Supernova neutrino detection in NOvA

The NOvA long-baseline neutrino experiment uses a pair of large, segmented, liquid-scintillator calorimeters to study neutrino oscillations, using GeV-scale neutrinos from the Fermilab NuMI beam. These detectors are also sensitive to the flux of neutrinos which are emitted during a core-collapse sup...

Full description

Autores:
Acero, M. A.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/952
Acceso en línea:
https://hdl.handle.net/20.500.12834/952
Palabra clave:
neutrino: burst, neutrino: supernova, core-collapse supernova, neutrino: detection
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIATLANT2_beb141cc68b7d265c3f37cb41df3f05b
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/952
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Supernova neutrino detection in NOvA
title Supernova neutrino detection in NOvA
spellingShingle Supernova neutrino detection in NOvA
neutrino: burst, neutrino: supernova, core-collapse supernova, neutrino: detection
title_short Supernova neutrino detection in NOvA
title_full Supernova neutrino detection in NOvA
title_fullStr Supernova neutrino detection in NOvA
title_full_unstemmed Supernova neutrino detection in NOvA
title_sort Supernova neutrino detection in NOvA
dc.creator.fl_str_mv Acero, M. A.
dc.contributor.author.none.fl_str_mv Acero, M. A.
dc.subject.keywords.spa.fl_str_mv neutrino: burst, neutrino: supernova, core-collapse supernova, neutrino: detection
topic neutrino: burst, neutrino: supernova, core-collapse supernova, neutrino: detection
description The NOvA long-baseline neutrino experiment uses a pair of large, segmented, liquid-scintillator calorimeters to study neutrino oscillations, using GeV-scale neutrinos from the Fermilab NuMI beam. These detectors are also sensitive to the flux of neutrinos which are emitted during a core-collapse supernova through inverse beta decay interactions on carbon at energies of O(10 MeV). This signature provides a means to study the dominant mode of energy release for a core-collapse supernova occurring in our galaxy. We describe the datadriven software trigger system developed and employed by the NOvA experiment to identify and record neutrino data from nearby galactic supernovae. This technique has been used by NOvA to self-trigger on potential core-collapse supernovae in our galaxy, with an estimated sensitivity reaching out to 10 kpc distance while achieving a detection efficiency of 23% to 49% for supernovae from progenitor stars with masses of 9.6 M to 27 M , respectively.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-10-05
dc.date.submitted.none.fl_str_mv 2020-07-29
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:13:14Z
dc.date.available.none.fl_str_mv 2022-11-15T21:13:14Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/952
dc.identifier.doi.none.fl_str_mv 10.1088/1475-7516/2020/10/014
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/952
identifier_str_mv 10.1088/1475-7516/2020/10/014
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv JCAP
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/952/1/2005.07155.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/952/2/license.txt
bitstream.checksum.fl_str_mv 84c88dd2c92af18d5007636c1efcdca5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1808413937187684352
spelling Acero, M. A.979f9c6a-faae-415d-b017-8ea1e9afa74c2022-11-15T21:13:14Z2022-11-15T21:13:14Z2020-10-052020-07-29https://hdl.handle.net/20.500.12834/95210.1088/1475-7516/2020/10/014Universidad del AtlánticoRepositorio Universidad del AtlánticoThe NOvA long-baseline neutrino experiment uses a pair of large, segmented, liquid-scintillator calorimeters to study neutrino oscillations, using GeV-scale neutrinos from the Fermilab NuMI beam. These detectors are also sensitive to the flux of neutrinos which are emitted during a core-collapse supernova through inverse beta decay interactions on carbon at energies of O(10 MeV). This signature provides a means to study the dominant mode of energy release for a core-collapse supernova occurring in our galaxy. We describe the datadriven software trigger system developed and employed by the NOvA experiment to identify and record neutrino data from nearby galactic supernovae. This technique has been used by NOvA to self-trigger on potential core-collapse supernovae in our galaxy, with an estimated sensitivity reaching out to 10 kpc distance while achieving a detection efficiency of 23% to 49% for supernovae from progenitor stars with masses of 9.6 M to 27 M , respectively.application/pdfengJCAPSupernova neutrino detection in NOvAneutrino: burst, neutrino: supernova, core-collapse supernova, neutrino: detectioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede Norteinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2[1] R. M. Bionta et al., Observation of a neutrino burst in coincidence with supernova SN1987A in the Large Magellanic Cloud, Phys. Rev. Lett. 58 (1987) 1494.[2] KAMIOKANDE-II collaboration, Observation of a neutrino burst from the supernova SN1987A, Phys. Rev. Lett. 58 (1987) 1490.[3] E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko and I. V. Krivosheina, Possible detection of a neutrino signal on 23 February 1987 at the Baksan underground scintillation telescope of the Institute of Nuclear Research, JETP Lett. 45 (1987) 589.[4] M. Aglietta et al., On the event observed in the Mont Blanc underground neutrino observatory during the occurrence of Supernova 1987a, Europhys. Lett. 3 (1987) 1315.[5] P. Antonioli et al., SNEWS: The Supernova Early Warning System, New J. Phys. 6 (2004) 114 [astro-ph/0406214].[6] NOvA collaboration, The NOvA Technical Design Report[7] P. Adamson et al., The NuMI Neutrino Beam, Nucl. Instrum. Meth. A806 (2016) 279 [1507.06690].[8] R. L. Talaga, J. J. Grudzinski, S. Phan-Budd, A. Pla-Dalmau, J. E. Fagan, C. Grozis et al., PVC Extrusion Development and Production for the NOvA Neutrino Experiment, Nucl. Instrum. Meth. A861 (2017) 77 [1601.00908].[9] S. Mufson et al., Liquid Scintillator Production for the NOvA Experiment, Nucl. Instrum. Meth. A799 (2015) 1 [1504.04035].[10] A. Norman et al., Performance of the NOvA Data Acquisition and Trigger Systems for the full 14 kT Far Detector, J. Phys. Conf. Ser. 664 (2015) 082041.[11] K. Scholberg, Supernova Neutrino Detection, Ann. Rev. Nucl. Part. Sci. 62 (2012) 81 [1205.6003][12] T. Totani, K. Sato, H. E. Dalhed and J. R. Wilson, Future detection of supernova neutrino burst and explosion mechanism, The Astrophysical Journal 496 (1998) 216[13] A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig et al., Supernova Neutrinos: Production, Oscillations and Detection, Riv. Nuovo Cim. 39 (2016) 1 [1508.00785].[14] K. Nakazato, K. Sumiyoshi, H. Suzuki, T. Totani, H. Umeda and S. Yamada, Supernova neutrino light curves and spectra for various progenitor stars: From core colllapse to proto-neutron star cooling, The Astrophysical Journal Supplement Series 205 (2013) 2.[15] A. Strumia and F. Vissani, Precise quasi-elastic neutrino/nucleon cross-section, Physics Letters B 564 (2003) 42 .[16] W. J. Marciano and Z. Parsa, Neutrino–electron scattering theory, Journal of Physics G: Nuclear and Particle Physics 29 (2003) 2629.[17] B. Armbruster, I. Blair, B. Bodmann, N. Booth, G. Drexlin, V. Eberhard et al., Measurement of the weak neutral current excitation 12C(νµ, ν0 µ ) 12C ∗ (1+, 1; 15.1 MeV ) at Eνµ = 29.8 MeV , Physics Letters B 423 (1998) 15[18] C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman et al., The GENIE neutrino Monte Carlo generator, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 614 (2010) 87 .[19] S. Agostinelli et al., Geant4 — a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 (2003) 250[20] A. Aurisano, C. Backhouse, R. Hatcher, N. Mayer, J. Musser, R. Patterson et al., The NOvA simulation chain, Journal of Physics: Conference Series 664 (2015) 072002.21] NOvA collaboration, New Constraints on Oscillation Parameters from νe Appearance and νµ Disappearance in the NOvA Experiment, Phys. Rev. D98 (2018) 032012 [1806.00096].[22] NOvA collaboration, First measurement of muon-neutrino disappearance in NOvA, Phys. Rev. D93 (2016) 051104 [1601.05037].[23] M. Baird, J. Bian, M. Messier, E. Niner, D. Rocco and K. Sachdev, Event reconstruction techniques in NOvA, Journal of Physics: Conference Series 664 (2015) 072035.[24] NOvA collaboration, The NOvA Timing System: A System for Synchronizing a Long Baseline Neutrino Experiment, J. Phys. Conf. Ser. 396 (2012) 012034.[25] A. Habig and J. Zirnstein, Integration of the Super Nova Early Warning System with the NOvA trigger, Journal of Physics: Conference Series 664 (2015) 08201526] K. Scholberg, Supernova Signatures of Neutrino Mass Ordering, J. Phys. G 45 (2018) 014002 [1707.06384].27] A. Mirizzi, G. G. Raffelt and P. Serpico, Earth matter effects in supernova neutrinos: Optimal detector locations, JCAP 0605 (2006) 012 [astro-ph/0604300].http://purl.org/coar/resource_type/c_6501ORIGINAL2005.07155.pdf2005.07155.pdfapplication/pdf2018647https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/952/1/2005.07155.pdf84c88dd2c92af18d5007636c1efcdca5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/952/2/license.txt67e239713705720ef0b79c50b2ececcaMD5220.500.12834/952oai:repositorio.uniatlantico.edu.co:20.500.12834/9522022-11-15 16:13:15.092DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==