Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column

A test-rig closed-loop flotation column was used to observe the effect of diesel oil (collector) and Flomin F-425 (frother) on mass yield and ash content for two Colombian coals: Caypa (northern zone) and Guachinte (southwestern zone). The coal samples of less than 38 μm (-400 M) were processed in a...

Full description

Autores:
Piñeres Mendoza, J.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/872
Acceso en línea:
https://hdl.handle.net/20.500.12834/872
https://www.scopus.com/record/display.uri?eid=2-s2.0-85112300338&doi=10.15446%2fing.investig.v42n1.88273&origin=inward&txGid=dc9fda69b2a67d890f1369b1bd2e566c
Palabra clave:
flotation column
Colombian coals
closed loop
experimental design
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_8ebfcff6926fa131987b7763db932432
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/872
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column
dc.title.alternative.spa.fl_str_mv Efecto del diésel oil y la mezcla de alcohol-glicol-éter en la limpieza de carbón ultrafino colombiano utilizando una columna de flotación de prueba en bucle cerrado
title Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column
spellingShingle Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column
flotation column
Colombian coals
closed loop
experimental design
title_short Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column
title_full Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column
title_fullStr Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column
title_full_unstemmed Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column
title_sort Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column
dc.creator.fl_str_mv Piñeres Mendoza, J.
dc.contributor.author.none.fl_str_mv Piñeres Mendoza, J.
dc.contributor.other.none.fl_str_mv Barraza Burgos, J.
Bellich Fernandez, S.
dc.subject.keywords.spa.fl_str_mv flotation column
Colombian coals
closed loop
experimental design
topic flotation column
Colombian coals
closed loop
experimental design
description A test-rig closed-loop flotation column was used to observe the effect of diesel oil (collector) and Flomin F-425 (frother) on mass yield and ash content for two Colombian coals: Caypa (northern zone) and Guachinte (southwestern zone). The coal samples of less than 38 μm (-400 M) were processed in a collector concentration range of 0,32 to 1,60 kg/ton of coal, as well as a frother concentration range of 10 to 50 ppm. The response surface methodology was used for the experimental test runs. The results showed that the maximum mass yield obtained by Caypa coal was 98,39% at 1,28 kg of collector/ton of coal and 40 ppm of frother concentration, whereas Guachinte coal obtained a maximum mass yield of 94,71% at 0,96 kg of collector/ton of coal and 30 ppm of frother concentration. In general, for Caypa coal, the mass yield tends to increase (low ash removal) with the collector and frother concentration increase; while the mass yield tends to decrease (high ash removal) for Guachinte coal when the collector concentration increases (low ash removal) at high frother concentrations. It is worth highlighting that the ash content of 0,65% obtained for Caypa coal is the lowest value reported in the literature while employing a test-rig loop flotation column in a single stage, which is considered to be an ultra-clean coal obtained by a physical cleaning process.
publishDate 2020
dc.date.submitted.none.fl_str_mv 2020-06-13
dc.date.issued.none.fl_str_mv 2021-07-19
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:45:51Z
dc.date.available.none.fl_str_mv 2022-11-15T20:45:51Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Piñeres, J., Barraza, J., and Bellich, S. (2022). Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column. Ingeniería e Investigación, 42(1), e88273. 10.15446/ing.investig.v42n1.88273
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/872
dc.identifier.doi.none.fl_str_mv 10.15446/ing.investig.v42n1.88273
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
dc.identifier.url.none.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85112300338&doi=10.15446%2fing.investig.v42n1.88273&origin=inward&txGid=dc9fda69b2a67d890f1369b1bd2e566c
identifier_str_mv Piñeres, J., Barraza, J., and Bellich, S. (2022). Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column. Ingeniería e Investigación, 42(1), e88273. 10.15446/ing.investig.v42n1.88273
10.15446/ing.investig.v42n1.88273
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/872
https://www.scopus.com/record/display.uri?eid=2-s2.0-85112300338&doi=10.15446%2fing.investig.v42n1.88273&origin=inward&txGid=dc9fda69b2a67d890f1369b1bd2e566c
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Ingeniería e Investigación
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/872/1/Dialnet-EffectOfDieselOilAndMixtureOfAlcoholGlycolEtherOnC-8231539.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/872/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/872/3/license.txt
bitstream.checksum.fl_str_mv 0f0de31b4c4c5fdc475172b5e14f967a
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1812132180742111232
spelling Piñeres Mendoza, J.63f642e3-ec66-4c63-970c-3f5c29610eecBarraza Burgos, J.Bellich Fernandez, S.2022-11-15T20:45:51Z2022-11-15T20:45:51Z2021-07-192020-06-13Piñeres, J., Barraza, J., and Bellich, S. (2022). Effect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation Column. Ingeniería e Investigación, 42(1), e88273. 10.15446/ing.investig.v42n1.88273https://hdl.handle.net/20.500.12834/87210.15446/ing.investig.v42n1.88273Universidad del AtlánticoRepositorio Universidad del Atlánticohttps://www.scopus.com/record/display.uri?eid=2-s2.0-85112300338&doi=10.15446%2fing.investig.v42n1.88273&origin=inward&txGid=dc9fda69b2a67d890f1369b1bd2e566cA test-rig closed-loop flotation column was used to observe the effect of diesel oil (collector) and Flomin F-425 (frother) on mass yield and ash content for two Colombian coals: Caypa (northern zone) and Guachinte (southwestern zone). The coal samples of less than 38 μm (-400 M) were processed in a collector concentration range of 0,32 to 1,60 kg/ton of coal, as well as a frother concentration range of 10 to 50 ppm. The response surface methodology was used for the experimental test runs. The results showed that the maximum mass yield obtained by Caypa coal was 98,39% at 1,28 kg of collector/ton of coal and 40 ppm of frother concentration, whereas Guachinte coal obtained a maximum mass yield of 94,71% at 0,96 kg of collector/ton of coal and 30 ppm of frother concentration. In general, for Caypa coal, the mass yield tends to increase (low ash removal) with the collector and frother concentration increase; while the mass yield tends to decrease (high ash removal) for Guachinte coal when the collector concentration increases (low ash removal) at high frother concentrations. It is worth highlighting that the ash content of 0,65% obtained for Caypa coal is the lowest value reported in the literature while employing a test-rig loop flotation column in a single stage, which is considered to be an ultra-clean coal obtained by a physical cleaning process.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ingeniería e InvestigaciónEffect of Diesel Oil and Mixture of Alcohol-Glycol Ether on Colombian Ultrafine Coal Cleaning Using a Test-Rig Closed-Loop Flotation ColumnEfecto del diésel oil y la mezcla de alcohol-glicol-éter en la limpieza de carbón ultrafino colombiano utilizando una columna de flotación de prueba en bucle cerradoPúblico generalflotation columnColombian coalsclosed loopexperimental designinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede NorteArnold, B. and Aplan, F. (1986a). The effects of clays slimes on coal flotation, part 1: the nature of the clay. International Journal of Mineral Processing, 17(3-4), 225-242. 10.1016/0301-7516(86)90058-XArnold, B. and Aplan, F. (1986b). The effects of clays slimes on coal flotation, part 2: The role of water quality. International Journal of Mineral Processing, 17(3-4), 243-260. 10.1016/0301-7516(86)90059-1Bellich, S. (2016). Diseño y montaje de una columna de flotación a escala de laboratorio para la remoción de la materia mineral presente en carbones térmicos [Undergraduate thesis, Universidad del Atlántico, Barranquilla, Colombia]. http://biblioteca.uniatlantico.edu.co/cgi-bin/koha/opac -detail.pl?biblionumber=78734Brady, G., Gauger, A. (1940). Properties of coal surface. Industrial and Engineering Chemistry, 32(12), 1599-1604. 10.1021/ie50372a019Cooke, N., Maynard, F., and Gaikwad, R. (1986). FT-i.r spectroscopic analysis of coals and coals extracts. Fuel, 65(9), 1254-1260. 