Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry
The present study aims to use the analysis of CFD in a centrifugal dredge pump, to predict by mathematical correlations the effect that changes in the main variables of the dredging process would have on the behavior and efficiency of the pump. The OpenFOAM® open source software is used for the deve...
- Autores:
-
Cardenas Gutierrez, Javier
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/811
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/811
- Palabra clave:
- Centrifugal pumps; CFD; Correlation; Dredging; Parametric
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_98a015e9cd0558a72acde3d900603e71 |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/811 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry |
title |
Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry |
spellingShingle |
Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry Centrifugal pumps; CFD; Correlation; Dredging; Parametric |
title_short |
Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry |
title_full |
Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry |
title_fullStr |
Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry |
title_full_unstemmed |
Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry |
title_sort |
Parametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging Industry |
dc.creator.fl_str_mv |
Cardenas Gutierrez, Javier |
dc.contributor.author.none.fl_str_mv |
Cardenas Gutierrez, Javier |
dc.contributor.other.none.fl_str_mv |
Valencia Ochoa, Guillermo Duarte Forero, Jorge |
dc.subject.keywords.spa.fl_str_mv |
Centrifugal pumps; CFD; Correlation; Dredging; Parametric |
topic |
Centrifugal pumps; CFD; Correlation; Dredging; Parametric |
description |
The present study aims to use the analysis of CFD in a centrifugal dredge pump, to predict by mathematical correlations the effect that changes in the main variables of the dredging process would have on the behavior and efficiency of the pump. The OpenFOAM® open source software is used for the development of the study, through which a series of operating conditions that the dredging pump experiences in its operation were reproduced. The information collected from the output variables in the pump allowed us through statistical analysis, the development of mathematical correlations that allow us to directly identify the relationships between the process variables and their influence on the pump behavior (suction pressure, discharge pressure, total dynamic head, NPSHr and efficiency). The results obtained indicate that the simulation process allows a high prediction to be obtained with respect to the actual pump conditions (error below 4%). Mathematical correlations demonstrated efficiency for the operating range of work from 83% to 64%. Additionally, the NPSHr analysis allows defining operating limits that avoid adverse effects such as cavitation. |
publishDate |
2019 |
dc.date.submitted.none.fl_str_mv |
2019-04-22 |
dc.date.issued.none.fl_str_mv |
2020-01-20 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T19:25:41Z |
dc.date.available.none.fl_str_mv |
2022-11-15T19:25:41Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/811 |
dc.identifier.doi.none.fl_str_mv |
10.25103/jestr.133.02 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/811 |
identifier_str_mv |
10.25103/jestr.133.02 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
Jestr |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/811/1/fulltext21332020.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/811/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/811/3/license.txt |
bitstream.checksum.fl_str_mv |
4a614ddea7ec49ea5bd121893529abdf 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203421962534912 |
spelling |
