Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine
In this article, an organicRankine cycle (ORC)was integrated into a 2-MWnatural gas engine to evaluate the possibility of generating electricity by recovering the engine’s exhaust heat. The operational anddesignvariableswiththe greatest influence onthe energy, economic, andenvironmentalperformance o...
- Autores:
-
Valencia Ochoa, Guillermo
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/782
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/782
- Palabra clave:
- organic Rankine cycle; organic working fluids; LCOE; thermodynamic analysis; economic analysis; LCA
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_a796f25a7c7817a339e921b53449490d |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/782 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine |
title |
Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine |
spellingShingle |
Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine organic Rankine cycle; organic working fluids; LCOE; thermodynamic analysis; economic analysis; LCA |
title_short |
Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine |
title_full |
Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine |
title_fullStr |
Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine |
title_full_unstemmed |
Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine |
title_sort |
Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine |
dc.creator.fl_str_mv |
Valencia Ochoa, Guillermo |
dc.contributor.author.none.fl_str_mv |
Valencia Ochoa, Guillermo |
dc.contributor.other.none.fl_str_mv |
Cárdenas Gutierrez, Javier Duarte Forero, Jorge |
dc.subject.keywords.spa.fl_str_mv |
organic Rankine cycle; organic working fluids; LCOE; thermodynamic analysis; economic analysis; LCA |
topic |
organic Rankine cycle; organic working fluids; LCOE; thermodynamic analysis; economic analysis; LCA |
description |
In this article, an organicRankine cycle (ORC)was integrated into a 2-MWnatural gas engine to evaluate the possibility of generating electricity by recovering the engine’s exhaust heat. The operational anddesignvariableswiththe greatest influence onthe energy, economic, andenvironmentalperformance of the system were analyzed. Likewise, the components with greater exergy destruction were identified through the variety of different operating parameters. From the parametric results, it was found that the evaporation pressure has the greatest influence on the destruction of exergy. The highest fraction of exergy was obtained for the Shell and tube heat exchanger (ITC1) with 38% of the total exergy destruction of the system. It was also determined that the high value of the heat transfer area increases its acquisition costs and the levelized cost of energy (LCOE) of the thermal system. Therefore, these systems must have a turbine technology with an efficiency not exceeding 90% because, from this value, the LCOE of the system surpasses the LCOE of a gas turbine. Lastly, a life cycle analysis (LCA) was developed on the system operating under the selected organic working fluids. It was found that the component with the greatest environmental impact was the turbine, which reached a maximum value of 3013.65 Pts when the material was aluminum. Acetone was used as the organic working fluid. |
publishDate |
2019 |
dc.date.submitted.none.fl_str_mv |
2019-11-10 |
dc.date.issued.none.fl_str_mv |
2020-01-01 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T19:15:38Z |
dc.date.available.none.fl_str_mv |
2022-11-15T19:15:38Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/782 |
dc.identifier.doi.none.fl_str_mv |
10.3390/resources9010002 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/782 |
identifier_str_mv |
10.3390/resources9010002 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
resources |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/782/1/resources9010002.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/782/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/782/3/license.txt |
bitstream.checksum.fl_str_mv |
dccf489e90dd7cecb7710d8c5d3bf043 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203415294640128 |
spelling |
Valencia Ochoa, Guillermo1601011b-0fa9-473b-b829-dad629428f37Cárdenas Gutierrez, JavierDuarte Forero, Jorge2022-11-15T19:15:38Z2022-11-15T19:15:38Z2020-01-012019-11-10https://hdl.handle.net/20.500.12834/78210.3390/resources9010002Universidad del AtlánticoRepositorio Universidad del AtlánticoIn this article, an organicRankine cycle (ORC)was integrated into a 2-MWnatural gas engine to evaluate the possibility of generating electricity by recovering the engine’s exhaust heat. The operational anddesignvariableswiththe greatest influence onthe energy, economic, andenvironmentalperformance of the system were analyzed. Likewise, the components with greater exergy destruction were identified through the variety of different operating parameters. From the parametric results, it was found that the evaporation pressure has the greatest influence on the destruction of exergy. The highest fraction of exergy was obtained for the Shell and tube heat exchanger (ITC1) with 38% of the total exergy destruction of the system. It was also determined that the high value of the heat transfer area increases its acquisition costs and the levelized cost of energy (LCOE) of the thermal system. Therefore, these systems must have a turbine technology with an efficiency not exceeding 90% because, from this value, the LCOE of the system surpasses the LCOE of a gas turbine. Lastly, a life cycle analysis (LCA) was developed on the system operating under the selected organic working fluids. It was found that the component with the greatest environmental impact was the turbine, which reached a maximum value of 3013.65 Pts when the material was aluminum. Acetone was used as the organic working fluid.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2resourcesExergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion EnginePúblico generalorganic Rankine cycle; organic working fluids; LCOE; thermodynamic analysis; economic analysis; LCAinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede NorteBarrozo, F.; Valencia, G.; Cárdenas, Y. An economic evaluation of renewable and conventional electricity generation systems in shopping center using HOMER Pro. Contemp. Eng. Sci. 2017, 10, 1287–1295.Zhang, H.; Guan, X.; Ding, Y.; Liu, C. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. J. Clean. Prod. 2018, 183, 1207–1215.Valencia, G.; Acevedo, C.; Duarte, J. Thermoeconomic optimization with PSO Algorithm of waste heat recovery systems based on Organic Rankine Cycle system for a natural gas engine. Energies 2019, 21, 4165.Valencia, G.; Fontalvo, A.; Cárdenas, Y.; Duarte, J.; Isaza, C. Energy and exergy analysis of di erent exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 2019, 12, 2378.Zhai, H.; An, Q.; Shi, L.; Lemort, V.; Quoilin, S. Categorization and analysis of heat sources for Organic Rankine Cycle systems. Renew. Sustain. Energy Rev. 2016, 64, 790–805.Liu, X.; Liang, J.; Xiang, D.; Yang, S.; Qian, Y. A proposed coal-to-methanol process with CO2 capture combined Organic Rankine Cycle (ORC) for waste heat recovery. J. Clean. Prod. 2016, 129, 53–64.Gholamian, E.; Habibollahzade, A.; Zare, V. Development and multi-objective optimization of geothermalbased Organic Rankine Cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production. Energy Convers. Manag. 2018, 174, 112–125.Yao, S.; Zhang, Y.; Yu, X. Thermo-economic analysis of a novel power generation system integrating a natural gas expansion plant with a geothermal ORC in Tianjin, China. Energy 2018, 164, 602–614.Dimitrova, Z.; Lourdais, P.; Maréchal, F. Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain. Energy 2015, 86, 574–588.Vivian, J.; Manente, G.; Lazzaretto, A. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources. Appl. Energy 2015, 156, 727–746.Yu, H.; Feng, X.; Wang, Y. A new pinch based method for simultaneous selection of working fluid and operating conditions in an Organic Rankine Cycle (ORC) recovering waste heat. Energy 2015, 90, 36–46.Invernizzi, C.M.; Iora, P.; Preißinger, M.; Manzolini, G. HFOs as substitute for R-134a as working fluids in ORC power plants: A thermodynamic assessment and thermal stability analysis. Appl. Therm. Eng. 2016, 103, 790–797.Mavrou, P.; Papadopoulos, A.I.; Stijepovic, M.Z.; Seferlis, P.; Linke, P.; Voutetakis, S. Novel and conventional working fluid mixtures for solar Rankine cycles: Performance assessment and multi-criteria selection. Appl. Therm. Eng. 2015, 75, 384–396.Rahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N.; Mirhadizadeh, S.A. Review of organic Rankine cycle for small-scale applications. Energy Convers. Manag. 2017, 134, 135–155.Karellas, S.; Braimakis, K. Energy–exergy analysis and economic investigation of a cogeneration and trigeneration ORC–VCC hybrid system utilizing biomass fuel and solar power. Energy Convers. Manag. 2016, 107, 103–113.Pang, K.-C.; Chen, S.-C.; Hung, T.-C.; Feng, Y.-Q.; Yang, S.-C.;Wong, K.-W.; Lin, J.-R. Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat. Energy 2017, 133, 636–651.Wang, J.; Diao, M.; Yue, K. Optimization on pinch point temperature di erence of ORC system based on AHP-Entropy method. Energy 2017, 141, 97–107.Mahmoudi, S.M.S.; Ghavimi, A.R. Thermoeconomic analysis and multi objective optimization of a molten carbonate fuel cell—Supercritical carbon dioxide—Organic Rankin Cycle integrated power system using liquefied natural gas as heat sink. Appl. Therm. Eng. 2016, 107, 1219–1232.Zhang, Q.; Ogren, R.M.; Kong, S.-C. Thermo-economic analysis and multi-objective optimization of a novel waste heat recovery system with a transcritical CO2 cycle for o shore gas turbine application. Energy Convers. Manag. 2018, 172, 212–227.Liu, C.; He, C.; Gao, H.; Xie, H.; Li, Y.; Wu, S.; Xu, J. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment. Energy 2013, 56, 144–154.Cioccolanti, L.; Rajabi Hamedani, S.; Villarini, M. Environmental and energy assessment of a small-scale solar Organic Rankine Cycle trigeneration system based on compound parabolic collectors. Energy Convers. Manag. 2019, 198, 111829.Ding, Y.; Liu, C.; Zhang, C.; Xu, X.; Li, Q.; Mao, L. Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid. Energy 2018, 145, 52–64.Heberle, F.; Schi echner, C.; Brüggemann, D. Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics 2016, 64, 392–400.Sun, W.; Yue, X.; Wang, Y. Exergy e ciency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste heat. Energy Convers. Manag. 2017, 135, 63–73.Mateu-Royo, C.; Mota-Babiloni, A.; Navarro-Esbrí, J.; Peris, B.; Molés, F.; Amat-Albuixech, M. Multi-objective optimization of a novel reversible High-Temperature Heat Pump-Organic Rankine Cycle (HTHP-ORC) for industrial low-grade waste heat recovery. Energy Convers. Manag. 2019, 197, 111908.Van Kleef, L.M.T.; Oyewunmi, O.A.; Markides, C.N. Multi-objective thermo-economic optimization of Organic Rankine Cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques. Appl. Energy 2019, 251, 112513.Shi, L.; Shu, G.; Tian, H.; Deng, S. A review of modified Organic Rankine Cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renew. Sustain. Energy Rev. 2018, 92, 95–110.Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic analysis of di erent exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. 2019, 9, 4071.Da Silva, J.A.M.; Seifert, V.; de Morais, V.O.B.; Tsolakis, A.; Herreros, J.; Torres, E. Exergy evaluation and ORC use as an alternative for e ciency improvement in a CI-engine power plant. Sustain. Energy Technol. Assess. 2018, 30, 216–223.Abam, F.I.; Ekwe, E.B.; E om, S.O.; Ndukwu, M.C. A comparative performance analysis and thermosustainability indicators of modified low-heat Organic Rankine Cycles (ORCs): An exergy-based procedure. Energy Rep. 2018, 4, 110–118.Karvountzis-Kontakiotis, A.; Pesiridis, A.; Zhao, H.; Alshammari, F.; Franchetti, B.; Pesmazoglou, I.; Tocci, L. Effect of an ORCWaste Heat Recovery System on Diesel Engine Fuel Economy for Off-Highway Vehicles; SAE Technical Paper; SAE:Warrendale, PA, USA, 2017.Ochoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic modelling and parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under di erentworking fluids. Appl. Sci. 2019, 9, 4526.Khoo,H.H. LCAof plasticwaste recovery into recycledmaterials, energy and fuels in Singapore. Resour. Conserv. Recycl. 2019, 145, 67–77.Shyam Mishra, R.; Khan, Y. Exergy and energy analysis of modified organic rankine cycle for reduction of global warming and ozone depletion. Int. J. Res. Eng. Innov. 2017, 1, 1–12.Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700.Water, G.P. Jenbacher 612 GS-N. L 2MW. Tech. Specif. 2011, 1–4. Available online: http://kts-eng.com/assets/ files/J-612.pdf (accessed on 28 December 2019).Barrozo, F.; Ochoa, G.V.; Cárdenas, Y.D. Hybrid PV & Wind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemp. Eng. Sci. 2017, 26, 1269–1278.Zare, V. A comparative exergoeconomic analysis of di erent ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138.El-Emam, R.S.; Dincer, I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 2013, 59, 435–444.Calise, F.; Capuozzo, C.; Carotenuto, A.; Vanoli, L. Thermoeconomic analysis and o -design performance of an organic Rankine cycle powered by medium-temperature heat sources. Sol. Energy 2014, 103, 595–609.Voros, N.G.; Kiranoudis, C.T.; Maroulis, Z.B. Solar energy exploitation for reverse osmosis desalination plants. Desalination 1998, 115, 83–101.Valencia, G.; Benavides, A.; Cárdenas, Y. Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region. Energies 2019, 12, 2119.Shengjun, Z.; Huaixin, W.; Tao, G. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754.Bhatt, A.; Bradford, A.; Abbassi, B.E. Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario. J. Environ. Manag. 2019, 231, 98–109.International Organization for Standardization (ISO). Environmental Management The ISO 14000 Family of International Standards ISO in Brief ISO and the Environment; ISO: Geneva, Switzerland, 2009.Arvanitoyannis, I.S. Life cycle assessment (LCA)—Principles and guidelines. Waste Manag. Food Ind. 2008, 14040, 97–132.Kost, C.; Schlegl, T.; Thomsen, J.; Nold, S.; Mayer, J.; Hartmann, N.; Senkpiel, C.; Philipps, S.; Lude, S.; Saad, N. Fraunhofer ISE: Levelized cost of electricity—Renewable energy technologies, March 2018. arXiv 2018, arXiv:cs/9605103. Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/ publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf (accessed on 28 December 2019).Valencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655.Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903.Valencia, G.; Vanegas, M.; Villicana, E. Disponibilidad Geográfica y Temporal de la Energía Solar en la Costa Caribe Colombiana; Sello editorial de la Universidad del Atlántico: Barranquilla, Colombia, 2016.http://purl.org/coar/resource_type/c_6501ORIGINALresources9010002.pdfresources9010002.pdfapplication/pdf3707557https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/782/1/resources9010002.pdfdccf489e90dd7cecb7710d8c5d3bf043MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/782/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/782/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/782oai:repositorio.uniatlantico.edu.co:20.500.12834/7822022-11-15 14:15:38.977DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |