Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass

Microalgae are used as a lipid source for different applications, such as cosmetics and biofuel. The nonliving biomass and the byproduct from the lipid extraction procedure can efficiently remove antibiotics. This work has explored the potential use of Chlorella sp. biomasses for tetracycline (Tc) r...

Full description

Autores:
Suárez Martínez, Dayra
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/828
Acceso en línea:
https://hdl.handle.net/20.500.12834/828
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129044197&doi=10.1021%2facsomega.2c00696&partnerID=40&md5=f9e1eab9dbedbe0591ee180555ff0302
Palabra clave:
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_99cca0999ba582e05bdf885d8c28c342
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/828
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass
title Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass
spellingShingle Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass
title_short Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass
title_full Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass
title_fullStr Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass
title_full_unstemmed Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass
title_sort Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass
dc.creator.fl_str_mv Suárez Martínez, Dayra
dc.contributor.author.none.fl_str_mv Suárez Martínez, Dayra
dc.contributor.other.none.fl_str_mv Angulo Mercado, Edgardo
Mercado Martínez, Ivan
Vacca Jimeno, Victor
Tapia Larios, Claudia
Cubillán, Néstor
description Microalgae are used as a lipid source for different applications, such as cosmetics and biofuel. The nonliving biomass and the byproduct from the lipid extraction procedure can efficiently remove antibiotics. This work has explored the potential use of Chlorella sp. biomasses for tetracycline (Tc) removal from highly concentrated aqueous media. Non-living biomass (NLB) is the biomass before the lipid extraction procedure, while lipid-extracted biomass (LEB) is the byproduct mentioned before. LEB removed 76.9% of Tc at 40 mg/L initial concentration and 40 mg of biomass, representing an adsorption capacity of 19.2 mg/g. Subsequently, NLB removed 68.0% of Tc at 50 mg/L and 60 mg of biomass, equivalent to 14.2 mg/g of adsorptive capacity. These results revealed an enhanced removal capacity by LEB compared with NLB and other microalgae-based materials. On the other hand, the adsorption kinetics followed the pseudo-second-order and Elovich models, suggesting chemisorption with interactions between adsorbates. The adsorption isotherms indicate a multilayer mechanism on a heterogeneous surface. Additionally, the interactions between the surface and the first layer of tetracycline are weak, and the formation of the subsequent layers is favored. The Chlorella sp. biomass after the lipid extraction process is a promising material for removing tetracycline; moreover, the use of this residue contributes to the zero-waste strategy.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:37:33Z
dc.date.available.none.fl_str_mv 2022-11-15T19:37:33Z
dc.date.issued.none.fl_str_mv 2022-04-14
dc.date.submitted.none.fl_str_mv 2022-02-03
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Suárez-Martínez D, Angulo-Mercado E, Mercado-Martínez I, Vacca-Jimeno V, Tapia-Larios C, Cubillán N. Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass. ACS Omega. 2022 Apr 14;7(16):14128-14137. doi: 10.1021/acsomega.2c00696
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/828
dc.identifier.doi.none.fl_str_mv 10.1021/acsomega.2c00696
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
dc.identifier.url.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129044197&doi=10.1021%2facsomega.2c00696&partnerID=40&md5=f9e1eab9dbedbe0591ee180555ff0302
identifier_str_mv Suárez-Martínez D, Angulo-Mercado E, Mercado-Martínez I, Vacca-Jimeno V, Tapia-Larios C, Cubillán N. Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass. ACS Omega. 2022 Apr 14;7(16):14128-14137. doi: 10.1021/acsomega.2c00696
10.1021/acsomega.2c00696
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/828
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129044197&doi=10.1021%2facsomega.2c00696&partnerID=40&md5=f9e1eab9dbedbe0591ee180555ff0302
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Industrial
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv ACS Omega
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/828/1/acsomega.2c00696.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/828/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/828/3/license.txt
bitstream.checksum.fl_str_mv 64c0a8a3e459349e73cb2fc5af04b074
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203421874454528
spelling Suárez Martínez, Dayraff2597d1-ed74-4dbb-808d-1e05748fba46Angulo Mercado, EdgardoMercado Martínez, IvanVacca Jimeno, VictorTapia Larios, ClaudiaCubillán, Néstor2022-11-15T19:37:33Z2022-11-15T19:37:33Z2022-04-142022-02-03Suárez-Martínez D, Angulo-Mercado E, Mercado-Martínez I, Vacca-Jimeno V, Tapia-Larios C, Cubillán N. Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass. ACS Omega. 2022 Apr 14;7(16):14128-14137. doi: 10.1021/acsomega.2c00696https://hdl.handle.net/20.500.12834/82810.1021/acsomega.2c00696Universidad del AtlánticoRepositorio Universidad del Atlánticohttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85129044197&doi=10.1021%2facsomega.2c00696&partnerID=40&md5=f9e1eab9dbedbe0591ee180555ff0302Microalgae are used as a lipid source for different applications, such as cosmetics and biofuel. The nonliving biomass and the byproduct from the lipid extraction procedure can efficiently remove antibiotics. This work has explored the potential use of Chlorella sp. biomasses for tetracycline (Tc) removal from highly concentrated aqueous media. Non-living biomass (NLB) is the biomass before the lipid extraction procedure, while lipid-extracted biomass (LEB) is the byproduct mentioned before. LEB removed 76.9% of Tc at 40 mg/L initial concentration and 40 mg of biomass, representing an adsorption capacity of 19.2 mg/g. Subsequently, NLB removed 68.0% of Tc at 50 mg/L and 60 mg of biomass, equivalent to 14.2 mg/g of adsorptive capacity. These results revealed an enhanced removal capacity by LEB compared with NLB and other microalgae-based materials. On the other hand, the adsorption kinetics followed the pseudo-second-order and Elovich models, suggesting chemisorption with interactions between adsorbates. The adsorption isotherms indicate a multilayer mechanism on a heterogeneous surface. Additionally, the interactions between the surface and the first layer of tetracycline are weak, and the formation of the subsequent layers is favored. The Chlorella sp. biomass after the lipid extraction process is a promising material for removing tetracycline; moreover, the use of this residue contributes to the zero-waste strategy.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ACS OmegaEnhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. BiomassPúblico generalinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería IndustrialSede NorteGrossman, T. H. Tetracycline Antibiotics and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, No. a025387.Carvalho, I. T.; Santos, L. Antibiotics in the Aquatic Environments: A Review of the European Scenario. Environ. IntGranados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, No. 1315497.Ziółkowski, H.; Jasiecka-Mikołajczyk, A.; Madej-Śmiechowska, H.; Janiuk, J.; Zygmuntowicz, A.; Dąbrowski, M. Comparative Pharmacokinetics of Chlortetracycline, Tetracycline, Minocycline and Tigecycline in Broiler Chickens. Poult. Sci. 2020, 99, 4750−4757.Michael, C. A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Front. Public Health 2014, 2, 145.Javid, A.; Mesdaghinia, A.; Nasseri, S.; Mahvi, A. H.; Alimohammadi, M.; Gharibi, H. Assessment of Tetracycline Contamination in Surface and Groundwater Resources Proximal to Animal Farming Houses in Tehran, Iran. J. Environ. Health Sci. Eng. 2016, 14, 4.Wang, Z.; Chen, Q.; Zhang, J.; Dong, J.; Yan, H.; Chen, C.; Feng, R. Characterization and Source Identification of Tetracycline Antibiotics in the Drinking Water Sources of the Lower Yangtze River. J. Environ. Manage. 2019, 244, 13−22.Kim, Y. B.; Seo, K. W.; Jeon, H. Y.; Lim, S. K.; Sung, H. W.; Lee, Y. J. Molecular Characterization of Erythromycin and Tetracycline- Resistant Enterococcus Faecalis Isolated from Retail Chicken Meats. Poult. Sci. 2019, 98, 977−983.Pena, A.; Paulo, M.; Silva, L. J. G.; Seifrtová, M.; Lino, C. M.; Solich, P. Tetracycline Antibiotics in Hospital and Municipal Wastewaters: A Pilot Study in Portugal. Anal. Bioanal. Chem. 2010, 396, 2929−2936.Yi, Q.; Gao, Y.; Zhang, H.; Zhang, H.; Zhang, Y.; Yang, M. Establishment of a Pretreatment Method for Tetracycline Production Wastewater Using Enhanced Hydrolysis. Chem. Eng. J. 2016, 300, 139−145.Liu, H.; Xu, G.; Li, G. Preparation of Porous Biochar Based on Pharmaceutical Sludge Activated by NaOH and Its Application in the Adsorption of Tetracycline. J. Colloid Interface Sci. 2021, 587, 271− 278.Daghrir, R.; Drogui, P. Tetracycline Antibiotics in the Environment: A Review. Environ. Chem. Lett. 2013, 11, 209−227.Zhang, N.; Chen, J.; Fang, Z.; Tsang, E. P. Ceria Accelerated Nanoscale Zerovalent Iron Assisted Heterogenous Fenton Oxidation of Tetracycline. Chem. Eng. J. 2019, 369, 588−599.Zhang, S.; Song, H.; Yang, X.; Yang, K.; Wang, X. Effect of Electrical Stimulation on the Fate of Sulfamethoxazole and Tetracycline with Their Corresponding Resistance Genes in Three- Dimensional Biofilm-Electrode Reactors. Chemosphere 2016, 164, 113−119.Lin, Y.; Xu, S.; Li, J. Fast and Highly Efficient Tetracyclines Removal from Environmental Waters by Graphene Oxide Functionalized Magnetic Particles. Chem. Eng. J. 2013, 225, 679−685.Zhang, L.; Song, X.; Liu, X.; Yang, L.; Pan, F.; Lv, J. Studies on the Removal of Tetracycline by Multi-Walled Carbon Nanotubes. Chem. Eng. J. 2011, 178, 26−33.Bernaerts, T. M. M.; Gheysen, L.; Kyomugasho, C.; Jamsazzadeh Kermani, Z.; Vandionant, S.; Foubert, I.; Hendrickx, M. E.; Van Loey, A. M. Comparison of Microalgal Biomasses as Functional Food Ingredients: Focus on the Composition of Cell Wall Related Polysaccharides. Algal Res. 2018, 32, 150−161.Menegazzo, M. L.; Fonseca, G. G. Biomass Recovery and Lipid Extraction Processes for Microalgae Biofuels Production: A Review. Renew. Sustain. Energy Rev. 2019, 107, 87−107.De Luca, M.; Pappalardo, I.; Limongi, A. R.; Viviano, E.; Radice, R. P.; Todisco, S.; Martelli, G.; Infantino, V.; Vassallo, A. Lipids from Microalgae for Cosmetic Applications. Cosmetics 2021, 8, 52.osta, J. A. V.; Freitas, B. C. B.; Moraes, L.; Zaparoli, M.; Morais, M. G. Progress in the Physicochemical Treatment of Microalgae Biomass for Value-Added Product Recovery. Bioresour. Technol. 2020, 301, No. 122727.Ye, C.; Mu, D.; Horowitz, N.; Xue, Z.; Chen, J.; Xue, M.; Zhou, Y.; Klutts, M.; Zhou, W. Life Cycle Assessment of Industrial Scale Production of Spirulina Tablets. Algal Res. 2018, 34, 154−163.Hanifzadeh, M.; Sarrafzadeh, M.-H.; Nabati, Z.; Tavakoli, O.; Feyzizarnagh, H. Technical, Economic and Energy Assessment of an Alternative Strategy for Mass Production of Biomass and Lipid from Microalgae. J. Environ. Chem. Eng. 2018, 6, 866−873.Nautiyal, P.; Subramanian, K. A.; Dastidar, M. G. Experimental Investigation on Adsorption Properties of Biochar Derived from Algae Biomass Residue of Biodiesel Production. Environ. Process. 2017, 4, 179−193.Sutherland, D. L.; Ralph, P. J. Microalgal Bioremediation of Emerging Contaminants - Opportunities and Challenges. Water Res. 2019, 164, No. 114921.Hena, S.; Gutierrez, L.; Croué, J. P. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A Review. J. Hazard. Mater. 2021, 403, No. 124041.Angulo, E.; Bula, L.; Mercado, I.; Montaño, A.; Cubillán, N. Bioremediation of Cephalexin with Non-Living Chlorella Sp., Biomass after Lipid Extraction. Bioresour. Technol. 2018, 257, 17−22.Daneshvar, E.; Zarrinmehr, M. J.; Hashtjin, A. M.; Farhadian, O.; Bhatnagar, A. Versatile Applications of Freshwater and Marine Water Microalgae in Dairy Wastewater Treatment, Lipid Extraction and Tetracycline Biosorption. Bioresour. Technol. 2018, 268, 523− 530.Saldaña, K.; Angulo, E.; Mercado, I.; Castellar, G.; Cubillán, N. Removal of Minocycline from High Concentrated Aqueous Medium by Nonliving and Lipid-Free Chlorella Sp. Biomass. Bioresour. Technol. Rep. 2022, 17, No. 100921.Hosseinizand, H.; Sokhansanj, S.; Lim, C. J. Studying the Drying Mechanism of Microalgae Chlorella Vulgaris and the Optimum Drying Temperature to Preserve Quality Characteristics. Dry. Technol. 2018, 36, 1049−1060.Bligh, E. G.; Dyer, W. J. A Rapid Method Of Total Lipid Extraction And Purification. Can. J. Biochem. Physiol. 1959, 37, 911− 917.Guo, X.; Su, G.; Li, Z.; Chang, J.; Zeng, X.; Sun, Y.; Lu, Y.; Lin, L. Light Intensity and N/P Nutrient Affect the Accumulation of Lipid and Unsaturated Fatty Acids by Chlorella Sp. Bioresour. Technol. 