Cardenas Gutierrez, Javier2c3e35c2-45ea-4342-ad1b-802ca53f8f0fValencia Ochoa, GuillermoDuarte Forero, Jorge2022-11-15T19:25:41Z2022-11-15T19:25:41Z2020-01-202019-04-22https://hdl.handle.net/20.500.12834/81110.25103/jestr.133.02Universidad del AtlánticoRepositorio Universidad del AtlánticoThe present study aims to use the analysis of CFD in a centrifugal dredge pump, to predict by mathematical correlations the effect that changes in the main variables of the dredging process would have on the behavior and efficiency of the pump. The OpenFOAM® open source software is used for the development of the study, through which a series of operating conditions that the dredging pump experiences in its operation were reproduced. The information collected from the output variables in the pump allowed us through statistical analysis, the development of mathematical correlations that allow us to directly identify the relationships between the process variables and their influence on the pump behavior (suction pressure, discharge pressure, total dynamic head, NPSHr and efficiency). The results obtained indicate that the simulation process allows a high prediction to be obtained with respect to the actual pump conditions (error below 4%). Mathematical correlations demonstrated efficiency for the operating range of work from 83% to 64%. Additionally, the NPSHr analysis allows defining operating limits that avoid adverse effects such as cavitation.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2JestrParametric Analysis CFD of the Hydraulic Performance of a Centrifugal Pump with Applications to the Dredging IndustryPúblico generalCentrifugal pumps; CFD; Correlation; Dredging; Parametricinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede Norte[1] Kassanos, I., Chrysovergis, M., Anagnostopoulos, J., Charalampopoulos, G., Rokas, S., Lekanidis, S., Kontominas, I., Papantonis, D. Numerical Optimization of a Centrifugal Pump Impeller with Splitter Blades Running in Reverse Mode. International Review of Mechanical Engineering (IREME), 10 (4), 2016, 215, ISSN 1970-8742.[2] Wilson, K. C., Addie, G. R., Sellgren, A., Clift, R. Slurry Transport Using Centrifugal Pumps, Springer (2000). ISBN 9780387232621.[3] Stefanizzi, M., Torresi, M., Fornarelli, F., Fortunato, B., Camporeale, S. M. Performance prediction model of multistage centrifugal Pumps used as Turbines with Two-Phase Flow. Energy Procedia, 148, 2018, 408–415, ISSN 1876-6102.[4] Lorusso, M., Capurso, T., Torresi, M., Fortunato, B., Fornarelli, F., Camporeale, S. M., Monteriso, R. Efficient CFD evaluation of the NPSH for centrifugal pumps. Energy Procedia, 126, 2017, 778–785, ISSN 1876-6102.[5] Cucit, V., Burlon, F., Fenu, G., Furlanetto, R., Pellegrino, F. A., Simonato, M. A control system for preventing cavitation of centrifugal pumps. Energy Procedia, 148, 2018, 242–249, ISSN 1876-6102.[6] Cheng, X., Li, R. Parameter equation study for screw centrifugal pump. Procedia Engineering, 31, 2012, 914–921, ISSN 1877-7058.[7] Skrzypacz, J., Bieganowski, M. The influence of micro grooves on the parameters of the centrifugal pump impeller. International Journal of Mechanical Sciences, 144, 2018, 827–835, ISSN 0020- 7403.[8] Zhu, X., Li, G., Jiang, W., Fu, L. Experimental and numerical investigation on application of half vane diffusers for centrifugal pump. International Communications in Heat and Mass Transfer, 79, 2016, 114–127, ISSN 0735-1933.[9] Ye, Y., Zhu, X., Lai, F., Li, G. Application of the semi-analytical cavitation model to flows in a centrifugal pump. International Communications in Heat and Mass Transfer, 86, 2017, 92–100, ISSN 0735-1933.[10] Capurso, T., Bergamini, L., Torresi, M. Design and CFD performance analysis of a novel impeller for double suction centrifugal pumps. Nuclear Engineering and Design, 341, 2019, 155–166, ISSN 0029-5493.[11] Yu, R., Liu, J. Failure analysis of centrifugal pump impeller. Engineering Failure Analysis, 92, 2018, 343–349, ISSN 1350-6307.[12] Chalghoum, I., Elaoud, S., Akrout, M., Taieb, E. H. Transient behavior of a centrifugal pump during starting period. Applied Acoustics, 109, 2016, 82–89, ISSN 0003-682X.[13] Miedema, S. A. A head loss model for slurry transport in the heterogeneous regime. Ocean Engineering, 106, 2015, 360–370, ISSN 00298018.