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, Van der Heijden MG, Youssef NH, Zhang X, Wei Z, Hol WG. 2017. Where less may be more: How the rare biosphere pulls ecosystems strings. ISME Journal 11:853–862 DOI 10.1038/ismej.2016.174Kenkel N, Orlóci L. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919–928 DOI 10.2307/1939814Kolmakova OV, Gladyshev MI, Rozanov AS, Peltek SE, Trusova MY. 2014. Spatial biodiversity of bacteria along the largest Arctic river determined by next-generation sequencing. FEMS Microbiology Ecology 89:442–450 DOI 10.1111/1574-6941.12355.Lozupone CA, Knight R. 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America 104:11436–11440 DOI 10.1073/pnas.0611525104Lu S, Sun Y, Zhao X, Wang L, Ding A, Zhao X. 2016. Sequencing insights into microbial communities in the water and sediments of fenghe river, China. Archives of Environmental Contamination and Toxicology 71:122–132 DOI 10.1007/s00244-016-0277-5Lynch MDJ, Neufeld JD. 2015. Ecology and exploration of the rare biosphere. Nature Reviews Microbiology 13:217–229 DOI 10.1038/nrmicro3400Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes PC, Xu J, Gilbert JA. 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME Journal 10:1891–1901 DOI 10.1038/ismej.2015.261.Newton RJ, Eiler A, Mcmahon K, Newton RJ, Jones SE, Eiler A, Mcmahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 75:14–49 DOI 10.1128/MMBR.00028-10.Newton RJ, McLellan SL. 2015. A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Frontiers in Microbiology 6:1–13 DOI 10.3389/fmicb.2015.01028.Ortega-Retuerta E, Joux F, Jeffrey WH, Ghiglione JF. 2013. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10:2747–2759 DOI 10.5194/bg-10-2747-2013.Palma A, González-Barrientos J, Reyes CA, Ramos-Jiliberto R. 2013. Biodiversidad y estructura comunitaria de ríos en las zonas árida, semiárida y mediterránea-norte de Chile. Revista Chilena de Historia Natural 86:1–14 DOI 10.4067/S0716-078X2013000100001.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology 36:996–1004 DOI 10.1038/nbt.4229Payne JT, Millar JJ, Jackson CR, Ochs CA. 2017. Patterns of variation in diversity of the Mississippi river microbiome over 1,300 kilometers. PLOS ONE 12:e0174890 DOI 10.1371/journal.pone.0174890.Peña H. 2018. Integrated water resources management in chile: advances and challenges. Water Policy in Chile 21:197–207 DOI 10.1007/978-3-319-76702-4.Pell A, Márquez A, López-Sánchez JF, Rubio R, Barbero M, Stegen S, Queirolo F, Díaz-Palma P. 2013. Occurrence of arsenic species in algae and freshwater plants of an extreme arid region in northern Chile, the Loa River Basin. Chemosphere 90:556–564 DOI 10.1016/j.chemosphere.2012.08.028.Pestle WJ, Torres-rouff C, Gallardo F, Andrea G, Smith EK, Clarot A. 2019. The interior frontier: exchange and interculturation in the Formative period (1000 B.C.-A.D. 400) of Quillagua, Antofagasta region, northern Chile. Quaternary International 533:25–36 DOI 10.1016/j.quaint.2019.03.014.Popović M. 2015. CHRF: character n-gram F-score for automatic MT evaluation. In: In Proceedings of the tenth workshop on statistical machine translation. 392–395 DOI 10.1080/1472586x.2015.1113070.Prieto M. 2015. Privatizing water in the chilean andes: the case of las vegas de Chiu-Chiu. Mountain Research and Development 35:220–229 DOI 10.1659/MRD-JOURNAL-D-14-00033.1.Read DS, Gweon HS, Bowes MJ, Newbold LK, Field D, Bailey MJ, Griffiths RI. 2015. Catchment-scale biogeography of riverine bacterioplankton. ISME Journal 9:516–526 DOI 10.1038/ismej.2014.166.Roberto AA, Gray JB Van, Leff LG. 2018. Sediment bacteria in an urban stream: spatiotemporal patterns in community composition. Water Research 134:353–369 DOI 10.1016/j.watres.2018.01.045.Romero L, Alonso H, Campano P, Fanfani L, Cidu R, Dadea C, Keegan T, Thornton I, Farago M. 2003. Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Applied Geochemistry 18:1399–1416 DOI 10.1016/S0883-2927(03)00059-3.Ruiz-González C, Proia L, Ferrera I, Gasol JM, Sabater S. 2013. Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiology Ecology 84:316–331 DOI 10.1111/1574-6941.12063.Sánchez-Montoya MM, Guerrero-Brotons M, Miñano J, Gómez R. 2020. Effects of debris piles and pools along dry riverbeds on nutrients, microbial activity, and ground-dwelling arthropods: a Namibian ephemeral river case. Journal of Arid Environments 17(104082):1–8 DOI 10.1016/j.jaridenv.2019.104082.Saravanakumar C, Dineshkumar N, Alavandi SV, Salman V, Poornima M, Kalaimani N. 2012. Enrichment and identification of large filamentous sulfur bacteria related to Beggiatoa species from brackishwater ecosystems of Tamil Nadu along the southeast coast of India. Systematic and Applied Microbiology 35:396–403 DOI 10.1016/j.syapm.2012.05.006.Savio D, Sinclair L, Ijaz UZ, Parajka J, Reischer GH, Stadler P, Blaschke AP, Blöschl G, Mach RL, Kirschner AKT, Farnleitner AH, Eiler A. 2015. Bacterial diversity along a 2600 km river continuum. Environmental Microbiology 17:4994–5007 DOI 10.1111/1462-2920.12886Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. 