Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality

Cape gooseberry (Physalis peruviana L.) is one of the main exotic fruits in demand throughout the world market. However, this fruit has problems with physical and microbial decay causing losses up to thirty percent during post-harvest stage and market storage. As an alternative for conservation, tec...

Full description

Autores:
González-Locarno, María
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/967
Acceso en línea:
https://hdl.handle.net/20.500.12834/967
Palabra clave:
antioxidant; antibacterial; chitosan edible coatings; Physalis peruviana; Ruta graveolens essential oil
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_8e8cf0b6258d8ac98f5018375908fd78
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/967
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality
title Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality
spellingShingle Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality
antioxidant; antibacterial; chitosan edible coatings; Physalis peruviana; Ruta graveolens essential oil
title_short Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality
title_full Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality
title_fullStr Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality
title_full_unstemmed Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality
title_sort Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality
dc.creator.fl_str_mv González-Locarno, María
dc.contributor.author.none.fl_str_mv González-Locarno, María
dc.contributor.other.none.fl_str_mv Maza Pautt, Yarley
Albis, Alberto
Florez López, Edwin
Grande Tovar, Carlos David
dc.subject.keywords.spa.fl_str_mv antioxidant; antibacterial; chitosan edible coatings; Physalis peruviana; Ruta graveolens essential oil
topic antioxidant; antibacterial; chitosan edible coatings; Physalis peruviana; Ruta graveolens essential oil
description Cape gooseberry (Physalis peruviana L.) is one of the main exotic fruits in demand throughout the world market. However, this fruit has problems with physical and microbial decay causing losses up to thirty percent during post-harvest stage and market storage. As an alternative for conservation, technologies based on edible coatings of biopolymers incorporating essential oils have been developed. In this paper we studied the e ect of edible coatings based on chitosan (CS) and Ruta graveolens L. essential oil (RGEO) at di erent concentrations applied on the surface gooseberries at 18 2 C. The emulsions exhibited a reduction in the viscosity and the particle size with the increasing in the RGEO amount (from 124.7 cP to 26.0 cP for CS + RGEO 0.5% and CS + RGEO 1.5%, respectively). A lower weight loss was obtained for fruits coated with CS + RGEO 0.5% (12.7%) as compared to the uncoated (15%), while the maturity index increased in a lower amount for CS + RGEO coated than the uncoated fruits. The mesophyll growth was delayed three days after the coating applications for CS + RGEO 1.0% and 1.5%. At day twelve of the coating process, fruits with CS + RGEO 1.5% presented only 3.1 Log UFC/g of aerobic mesophylls and 2.9 Log UFC/g of molds and yeasts, while the uncoated fruits presented 4.2 Log UFC/g of aerobic mesophylls and 4.0 Log UFC/g of molds and yeasts, demonstrating a microbial barrier of the coatings incorporating RGEO in a concentration dependent manner. The CS + RGEO coating also preserve the antioxidant property of case gooseberries after twelve days of treatment under storage according to the 2,20-Diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid) (ABTS) results. It was demonstrated by the ABTS method that T5 antioxidant capacity from day one to day twelve only decreases from 55% to 44%, while in the uncoated fruits (T1) the antioxidant capacity decreased from 65% to 18%. On the other hand, using the DPPH method the reduction was from 73% to 24% for the uncoated samples and 55% to 43% for T5. From the sensorial analysis, we recommend the use of CS + RGEO 0.5% that was still accepted by the panelists after the sixth day of application. These results show the potential application of these coatings as postharvest treatment under storage and low temperature conditions during twelve days of treatment for cape gooseberry fruits.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-04-13
dc.date.submitted.none.fl_str_mv 2020-03-17
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:17:20Z
dc.date.available.none.fl_str_mv 2022-11-15T21:17:20Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/967
dc.identifier.doi.none.fl_str_mv 10.3390/app10082684
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/967
identifier_str_mv 10.3390/app10082684
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv MDPI AG
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/967/1/app10082684.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/967/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/967/3/license.txt
bitstream.checksum.fl_str_mv 6972604404eda2aae544ab0e9ad20d26
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203411007012864
spelling González-Locarno, Maríac4b54fec-1f17-4111-ba79-49a68c3d0a9eMaza Pautt, YarleyAlbis, AlbertoFlorez López, EdwinGrande Tovar, Carlos David2022-11-15T21:17:20Z2022-11-15T21:17:20Z2020-04-132020-03-17https://hdl.handle.net/20.500.12834/96710.3390/app10082684Universidad del AtlánticoRepositorio Universidad del AtlánticoCape gooseberry (Physalis peruviana L.) is one of the main exotic fruits in demand throughout the world market. However, this fruit has problems with physical and microbial decay causing losses up to thirty percent during post-harvest stage and market storage. As an alternative for conservation, technologies based on edible coatings of biopolymers incorporating essential oils have been developed. In this paper we studied the e ect of edible coatings based on chitosan (CS) and Ruta graveolens L. essential oil (RGEO) at di erent concentrations applied on the surface gooseberries at 18 2 C. The emulsions exhibited a reduction in the viscosity and the particle size with the increasing in the RGEO amount (from 124.7 cP to 26.0 cP for CS + RGEO 0.5% and CS + RGEO 1.5%, respectively). A lower weight loss was obtained for fruits coated with CS + RGEO 0.5% (12.7%) as compared to the uncoated (15%), while the maturity index increased in a lower amount for CS + RGEO coated than the uncoated fruits. The mesophyll growth was delayed three days after the coating applications for CS + RGEO 1.0% and 1.5%. At day twelve of the coating process, fruits with CS + RGEO 1.5% presented only 3.1 Log UFC/g of aerobic mesophylls and 2.9 Log UFC/g of molds and yeasts, while the uncoated fruits presented 4.2 Log UFC/g of aerobic mesophylls and 4.0 Log UFC/g of molds and yeasts, demonstrating a microbial barrier of the coatings incorporating RGEO in a concentration dependent manner. The CS + RGEO coating also preserve the antioxidant property of case gooseberries after twelve days of treatment under storage according to the 2,20-Diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid) (ABTS) results. It was demonstrated by the ABTS method that T5 antioxidant capacity from day one to day twelve only decreases from 55% to 44%, while in the uncoated fruits (T1) the antioxidant capacity decreased from 65% to 18%. On the other hand, using the DPPH method the reduction was from 73% to 24% for the uncoated samples and 55% to 43% for T5. From the sensorial analysis, we recommend the use of CS + RGEO 0.5% that was still accepted by the panelists after the sixth day of application. These results show the potential application of these coatings as postharvest treatment under storage and low temperature conditions during twelve days of treatment for cape gooseberry fruits.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MDPI AGAssessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) QualityPúblico generalantioxidant; antibacterial; chitosan edible coatings; Physalis peruviana; Ruta graveolens essential oilinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede Norte1. Strik, B.C. Berry Crops: Worldwide Area and Production Systems. In Berry Fruit Value Added Products for Health Promotion, 1st ed.; Zhao, Y., Ed.; CRC: Boca Raton, FL, USA, 2007; Volume 1, pp. 3–49.2. Fischer, G.; Herrera, A.; Almanza, P.J. Cape gooseberry (Physalis peruviana L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Elsevier: Amsterdam, The Netherlands, 2011; pp. 374–397.3. Ramadan, M.F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 2011, 44, 1830–1836.4. Mayorga, H.; Knapp, H.; Winterhalter, P.; Duque, C. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.). J. Agric. Food Chem. 2001, 49, 1904–1908.5. McCain, R. Goldenberry, passionfruit and white sapote: Potential fruits for cool subtropical areas. New Crop. 1993, 479–486.6. Carvalho, C.P.; Villaño, D.; Moreno, D.A.; Serrano, M.; Valero, D. Alginate Edible Coating And Cold Storage For Improving The Physicochemical Quality Of Cape Gooseberry (Physalis Peruviana L.). HSOA J. Food Sci. Nutr. 2015, 1, 1–7.7. Flóres, R.; Víctor, J.; Fischer, G.; Sora, R.; Ángel, D. Producción, Poscosecha y Exportación de la Uchuva (Physalis peruviana L.); Universidad Nacional de Colombia: Bogotá, Colombia, 2000; pp. 9–22.8. Villamizar, F.; Ramírez, A.; Meneses, M. Estudio de la caracterización física, morfológica y fisiológica poscosecha de la uchuva (Physalis peruviana L.). Agro Desarro. 1993, 4, 305–320.9. Trinchero, G.D.; Sozzi, G.O.; Cerri, A.M.; Vilella, F.; Fraschina, A.A. Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biol. Technol. 1999, 16, 139–145.10. Rao, V.G. A new post-harvest disease of cape-gooseberry. J. Univ. Bombay 1976, 45, 58–61.11. Sharma, N.; Khan, A.M. Fruit rots of cape gooseberry. Indian Phytopathol. 1978, 31, 513–514.12. Ahmad, M.S.; Siddiqui, M.W. Commercial Quality of Fruits: Part I. In Postharvest Quality Assurance of Fruits; Springer: Berlin, Germany, 2015; pp. 61–89.13. Palou, L.; Smilanick, J.L.; Crisosto, C.H. Evaluation of food additives as alternative or complementary chemicals To conventional fungicides for the control of major postharvest diseases of stone fruit. J. Food Prot. 2009, 72, 1037–1046.14. Grande-Tovar, C.D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential oils: E ects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018, 78, 61–71.15. Guilbert, S.; Gontard, N.; Gorris, L.G.M. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT Food Sci. Technol. 1996, 29, 10–1716. Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of di erent edible coatings: A review. LWT 2018, 89, 198–209.17. Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166.18. Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841.19. Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends Food Sci. Technol. 2009, 20, 438–447.20. Licodiedo , S.; Koslowski, L.A.D.; Scartazzini, L.; Monteiro, A.R.; Ninow, J.L.; Borges, C.D. Conservation of physalis by edible coating of gelatin and calcium chloride. Int. Food Res. J. 2016, 23.21. Reddy, D.N.; Al-Rajab, A.J. Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oils. Cogent Chem. 2016, 2, 1220055.22. Kunicka-Styczy ´ nska, A.; Gibka, J. Antimicrobial Activity of Undecan-x-ones (x = 2–4). Pol. Tow. Mikrobiol. POLISH Soc. Microbiol. 2010, 59, 301–306.23. Grande Tovar,C.D.;Delgado-Ospina, J.;Navia Porras,D.P.; Peralta-Ruiz,Y.; Cordero,A.P.; Castro, J.I.; Valencia,C.; Noé, M.; Mina, J.H.; Chaves López, C. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect onMicrobiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules 2019, 9, 399.24. Instituto Colombiano de Normas Técnicas y Certificación. Frutas Frescas. Uchuva. Especificaciones; NTC 4580; ICONTEC: Bogotá, Colombia, 1999; Volume 14.25. Martínez, K.; Ortiz, M.; Albis, A.; Gilma Gutiérrez Castañeda, C.; Valencia, E.M.; Grande Tovar, D.C. The E ect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules 2018, 8, 155.26. International Standards Organization. Piston-Operated Volumetric Apparatus—Part-2: Piston Pipettes; ISO: Geneva, Switzerland, 2002; Volume 11.27. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological e ects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475.28. Lanchero, O.; Velandia, G.; Fischer, G.; Varela, N.C.; García, H. Comportamiento de la uchuva (Physalis peruviana L.) en poscosecha bajo condiciones de atmósfera modificada activa. Rev. Corpoica-Ciencia y Tecnol. Agropecu. 2007, 8, 61–68.29. Ávila, J.A.; Moreno, P.; Fischer, G.; Miranda, D. Influencia de la madurez del fruto y del secado del cáliz en uchuva (Physalis peruviana L.), almacenada a 18 C. Acta Agronómica 2006, 55, 29–38.30. Velez, C.; Alicia, B. Efecto de la radiación UV-C Sobre el Desarrollo de Rhizopus spp. y Phytophthora spp. en la Naranjilla (Solanum quitoense). Bachelor’s Thesis, Universidad Tecnológica Equinoccial, Quito, Ecuador, 2012.31. Balaguera-López, H.E.; Martínez, C.A.; Herrera-Arévalo, A. Papel del cáliz en el comportamiento poscosecha de frutos de uchuva (Physalis peruviana L.) ecotipo Colombia. Rev. Colomb. Ciencias Hortícolas 2014, 8, 181–191.32. Instituto Colombiano de Normas Técnicas y Certificación. Microbiología. Guía General para el Recuento de Mohos y Levaduras. In Técnica de Recuento de Colonias a 25 C; NTC 4132; ICONTEC: Bogotá, Colombia, 1997; Volume 7.33. Instituto Colombiano de Normas Técnicas y Certificación. Microbiología de Alimentos y Productos para Alimentación Animal. In Requisitos Generales y Directrices para Análisis Microbiológicos; NTC 4092; ICONTEC: Bogotá, Colombia, 2016; Volume 95.34. International Standard Organization. Microbiology of the Food Chain-Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.-Part 2: Enumeration; ISO: Geneva, Switzerland, 2013; Volume 12.35. Instituto Colombiano de Normas Técnicas y Certificación. Análisis Sensorial. In Identificación y Selección de Descriptores para Establecer un Perfil Sensorial por una Aproximación Multidimensional; NTC 3932; ICONTEC: Bogotá, Colombia, 1996; Volume 31.36. Azeredo, H.; de Britto, D.; Assis, O. Chitosan Edible Films and Coatings: A review. In Chitosan: Manufacture, Properties, and Usage; Davis, S.P., Ed.; Nova Science Publishers: Hauppage. NY, USA, 2010; pp. 179–194.37. Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. E ect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–6338. Liu, N.; Chen, X.-G.; Park, H.-J.; Liu, C.-G.; Liu, C.-S.; Meng, X.-H.; Yu, L.-J. E ect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 2006, 64, 60–65.39. Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182.40. Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT Food Sci. Technol. 2010, 43, 837–842.41. Kim, K.W.; Thomas, R.L.; Lee, C.; Park, H.J. Antimicrobial activity of native chitosan, degraded chitosan, and O-carboxymethylated chitosan. J. Food Prot. 2003, 66, 1495–1498.42. Tsai, G.; Su, W.; Chen, H.; Pan, C. Antimicrobial activity of shrimp chitin and chitosan from di erent treatments and applications of fish preservation. Fish. Sci. 2002, 68, 170–177.43. Liu, H.; Du, Y.;Wang, X.; Sun, L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 2004, 95, 147–155.44. Je, J.-Y.; Kim, S.-K.; Byun, H.-G.; Moon, S.-H. Antimicrobial Activity of Hetero-Chitosans and Their Oligosaccharides withDi erent Molecular Weights. J. Microbiol. Biotechnol. 2004, 14, 317–323.45. Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006, 63, 367–374.46. Navarro-Tarazaga, M.L. Efecto de la Composición de Recubrimientos Comestibles a Base de Hidroxipropilmetilcelulosa y Cera de Abeja en la Calidad de Ciruelas, Naranjas y Mandarinas. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2008.47. Hernandez, E. Edible coating from lipids and resins. In Edible Coatings and Films to Improve Food Quality; Technomic Publishing: Lancaster, PA, USA; Basel, Switzerland, 1994; pp. 279–303.48. Bonilla Lagos, M.J.; Atarés Huerta, L.M.; Vargas, M.; Chiralt, A. Physicochemical properties of chitosan-essential oils film-forming dispersions. E ect of homogenization treatments. Procedia Food Sci. 2011, 1, 44–49.49. Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Characterization of chitosan–oleic acid composite films. Food Hydrocoll. 2009, 23, 536–547.50. Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. E ect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 2012, 26, 9–16.51. Dhall, R.K. Advances in edible coatings for fresh fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450.52. Álvarez-Herrera, J.G.; Galvis, J.A.; Balaguera-López, H.E. Determinación de cambios físicos y químicos durante la maduración de frutos de champa (Campomanesia lineatifolia R. & P.). Agron. Colomb. 2009, 27, 253–259.53. Mahfoudhi, N.; Hamdi, S. Use of AlmondGumandGumArabic as Novel Edible Coating to Delay Postharvest Ripening and to Maintain Sweet Cherry (P runus avium) Quality during Storage. J. Food Process. Preserv. 2015, 39, 1499–1508.54. Galvis, J.A.; Fischer, G.; Gordillo, O.P. Cosecha y poscosecha de la uchuva. In Avances en Cultivo, Poscosecha y Exportación de la Uchuva; Universidad Nacional de Colombia: Bogotá, Colombia, 2005; pp. 165–190.55. Hazrati, S.; Kashkooli, A.B.; Habibzadeh, F.; Tahmasebi-Sarvestani, Z.; Sadeghi, A.R. Evaluation of Aloe vera gel as an alternative edible coating for peach fruits during cold storage period. Gesunde Pflanz. 2017, 69, 131–137.56. Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. E ect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41.57. Sinning, A.; Bermont, D. Efecto de Recubrimientos Basados en Quitosano y Aceite Esencial de Ruda (Ruta graveolens L.) en el Control de Antracnosis Causada por Colletotrichum Gloeosporioides en Papaya maradol (Carica papaya L.). Bachelor’s Thesis, Universidad del Atlántico, Puerto Colombia, Colombia, 2019.58. Olivas, G.I.; Barbosa-Cánovas, G.V. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. Nutr. 2005, 45, 657–670.59. Álvarez Quintero, R.M. Formulación de un Recubrimiento Comestible para Frutas Cítricas, Estudio de su Impacto Mediante Aproximación Metabolómica y Evaluación de la Calidad Poscosecha. Ph.D. Thesis, Universidad de Antioquia, Medellin, Colombia, 2012.60. Kariola, T.; Brader, G.; Li, J.; Palva, E.T. Chlorophyllase 1, a Damage Control Enzyme, A ects the Balance between Defense Pathways in Plants. Plant Cell 2005, 17, 282–29461. Andrade, S.C.A.; Baretto, T.A.; Arcanjo, N.M.O.; Madruga, M.S.; Meireles, B.; Cordeiro, Â.M.T.; Barbosa de Lima, M.A.; de Souza, E.L.; Magnani, M. Control of Rhizopus soft rot and quality responses in plums (Prunus domestica L.) coated with gum arabic, oregano and rosemary essential oils. J. Food Process. Preserv. 2017, 41, e13251.62. Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci. Hortic. (Amst.) 2020, 262, 109074.63. Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packag. Shelf Life 2018, 16, 157–167.64. Allen, M.J.; Edberg, S.C.; Reasoner, D.J. Heterotrophic plate count bacteria—What is their significance in drinking water? Int. J. Food Microbiol. 2004, 92, 265–274.65. de La-Rotta, M.F. Enfermedades de la uchuva (Physalis peruviana L.); Centro de Edafología y Biología Aplicada del Segura: Murcia, España, 2014; p. 49.66. Kim, I.; Lee, H.; Kim, J.E.; Song, K.B.; Lee, Y.S.; Chung, D.S.; Min, S.C. Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion. J. Food Sci. 2013, 78, E1551–E1559.67. Dawidowicz, A.L.; Wianowska, D.; Olszowy, M. On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). Food Chem. 2012, 131, 1037–1043.68. Moharram, H.A.; Youssef, M.M. Methods for determining the antioxidant activity: A review. Alex. J. Fd. Sci. Technol. 2014, 11, 31–42.69. Ruiz Andrade, E.D. Comparación deMétodos de Análisis para la Determinación de Capacidad Antioxidante en Uvilla (Physalis peruviana). Bachelor’s Thesis, Universidad Tecnológica Equinoccial, Quito, Ecuador, 2018.http://purl.org/coar/resource_type/c_6501ORIGINALapp10082684.pdfapp10082684.pdfapplication/pdf1406180https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/967/1/app10082684.pdf6972604404eda2aae544ab0e9ad20d26MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/967/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/967/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/967oai:repositorio.uniatlantico.edu.co:20.500.12834/9672022-11-15 16:17:21.362DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==