[14] Derakhshan, S., Nourbakhsh, A. Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation. Experimental Thermal and Fluid Science, 32 (8), 2008, 1620–1627, ISSN 08941777.[15] Roco, M. C., Addie, G. R., Visintainer, R. Study on casing performances in centrifugal slurry pumps. Particulate Science and Technology, 3 (1–2), 2007, 65–88, ISSN 15480046.[16] Yoo, I. S., Park, M. R., Chung, M. K. Improved momentum exchange theory for incompressible regenerative turbomachines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 219 (7), 2005, 567–581, ISSN 09576509.[17] Casari, N., Fadiga, E., Pinelli, M., Randi, S., Suman, A. Pressure Pulsation and Cavitation Phenomena in a Micro-ORC System. Energies, 12 (11), 2019, 2186, ISSN 1996-1073.[18] Ragoth Singh, R., Nataraj, M., Surendar, S., Siva, M. Investigation of a centrifugal pump impeller vane profile using CFD. International Review on Modelling and Simulations, 6 (2), 2013, 1327–1333, ISSN 25331701.[19] Al Asemi, H., S. M. A., A., Zahari, R., Aziz, F. A., Ahmad, K. A. Application of Computational Fluid Dynamics in Piping Distribution System and Special Focus on the Arabian Peninsula: a Review. International Review of Mechanical Engineering (IREME), 13 (1), 2019, 1, ISSN 2532-5655.[20] Maluta, F., Paglianti, A., Montante, G. RANS-based predictions of dense solid–liquid suspensions in turbulent stirred tanks. Chemical Engineering Research and Design, 147, 2019, 470–482, ISSN 02638762.[21] Heng, J., New, T. H., Wilson, P. A. Application of an Eulerian granular numerical model to an industrial scale pneumatic conveying pipeline. Advanced Powder Technology, 30 (2), 2019, 240–256, ISSN 09218831.[22] Tarodiya, R., Gandhi, B. K. Numerical simulation of a centrifugal slurry pump handling solid-liquid mixture: Effect of solids on flow field and performance. Advanced Powder Technology, 30 (10), 2019, 2225–2239, ISSN 09218831.[23] Quail, F. J., Scanlon, T., Baumgartner, A. Design study of a regenerative pump using one-dimensional and three-dimensional numerical techniques. European Journal of Mechanics, B/Fluids, 31 (1), 2012, 181–187, ISSN 09977546.[24] Badami, M., Mura, M. Comparison between 3D and 1D simulations of a regenerative blower for fuel cell applications. Energy Conversion and Management, 55, 2012, 93–100, ISSN 01968904.[25] Yousefi, H., Noorollahi, Y., Tahani, M., Fahimi, R., Saremian, S. Numerical simulation for obtaining optimal impeller’s blade parameters of a centrifugal pump for high-viscosity fluid pumping. Sustainable Energy Technologies and Assessments, 34, 2019, 16–26, ISSN 22131388.[26] Hofstra, C. F., Rhee, C. van, Miedema, S. A., Talmon, A. M. On The Particle Trajectories In Dredge Pump Impellers. 14th International Conference Transport & Sedimentation Of Solid Particles, Saint Petersburg, Russia, 2008.[27] Grabow, G. Two-phase flow in centrifugal pumps for hydraulic solids transport. Engineering Research, 70 (1), 2005, 1–12, ISSN 00157899.[28] Zhao, W., Zhao, G. Numerical investigation on the transient characteristics of sediment-laden two-phase flow in a centrifugal pump. Journal of Mechanical Science and Technology, 32 (1), 2018, 167–176, ISSN 1738-494X.[29] Li, Y., Zhu, Z., He, W., He, Z. Numerical simulation and experimental research on the influence of solid-phase characteristics on centrifugal pump performance. Chinese Journal of Mechanical Engineering, 25 (6), 2012, 1184–1189, ISSN 1000-9345.http://purl.org/coar/resource_type/c_6501ORIGINALfulltext21332020.pdffulltext21332020.pdfapplication/pdf1522017https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/811/1/fulltext21332020.pdf4a614ddea7ec49ea5bd121893529abdfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/811/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/811/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/811oai:repositorio.uniatlantico.edu.co:20.500.12834/8112022-11-15 14:25:42.824DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |