In ation in a scalar-vector-tensor theory

In this work, we study in ation in a particular scalar-vector-tensor theory of gravitation without the U(1) gauge symmetry. The model is constructed from the more general action introduced in Heisenberg et al. (Phys Rev D 98:024038, 2018) using certain speci c choices for the Lagrangians and the cou...

Full description

Autores:
Oliveros, A.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/971
Acceso en línea:
https://hdl.handle.net/20.500.12834/971
https://www.scopus.com/record/display.uri?eid=2-s2.0-85122995225&doi=10.1007%2fs10714-022-02901-y&origin=inward&txGid=caa31d345677f317dc1b2e665c6fa444
Palabra clave:
Inflation
scalar-vector-tensor theories
Cosmology
No-ghosts and stability conditions
Linear cosmological perturbations
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_969ebe9cd5d54a8fbb39880ab1a48a81
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/971
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv In ation in a scalar-vector-tensor theory
title In ation in a scalar-vector-tensor theory
spellingShingle In ation in a scalar-vector-tensor theory
Inflation
scalar-vector-tensor theories
Cosmology
No-ghosts and stability conditions
Linear cosmological perturbations
title_short In ation in a scalar-vector-tensor theory
title_full In ation in a scalar-vector-tensor theory
title_fullStr In ation in a scalar-vector-tensor theory
title_full_unstemmed In ation in a scalar-vector-tensor theory
title_sort In ation in a scalar-vector-tensor theory
dc.creator.fl_str_mv Oliveros, A.
dc.contributor.author.none.fl_str_mv Oliveros, A.
dc.contributor.other.none.fl_str_mv Rodríguez, Cristhian J.
dc.subject.keywords.spa.fl_str_mv Inflation
scalar-vector-tensor theories
Cosmology
No-ghosts and stability conditions
Linear cosmological perturbations
topic Inflation
scalar-vector-tensor theories
Cosmology
No-ghosts and stability conditions
Linear cosmological perturbations
description In this work, we study in ation in a particular scalar-vector-tensor theory of gravitation without the U(1) gauge symmetry. The model is constructed from the more general action introduced in Heisenberg et al. (Phys Rev D 98:024038, 2018) using certain speci c choices for the Lagrangians and the coupling functions. Also, for this model we build the explicit form for the action, and from it, we derive the general equations: the energy-momentum tensor and the equations of motion, and using the at FLRW background, we have analyzed if it's possible to obtain an in ationary regime with it. Additionally, using particular choices for the potential, the coupling functions, suitable dimensionless coupling constants and initial conditions, it was possible verify numerically that this model of in ation is viable. In this sense, we could verify that the introduction of the coupling function f( ) in our model of in ation, allows us to reach a suitable amount of e-foldings N for su cient in ation. This is a remarkable result, since without the coupling function contribution, the amount of e-foldings is smaller at the end of in ation, as has been demonstrated in Heisenberg et al. (2018). Also, the no-ghosts and stability conditions that the model during in ation must satisfy, i.e., absence of ghosts and Laplacian instabilities of linear cosmological perturbations were obtained, furthermore these conditions were veri ed numerically too.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:18:35Z
dc.date.available.none.fl_str_mv 2022-11-15T21:18:35Z
dc.date.issued.none.fl_str_mv 2022-01-17
dc.date.submitted.none.fl_str_mv 2022-01-10
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Oliveros, A., Rodríguez, C.J. Inflation in a scalar–vector–tensor theory. Gen Relativ Gravit 54, 9 (2022). https://doi.org/10.1007/s10714-022-02901-y
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/971
dc.identifier.doi.none.fl_str_mv 10.1007/s10714-022-02901-y
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
dc.identifier.url.none.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85122995225&doi=10.1007%2fs10714-022-02901-y&origin=inward&txGid=caa31d345677f317dc1b2e665c6fa444
identifier_str_mv Oliveros, A., Rodríguez, C.J. Inflation in a scalar–vector–tensor theory. Gen Relativ Gravit 54, 9 (2022). https://doi.org/10.1007/s10714-022-02901-y
10.1007/s10714-022-02901-y
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/971
https://www.scopus.com/record/display.uri?eid=2-s2.0-85122995225&doi=10.1007%2fs10714-022-02901-y&origin=inward&txGid=caa31d345677f317dc1b2e665c6fa444
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Física
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Gen Relativ Gravit
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/971/1/2201.03629.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/971/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/971/3/license.txt
bitstream.checksum.fl_str_mv 9bf0bedcff327da35ecdd95a45953104
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1828220215711760384
spelling Oliveros, A.26af6649-764e-4c81-9d05-5c4836dda956Rodríguez, Cristhian J.2022-11-15T21:18:35Z2022-11-15T21:18:35Z2022-01-172022-01-10Oliveros, A., Rodríguez, C.J. Inflation in a scalar–vector–tensor theory. Gen Relativ Gravit 54, 9 (2022). https://doi.org/10.1007/s10714-022-02901-yhttps://hdl.handle.net/20.500.12834/97110.1007/s10714-022-02901-yUniversidad del AtlánticoRepositorio Universidad del Atlánticohttps://www.scopus.com/record/display.uri?eid=2-s2.0-85122995225&doi=10.1007%2fs10714-022-02901-y&origin=inward&txGid=caa31d345677f317dc1b2e665c6fa444In this work, we study in ation in a particular scalar-vector-tensor theory of gravitation without the U(1) gauge symmetry. The model is constructed from the more general action introduced in Heisenberg et al. (Phys Rev D 98:024038, 2018) using certain speci c choices for the Lagrangians and the coupling functions. Also, for this model we build the explicit form for the action, and from it, we derive the general equations: the energy-momentum tensor and the equations of motion, and using the at FLRW background, we have analyzed if it's possible to obtain an in ationary regime with it. Additionally, using particular choices for the potential, the coupling functions, suitable dimensionless coupling constants and initial conditions, it was possible verify numerically that this model of in ation is viable. In this sense, we could verify that the introduction of the coupling function f( ) in our model of in ation, allows us to reach a suitable amount of e-foldings N for su cient in ation. This is a remarkable result, since without the coupling function contribution, the amount of e-foldings is smaller at the end of in ation, as has been demonstrated in Heisenberg et al. (2018). Also, the no-ghosts and stability conditions that the model during in ation must satisfy, i.e., absence of ghosts and Laplacian instabilities of linear cosmological perturbations were obtained, furthermore these conditions were veri ed numerically too.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gen Relativ GravitIn ation in a scalar-vector-tensor theoryPúblico generalInflationscalar-vector-tensor theoriesCosmologyNo-ghosts and stability conditionsLinear cosmological perturbationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaFísicaSede NorteA. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91, 99 (1980)A. Guth, In ationary universe: A possible solution to the horizon and atness problems, Phys. Rev. D 23, 347 (1981)A. Albrecht and P. J. Steinhardt, Cosmology for Grand Uni ed Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48, 1220 (1982)A. D. Linde, A New In ationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108, 389 (1982)W. Hu and S. Dodelson, Cosmic Microwave Background Anisotropies, Ann. Rev. Astron. Astrophys. 40, 171 (2002)A. Maleknejad, M. M Sheikh-Jabbari and J. Soda, Gauge Fields and In ation, Phys. Rept. 528, 161 (2013)D. Wands, O. F. Piattella and L. Casarini, Physics of the Cosmic Microwave Background Radiation, Astrophys. Space Sci. Proc. 45, 3 (2016)V. F. Mukhanov and G. V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33, 532 (1981)A. A. Starobinsky, Dynamics of Phase Transition in the New In ationary Universe Scenario and Generation of Perturbations, Phys. Lett. B 117, 175 (1982)S. W. Hawking, The Development of Irregularities in a Single Bubble In ationary Universe, Phys. Lett. B 115, 295 (1982)A. H. Guth and S. Y. Pi, Fluctuations in the New In ationary Universe, Phys. Rev. Lett. 49, 1110 (1982)A. A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30, 682 (1979)D. H. Lyth and A. Riotto, Particle physics models of in ation and the cosmological density perturbation, Phys. Rept. 314, 1 (1999)J. E. Lidsey, A. R. Liddle, E. W. Kolb, E. J. Copeland, T. Barreiro and M. Abney, Reconstructing the in ation potential : An overview, Rev. Mod. Phys. 69, 373 (1997)A. Linde, Particle Physics and In ationary Cosmology. Harwood-Chur, Switzerland (1990)A. R. Liddle and D. H. Lyth, Cosmological in ation and large-scale structure. Cambridge University Press, Cambridge, (2000)S. Nojiri and S. D. Odintsov, Uni ed cosmic history in modi ed gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505, 59 (2011)T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, Modi ed Gravity and Cosmology, Phys. Rept. 513, 1 (2012)S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Modi ed Gravity Theories on a Nutshell: In ation, Bounce and Late-time Evolution, Phys. Rept. 692, 1 (2017)L. Heisenberg, A systematic approach to generalisations of General Relativity and their cosmological implications, Phys. Rept. 796, 1 (2019)L. Heisenberg, Scalar-Vector-Tensor Gravity Theories, JCAP 10, 054 (2018)L. Heisenberg and S. Tsujikawa, Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories, Phys. Lett. B 780, 638 (2018)L. Heisenberg, R. Kase and S. Tsujikawa, Cosmology in scalar-vector-tensor theories, Phys. Rev. D 98, 024038 (2018)R. Kase and S. Tsujikawa, Dark energy in scalar-vector-tensor theories, JCAP 11, 024 (2018)L. Heisenberg, R. Kase and S. Tsujikawa, Gauge-ready formulation of cosmological perturbations in scalar-vector-tensor theories, Phys. Rev. D 98, 123504 (2018)T. Ikeda, T. Nakamura and M. Minamitsuji, Spontaneous scalarization of charged black holes in the Scalar-Vector-Tensor theory, Phys. Rev. D 100, 104014 (2019)B. A. Bassett, S. Tsujikawa and D. Wands, In ation dynamics and reheating, Rev. Mod. Phys 78, 537 (2006)R. Kallosh, A. Linde and D. Roest, Superconformal in ationary -attractors, J. High Energy Phys. 11, 198 (2013)L. N. Granda, D. F. Jimenez and W. Cardona, Higgs in ation with non-minimal derivative coupling to gravity, Astropart. Phys. 121, 102459 (2020)S. D. Odintsov, V. K. Oikonomou and F. P. Fronimos, Late-time cosmology of scalar-coupled f(R; G) gravity, Class. Quant. Grav. 38, 075009 (7) (2021)F. P. Fronimos, Kinetic coupling corrected Einstein-Gauss-Bonnet gravity late-time phenomenology, Eur. Phys. J. Plus 136, 1014 (10) (2021)http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL2201.03629.pdf2201.03629.pdfapplication/pdf750537https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/971/1/2201.03629.pdf9bf0bedcff327da35ecdd95a45953104MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/971/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/971/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/971oai:repositorio.uniatlantico.edu.co:20.500.12834/9712022-11-15 16:18:36.157DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==