Acrylic Bone Cement Incorporated with Low Chitosan Loadings

Despite the potential of acrylic bone cement (ABC) loaded with chitosan (CS) for orthopedic applications, there are only a few in vitro studies of this composite with CS loading ≤ 15 wt.% evaluated in bioactivity tests in simulated body fluid (SBF) for duration > 30 days. The purpose of the prese...

Full description

Autores:
Valencia Zapata, Mayra Eliana
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/934
Acceso en línea:
https://hdl.handle.net/20.500.12834/934
Palabra clave:
acrylic bone cement; bioactivity; biocompatibility; chitosan; poly (methyl methacrylate)
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_9b0e0a878e7f4a22aec70c6f2ced6ba5
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/934
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Acrylic Bone Cement Incorporated with Low Chitosan Loadings
title Acrylic Bone Cement Incorporated with Low Chitosan Loadings
spellingShingle Acrylic Bone Cement Incorporated with Low Chitosan Loadings
acrylic bone cement; bioactivity; biocompatibility; chitosan; poly (methyl methacrylate)
title_short Acrylic Bone Cement Incorporated with Low Chitosan Loadings
title_full Acrylic Bone Cement Incorporated with Low Chitosan Loadings
title_fullStr Acrylic Bone Cement Incorporated with Low Chitosan Loadings
title_full_unstemmed Acrylic Bone Cement Incorporated with Low Chitosan Loadings
title_sort Acrylic Bone Cement Incorporated with Low Chitosan Loadings
dc.creator.fl_str_mv Valencia Zapata, Mayra Eliana
dc.contributor.author.none.fl_str_mv Valencia Zapata, Mayra Eliana
dc.contributor.other.none.fl_str_mv Mina Hernandez, José Herminsul
Grande Tova, Carlos David
dc.subject.keywords.spa.fl_str_mv acrylic bone cement; bioactivity; biocompatibility; chitosan; poly (methyl methacrylate)
topic acrylic bone cement; bioactivity; biocompatibility; chitosan; poly (methyl methacrylate)
description Despite the potential of acrylic bone cement (ABC) loaded with chitosan (CS) for orthopedic applications, there are only a few in vitro studies of this composite with CS loading ≤ 15 wt.% evaluated in bioactivity tests in simulated body fluid (SBF) for duration > 30 days. The purpose of the present work was to address this shortcoming of the literature. In addition to bioactivity, a wide range of cement properties were determined for composites with CS loading ranging from 0 to 20 wt.%. These properties included maximum exotherm temperature (Tmax), setting time (tset), water contact angle, residual monomer content, flexural strength, bending modulus, glass transition temperature, and water uptake. For cement with CS loading ≥ 15 wt.%, there was an increase in bioactivity, increase in biocompatibility, decrease in Tmax, increase in tset, all of which are desirable trends, but increase in residual monomer content and decrease in each of the mechanical properties, with each of these trends, were undesirable. Thus, a composite with CS loading of 15 wt.% should be further characterized to explore its suitability for use in low-weight-bearing applications, such as bone void filler and balloon kyphoplasty
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-07-21
dc.date.submitted.none.fl_str_mv 2020-07-05
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:03:49Z
dc.date.available.none.fl_str_mv 2022-11-15T21:03:49Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/934
dc.identifier.doi.none.fl_str_mv 10.3390/polym12071617 w
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/934
identifier_str_mv 10.3390/polym12071617 w
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Polymers
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/934/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/934/1/polymers-12-01617.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/934/3/license.txt
bitstream.checksum.fl_str_mv 24013099e9e6abb1575dc6ce0855efd5
5e4c08a2a15362bf24f08e6e851a5793
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203412781203456
spelling Valencia Zapata, Mayra Elianac9423aa9-8912-4a7c-82d7-d8e4335d733eMina Hernandez, José HerminsulGrande Tova, Carlos David2022-11-15T21:03:49Z2022-11-15T21:03:49Z2020-07-212020-07-05https://hdl.handle.net/20.500.12834/93410.3390/polym12071617 wUniversidad del AtlánticoRepositorio Universidad del AtlánticoDespite the potential of acrylic bone cement (ABC) loaded with chitosan (CS) for orthopedic applications, there are only a few in vitro studies of this composite with CS loading ≤ 15 wt.% evaluated in bioactivity tests in simulated body fluid (SBF) for duration > 30 days. The purpose of the present work was to address this shortcoming of the literature. In addition to bioactivity, a wide range of cement properties were determined for composites with CS loading ranging from 0 to 20 wt.%. These properties included maximum exotherm temperature (Tmax), setting time (tset), water contact angle, residual monomer content, flexural strength, bending modulus, glass transition temperature, and water uptake. For cement with CS loading ≥ 15 wt.%, there was an increase in bioactivity, increase in biocompatibility, decrease in Tmax, increase in tset, all of which are desirable trends, but increase in residual monomer content and decrease in each of the mechanical properties, with each of these trends, were undesirable. Thus, a composite with CS loading of 15 wt.% should be further characterized to explore its suitability for use in low-weight-bearing applications, such as bone void filler and balloon kyphoplastyapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PolymersAcrylic Bone Cement Incorporated with Low Chitosan LoadingsPúblico generalacrylic bone cement; bioactivity; biocompatibility; chitosan; poly (methyl methacrylate)info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede Norte1. Magnan, B.; Bondi, M.; Maluta, T.; Samaila, E.; Schirru, L.; Dall’Oca, C. Acrylic bone cement: Current concept review. Musculoskelet. Surg. 2013, 97, 93–1002. Khandaker, M.; Vaughan, M.B.; Morris, T.L.; White, J.J.; Meng, Z. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly (methyl methacrylate) cement. Int. J. Nanomed. 2014, 2699–27123. Soleymani Eil Bakhtiari, S.; Karbasi, S.; Hassanzadeh Tabrizi, S.A.; Ebrahimi-Kahrizsangi, R.; Salehi, H. Evaluation of the effects of chitosan/multiwalled carbon nanotubes composite on physical, mechanical and biological properties of polymethyl methacrylate-based bone cements. Mater. Technol. 2019, 35, 267–2804. Lewis, G. Alternative acrylic bone cement formulations for cemented arthroplasties: Present status. key issues, and future prospects. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84, 301–3195. Wang, M.; Sa, Y.; Li, P.; Guo, Y.; Du, Y.; Deng, H.; Jiang, T.; Wang, Y. A versatile and injectable poly(methyl methacrylate) cement functionalized with quaternized chitosan-glycerophosphate/nanosized hydroxyapatite hydrogels. Mater. Sci. Eng. C 2018, 90, 264–2726. De Mori, A.; Di Gregorio, E.; Kao, A.P.; Tozzi, G.; Barbu, E.; Sanghani-Kerai, A.; Draheim, R.R.; Roldo, M. Antibacterial PMMA Composite Cements with Tunable Thermal and Mechanical Properties. ACS Omega 2019, 4, 19664–19675.7. Islam, M.M.; Shahruzzaman, M.; Biswas, S.; Nurus Sakib, M.; Rashid, T.U. Chitosan based bioactive materials in tissue engineering applications—A review. Bioact. Mater. 2020, 5, 164–1838. Barradas, A.M.C.; Yuan, H.; Van Blitterswijk, C.A.; Habibovic, P. Osteoinductive biomaterials: Current knowledge of properties, experimental models and biological mechanisms. Eur. Cells Mater. 2011, 21, 407–4299. Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial— A review on recent modifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–108310. Dunne, N.; Buchanan, F.; Hill, J.; Newe, C.; Tunney, M.; Brady, A.; Walker, G. In vitro testing of chitosan in gentamicin-loaded bone cement: No antimicrobial effect and reduced mechanical performance. Acta Orthop. 2008, 79, 851–86011. Lin, M.C.; Chen, C.C.; Wu, I.T.; Ding, S.J. Enhanced antibacterial activity of calcium silicate-based hybrid cements for bone repair. Mater. Sci. Eng. C 2020, 110, 11072712. Shi, Z.; Neoh, K.G.; Kang, E.T.; Wang, W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 2006, 27, 2440–244913. Tavakoli, M.; Bakhtiari, S.S.E.; Karbasi, S. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation. Int. J. Biol. Macromol. 2020, 149, 783–79314. Liu, B.; Li, M.; Yin, B.; Zou, J.; Zhang, W.; Wang, S.-Y. Effects of Incorporating Carboxymethyl Chitosan into PMMA Bone Cement Containing Methotrexate. PLoS ONE 2015, 10, 14440715. Endogan, T.; Kiziltay, A.; Kose, G.T.; Comunoglu, N.; Beyzadeoglu, T.; Hasirci, N. Acrylic Bone Cements: Effects of the Poly (methyl methacrylate) Powder Size and Chitosan Addition on Their Properties. J. Appl. Polym. Sci. Polym. Sci. 2014, 131, 3966216. Deb, S.; Koller, G. Chapter 8. Acrylic bone cement: Genesis and evolution. In Orthopaedic Bone Cements; Deb, S., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2008; pp. 167–182, ISBN 978-1-84569-517-0.17. Miyazaki, T.; Ohtsuki, C. Design of bioactive bone cement based on organic–inorganic hybrids. In Orthopaedic Bone Cements; Deb, S., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2008; p. 400.18. International Standard ISO 5833. Implants for Surgery-Acrylic Resin Cements. ISO: Geneva, Switzerland, 2002; pp. 1–22.19. Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915.20. ASTM F1635-16. Standard Test Method for In Vitro Degradation Testing of Hydrolytically Degradable Polymer Resins and Fabricated Forms for Surgical Implants. American Society of Testing Materials: West Conshohocken, PA, USA, 2016; pp. 1–5.21. Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Aziz, M.; Chen, X.B. Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment. Mater. Lett. 2019, 240, 9–1222. Vazquez-Lasa, B. Poly(methylmethacrylate) bone cement: Chemical composition and chemistry. In Orthopaedic Bone Cements; Deb, S., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2008; p. 40023. Tan, H.; Guo, S.; Yang, S.; Xu, X.; Tang, T. Physical characterization and osteogenic activity of the quaternized chitosan-loaded PMMA bone cement. Acta Biomater. 2012, 8, 2166–2174.24. Nazhat, S.N.; Cauich Rodriguez, J.V. Dynamic mechanical properties of bone cements. In Orthopaedic Bone Cements; Deb, S., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 296–310.25. Varlamov, V.P.; Il’ina, A.V.; Shagdarova, B.T.; Lunkov, A.P.; Mysyakina, I.S. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. Biochemistry 2020, 85, 154–176.26. Tiainen, H.; Wohlfahrt, J.C.; Verket, A.; Lyngstadaas, S.P.; Haugen, H.J. Bone formation in TiO 2 bone scaffolds in extraction sockets of minipigs. Acta Biomater. 2012, 8, 2384–2391.27. He, Q.; Chen, H.; Huang, L.; Dong, J.; Guo, D.; Mao, M.; Kong, L.; Li, Y.; Wu, Z.; Lei, W. Porous Surface Modified Bioactive Bone Cement for Enhanced Bone Bonding. PLoS ONE 2012, 7, e4252528. May-Pat, A.; Herrera-Kao, W.; Cauich-Rodríguez, J.V.; Cervantes-Uc, J.M.; Flores-Gallardo, S.G. Comparative study on the mechanical and fracture properties of acrylic bone cements prepared with monomers containing amine groups. J. Mech. Behav. Biomed. Mater. 2012, 6, 95–10529. Valencia Zapata, M.E.; Mina Hernandez, J.H.; Grande Tovar, C.D.; Valencia Llano, C.H.; Diaz Escobar, J.A.; Vázquez-Lasa, B.; San Román, J.; Rojo, L.; Rojo, L. Novel Bioactive and Antibacterial Acrylic Bone Cement Nanocomposites Modified with Graphene Oxide and Chitosan. Int. J. Mol. Sci. 2019, 20, 293830. Kühn, K.-D. Bone Cements; Springer: Berlin, Germany, 2000; ISBN 9783642641152.31. Lewis, G. Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: A review. J. Biomed. Mater. Res.—Part B Appl. Biomater. 2017, 105, 1260–128432. Depan, D.; Shah, J.S.; Misra, R.D.K. Degradation mechanism and increased stability of chitosan-based hybrid scaffolds cross-linked with nanostructured carbon: Process-structure-functional property relationship. Polym. Degrad. Stab. 2013, 98, 2331–233933. Ruiz, S.; Tamayo, J.A.; Ospina, J.D.; Navia Porras, D.P.; Valencia Zapata, M.E.; Mina Hernandez, J.H.; Valencia, C.H.; Zuluaga, F.; Grande Tovar, C.D. Antimicrobial Films Based on Nanocomposites of Chitosan / Poly ( vinyl alcohol )/ Graphene Oxide for Biomedical Applications. Biomolecules 2019, 9, 10934. Safadi, F.F.; Barbe, M.F.; Abdelmagid, S.M.; Rico, M.C.; Aswad, R.A.; Litvin, J.; Popoff, S.N. Bone Structure, Development and Bone Biology. In Bone Pathology; Khurana, J.S., Ed.; Humana Press: New York, NY, USA, 2009; Volume 2, pp. 1–50, ISBN 9781588297662.35. Mirmusavi, M.H.; Zadehnajar, P.; Semnani, D.; Karbasi, S.; Fekrat, F.; Heidari, F. Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. Int. J. Biol. Macromol. 2019, 132, 822–83536. Islas-Blancas, M.E.; Cervantes-Uc, J.M. Characterization of bone cements prepared with functionalized methacrylates and hydroxyapatite. J. Biomater. Sci. Polym. Ed. 2001, 12, 893–910http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/934/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52ORIGINALpolymers-12-01617.pdfpolymers-12-01617.pdfapplication/pdf6349814https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/934/1/polymers-12-01617.pdf5e4c08a2a15362bf24f08e6e851a5793MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/934/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/934oai:repositorio.uniatlantico.edu.co:20.500.12834/9342022-11-15 16:03:50.382DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==