2015, 191, 385−390.D’Oca, M. G. M.; Viêgas, C.; Lemões, J.; Miyasaki, E.; Morón- Villarreyes, J.; Primel, E.; Abreu, P. Production of FAMEs from Several Microalgal Lipidic Extracts and Direct Transesterification of the Chlorella Pyrenoidosa. Biomass Bioenergy 2011, 35, 1533−1538.Wheeler, R. AlgDesign. The R Foundation for statistical computing 2004.R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018.McKay, G.; Otterburn, M. S.; Sweeney, A. G. The Removal of Colour from Effluent Using Various Adsorbents-III. Silica: Rate Processes. Water Res. 1980, 14, 15−20.Scrucca, L. On Some Extensions to GA Package: Hybrid Optimisation, Parallelisation and Islands Evolution. R J. 2017, 9, 187.Jin, L.; Amaya-Mazo, X.; Apel, M. E.; Sankisa, S. S.; Johnson, E.; Zbyszynska, M. A.; Han, A. Ca2+ and Mg2+ Bind Tetracycline with Distinct Stoichiometries and Linked Deprotonation. Biophys. Chem. 2007, 128, 185−196.Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09 Revision A.2; Wallingford, 2009.Li, W. C.; Wong, M. H. A Comparative Study on Tetracycline Sorption by Pachydictyon Coriaceum and Sargassum Hemiphyllum. Int. J. Environ. Sci. Technol. 2015, 12, 2731−2740.Ding, Y. Y.; Cui, H.; Chen, J. Biosorption of Tetracycline onto Dried Alligator Weed Root: Effect of Solution Chemistry and Role of Metal (Hydr)Oxides. Res. Chem. Intermed. 2017, 43, 1121−1138.Martins, A. C.; Pezoti, O.; Cazetta, A. L.; Bedin, K. C.; Yamazaki, D. A. S. S.; Bandoch, G. F. G. G.; Asefa, T.; Visentainer, J. V.; Almeida, V. C. Removal of Tetracycline by NaOH-Activated Carbon Produced from Macadamia Nut Shells: Kinetic and Equilibrium Studies. Chem. Eng. J. 2015, 260, 291−299.Peng, L.; Ren, Y.; Gu, J.; Qin, P.; Zeng, Q.; Shao, J.; Lei, M.; Chai, L. Iron Improving Bio-Char Derived from Microalgae on Removal of Tetracycline from Aqueous System. Environ. Sci. Pollut. Res. 2014, 21, 7631−7640.Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.; Su, X. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide. J. Colloid Interface Sci. 2012, 368, 540− 546.Wang, Y. U. J.; Jia, D. E. A. N.; Sun, R. J.; Zhu, H. W.; Zhou, D. M. Adsorption and Cosorption of Tetracycline and Copper (Ll) on Montmorillonite as Affected by Solution PH. Environ. Sci. Technol. 2008, 42, 3254−3259.Chang, P. H.; Li, Z.; Jean, J. S.; Jiang, W. T.; Wang, C. J.; Lin, K. H. Adsorption of Tetracycline on 2:1 Layered Non-Swelling Clay Mineral Illite. Appl. Clay Sci. 2012, 67-68, 158−163.Yang, X.; Xu, G.; Yu, H.; Zhang, Z. Preparation of Ferric- Activated Sludge-Based Adsorbent from Biological Sludge for Tetracycline Removal. Bioresour. Technol. 2016, 211, 566−573.Largitte, L.; Pasquier, R. A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon. Chem. Eng. Res. Des. 2016, 109, 495−504.Jang, H. M.; Yoo, S.; Choi, Y.-K.; Park, S.; Kan, E. Adsorption Isotherm, Kinetic Modeling and Mechanism of Tetracycline on Pinus Taeda-Derived Activated Biochar. Bioresour. Technol. 2018, 259, 24− 31.Pan, L.; Cao, Y.; Zang, J.; Huang, Q.; Wang, L.; Zhang, Y.; Fan, S.; Tang, J.; Xie, Z. Preparation of Iron-Loaded Granular Activated Carbon Catalyst and Its Application in Tetracycline Antibiotic Removal from Aqueous Solution. Int. J. Environ. Res. Public Health 2019, 16, 2270.Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N. E. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media. Korean J. Chem. Eng. 2015, 32, 787−799.Ebadi, A.; Soltan Mohammadzadeh, J. S.; Khudiev, A. What Is the Correct Form of BET Isotherm for Modeling Liquid Phase Adsorption? Adsorption 2009, 15, 65−73.Dalm, D.; Palm, G. J.; Aleksandrov, A.; Simonson, T.; Hinrichs, W. Nonantibiotic Properties of Tetracyclines: Structural Basis for Inhibition of Secretory Phospholipase A2. J. Mol. Biol. 2010, 398, 83− 96.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALacsomega.2c00696.pdfacsomega.2c00696.pdfapplication/pdf3486610https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/828/1/acsomega.2c00696.pdf64c0a8a3e459349e73cb2fc5af04b074MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/828/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/828/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/828oai:repositorio.uniatlantico.edu.co:20.500.12834/8282022-11-15 14:37:34.632DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==