10.1016/0016-2361(86)90238-3Dobby, G. and Finch, J. (1986). Flotation column scale-up and modelling. CIM Bulletin, 79(891), 89-96. https://store.ci m.org/en/flotation-column-scale-up-and-modellingFinch, J., Nesset, J., Acuña, C. (2008). Role of frother on bubble production and behaviour in flotation. Minerals Engineering, 21(12-14), 949-957. 10.1016/j.mineng.2008.04.006Fuerstenau, D. W. (1982). Adsorption of frother at coal/water interfaces. Colloid and Surface, 4(3), 213–227. 10.1016/0166-6622(82)80019-XFuerstenau, D. W., Rosenbaum, J., and Laskowski, J. (1983). Effect of surface functional groups on the flotation of coal. Colloid and Surface, 8(2), 153-173. 10.1016/0166- 6622(83)80082-1Gupta, A., Banerjee, P., and Mishra, A. (2009). Influence of chemical parameters on selectivity and recovery of fine coal through flotation. International Journal of Mineral Processing, 92(1-2), 1-6. 10.1016/j.minpro.2009.02.001Gutiérrez, J., Purcell, J., and Aplan F. (1984). Estimating the hydrophobicity of coal. Colloids and Surface, 12, 1-25. 10.1016/0166-6622(84)80086-4Hangil, P., Junyu, W., and Liguang, W. (2016). A comparative study of methyl cyclohexanemethanol and methyl isobutyl carbinol as frother for coal flotation. International Journal of Mineral Processing, 155, 32-44. 10.1016/j.minpro.2016.08.006Hicks, D. (1982). Fundamental concepts in the design of experiments. Saunders Collage Publishing.Honaker, R., Monhanty, M., and Crelling J. (1996). Coal maceral separation using column flotation. Minerals EngiJia, R., Harris, G., and Fuerstenau, D. W. (2002). Chemical reagents for enhanced coal flotation. International Journal of Coal Preparation and Utilization, 22(3), 123-149. 10.1080/07349340213847Leonard, J. and Hardinge, B. (1991). Coal Preparation. Society for Mining, Metallurgy and Exploration, Inc.Montgomery, D. (2013). Design and Analysis of Experiments. John Wiley & Sons.Peng, Y., Liang, L., Tan, J., Sha, J., and Xie, G. (2015). Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. International Journal Mineral Processing, 142, 17-21. 10.1016/j.minpro.2014.12.005Piñeres, J. and Barraza, J. (2011). Energy barrier of aggregates coal particle–bubble through the extended DLVO theory. International Journal of Mineral Processing, 100(1-2), 14- 20. 10.1016/j.minpro.2011.04.007Piñeres, J. and Barraza, J. (2012). Effect of pH, air velocity and frother concentration on combustible recovery, ash and sulphur rejection using column flotation. Fuel Processing Technology, 97, 30-37. 10.1016/j.fuproc.2012.01.004Piñeres, J., Mendoza, M., Téllez, M., and Jiménez, F. (2019). Level control loop design for a test-rig flotation column. Journal of Physics: Conference Series, 1219, 012014. 10.1088/1742-6596/1219/1/012014Polat, M., Polat, H., and Chander, S. (2003). Physical and chemical interactions in coal flotation. International Journal of Mineral Processing, 72(1-4), 199-213. 10.1016/S0301- 7516(03)00099-1Sobkowiak, M., Reisser, E., Given, P., and Painter, P. (1984). Determination of aromatic and aliphatic CH groups in coal by FT-i.r. 1. Studies of coal extracts. Fuel, 63(9), 1245-1252. 10.1016/0016-2361(84)90433-2Solomon, P. and Carangelo, R. (1988). FT-i.r analysis of coal 2. Aliphatic and aromatic hydrogen concentration. Fuel, 67(7), 949-959. 10.1016/0016-2361(8)90095-6Shu, X., Wang, Z., and Xu, J. (2002). Separation and preparation of macerals in Shenfu coals by flotation. Fuel, 81(4), 495-501. 10.1016/S0016-2361(01)00106-5Wieslaw, S. (1994). New trends in coal preparation technologies and equipment. Gordon and Breach Publishers.Yoon, R. (1993). Microbubble flotation. Minerals Engineering, 6(6), 619-630. 10.1016/0892-6875(93)90116-5http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALDialnet-EffectOfDieselOilAndMixtureOfAlcoholGlycolEtherOnC-8231539.pdfDialnet-EffectOfDieselOilAndMixtureOfAlcoholGlycolEtherOnC-8231539.pdfapplication/pdf647402https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/872/1/Dialnet-EffectOfDieselOilAndMixtureOfAlcoholGlycolEtherOnC-8231539.pdf0f0de31b4c4c5fdc475172b5e14f967aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/872/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/872/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/872oai:repositorio.uniatlantico.edu.co:20.500.12834/8722022-11-15 15:45:52.111DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==