2015. Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Science of the Total Environment 505:435–445 DOI 10.1016/j.scitotenv.2014.10.012.Staley C, Unno T, Gould TJ, Jarvis B, Phillips J, Cotner JB, Sadowsky MJ. 2013. Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. Journal of Applied Microbiology 115:1147–1158 DOI 10.1111/jam.12323.Ter Braak C, Smilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Ithaca: Microcomputer PowerValdés-Pineda R, Pizarro R, García-Chevesich P, Valdés JB, Olivares C, Vera M, Balocchi F, Pérez F, Vallejos C, Fuentes R, Abarza A, Helwig B. 2014. Water governance in Chile: availability, management and climate change. Journal of Hydrology 519:2538–2567 DOI 10.1016/j.jhydrol.2014.04.016Vaz-Moreira I, Nunes OC, Manaia CM. 2011. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Applied and Environmental Microbiology 77:5697–5706 DOI 10.1128/AEM.00579-11Velimirov B, Milosevic N, Kavka GG, Farnleitner AH, Kirschner AKT. 2011. Development of the bacterial compartment along the Danube river: a continuum despite local influences. Microbial Ecology 61:955–967 DOI 10.1007/s00248-010-9768-5.Villagrán C, Castro V. 1997. Etnobotánica y manejo ganadero de las vegas, bofedales y quebradas en el Loa Superior, Andes de Antofagasta, Segunda Región, Chile. Chungara 29:275–304Wang Y, Sheng H, He Y, Wu J, Jiang Y, Tam NF, Zhou H. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina. Applied and Environmental Microbiology 78:8264–8271 DOI 10.1128/AEM.01821-12.Wang W, Wang J, Ye Z, Zhang T, Qu L, Li J, Quecine MC, Bonatelli ML. 2019. Soil property and plant diversity determine bacterial turnover and network interactions in a typical arid inland river basin, Northwest China. Frontiers in Microbiology 10:1–13 DOI 10.3389/fmicb.2019.02655.Warren-Rhodes KA, Dungan JL, Piatek J, Stubbs K, Gómez-Silva B, Chen Y, McKay CP. 2007. Ecology and spatial pattern of cyanobacterial community island patches in the Atacama Desert, Chile. Journal of Geophysical Research: Biogeosciences 112:1–14 DOI 10.1029/2006JG000305Wei G, Li M, Li F, Li H, Gao Z. 2016. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Applied Microbiology and Biotechnology 100:9683–9697 DOI 10.1007/s00253-016-7802-3.Widder S, Besemer K, Singer GA, Ceola S, Bertuzzo E, Quince C, Sloan WT, Rinaldo A, Battin TJ. 2014. Fluvial network organization imprints on microbial co-occurrence networks. Proceedings of the National Academy of Sciences of the United States of America 111:12799–12804 DOI 10.1073/pnas.1411723111.Williams CJ. 2017. Climate change in chile: an analysis of state-of-the-art observations, satellite-derived estimates and climate model simulations. Journal Earth Science Climatic Change 8(5):2157–7617 DOI 10.4172/2157-7617.1000400.Zeglin LH. 2015. Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Frontiers in Microbiology 6(454):1–15 DOI 10.3389/fmicb.2015.00454.Zeglin LH, Dahm CN, Barrett JE, Gooseff MN, Fitpatrick SK, Takacs-Vesbach CD. 2011. Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams. Microbial Ecology 61:543–556 DOI 10.1007/s00248-010-9782-7Zhang W, Lei M, Li Y, Wang P, Wang C, Gao Y, Wu H, Xu C, Niu L, Wang L, Zhang H. 2019. Determination of vertical and horizontal assemblage drivers of bacterial community in a heavily polluted urban river. Water Research 161:98–107 DOI 10.1016/j.watres.2019.05.107Zhao D, Shen F, Zeng J, Huang R, Yu Z, Wu QL. 2016. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Science of the Total Environment 573:817–825 DOI 10.1037//0033-2909.I26.1.78.Zhou L, Li H, Zhang Y, Han S, Xu H. 2016. Sphingomonas from petroleumcontaminated soils in Shenfu, China and their PAHs degradation abilities. Brazilian Journal of Microbiology 47:271–278 DOI 10.1016/j.bjm.2016.01.001.Zoppini A, Amalfitano S, Fazi S, Puddu A. 2010. Dynamics of a benthic microbial community in a riverine environment subject to hydrological fluctuations (Mulargia River, Italy). Global Change and River Ecosystems 657:37–51 DOI 10.1007/s10750-010-0199-6.http://purl.org/coar/resource_type/c_6501ORIGINALpeerj-9927.pdfpeerj-9927.pdfapplication/pdf16427360https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/919/1/peerj-9927.pdff46dc5204fd5346cc768b70fb294a218MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/919/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/919/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/919oai:repositorio.uniatlantico.edu.co:20.500.12834/9192022-11-15 15:57:28.663DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |