Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas

La actividad antioxidante es la propiedad de una sustancia para inhibir la degradación oxidativa y actúa principalmente a través de su capacidad para reaccionar con los radicales libres y oxígeno singulete. El desequilibrio que se presenta en el organismo entre la producción de especies reactivas de...

Full description

Autores:
Díaz Uribe, Carlos Enrique
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
spa
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/921
Acceso en línea:
https://hdl.handle.net/20.500.12834/921
Palabra clave:
Flavonoides
degradación oxidativa
moléculas antioxidantes
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_8d3975e08948f61f9d3ca14a85f027ae
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/921
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas
title Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas
spellingShingle Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas
Flavonoides
degradación oxidativa
moléculas antioxidantes
title_short Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas
title_full Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas
title_fullStr Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas
title_full_unstemmed Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas
title_sort Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas
dc.creator.fl_str_mv Díaz Uribe, Carlos Enrique
dc.contributor.author.none.fl_str_mv Díaz Uribe, Carlos Enrique
dc.contributor.other.none.fl_str_mv Trilleras Vásquez, Jorge Enrique
Vallejo Lozada, William Andrés
dc.subject.keywords.spa.fl_str_mv Flavonoides
degradación oxidativa
moléculas antioxidantes
topic Flavonoides
degradación oxidativa
moléculas antioxidantes
description La actividad antioxidante es la propiedad de una sustancia para inhibir la degradación oxidativa y actúa principalmente a través de su capacidad para reaccionar con los radicales libres y oxígeno singulete. El desequilibrio que se presenta en el organismo entre la producción de especies reactivas del oxígeno y la capacidad de un sistema biológico para inhibirlas rápidamente es conocido como estrés oxidativo. Este proceso trae como consecuencia alteraciones de la relación estructura-función en cualquier órgano. En los organismos vivos existen moléculas antioxidantes capaces de retardar o prevenir la oxidación; sin embargo, no siempre este proceso es eficiente por lo que se hace necesario proporcionar al cuerpo otras moléculas antioxidantes que ayuden a combatir el estrés oxidativo
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-09-26
dc.date.submitted.none.fl_str_mv 2020-08-22
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:58:01Z
dc.date.available.none.fl_str_mv 2022-11-15T20:58:01Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/book
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Libro
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Díaz-Uribe, C., Trilleras, J. & Vallejo, W. (2018). Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas. Barranquilla: Sello Editorial Universidad del Atlántico.
dc.identifier.isbn.none.fl_str_mv 978-958-5525-80-1
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/921
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv Díaz-Uribe, C., Trilleras, J. & Vallejo, W. (2018). Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas. Barranquilla: Sello Editorial Universidad del Atlántico.
978-958-5525-80-1
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/921
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Editorial Universidad del Atlántico.
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/921/1/Estudio%2bcin%c3%a9tico%2bde%2bla%2breactividad%2bdel%2box%c3%adgeno%2bsingulete%2bcon%2bflavonoides%2by%2bderivados%2bde%2bChalconas.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/921/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/921/3/license.txt
bitstream.checksum.fl_str_mv 123dc6838cfd83177ef64c07c24d7afb
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203422353653760
spelling Díaz Uribe, Carlos Enrique61d7c5ec-23c2-4373-8791-3e045fdd08faTrilleras Vásquez, Jorge EnriqueVallejo Lozada, William Andrés2022-11-15T20:58:01Z2022-11-15T20:58:01Z2020-09-262020-08-22Díaz-Uribe, C., Trilleras, J. & Vallejo, W. (2018). Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas. Barranquilla: Sello Editorial Universidad del Atlántico.978-958-5525-80-1https://hdl.handle.net/20.500.12834/921Universidad del AtlánticoRepositorio Universidad del AtlánticoLa actividad antioxidante es la propiedad de una sustancia para inhibir la degradación oxidativa y actúa principalmente a través de su capacidad para reaccionar con los radicales libres y oxígeno singulete. El desequilibrio que se presenta en el organismo entre la producción de especies reactivas del oxígeno y la capacidad de un sistema biológico para inhibirlas rápidamente es conocido como estrés oxidativo. Este proceso trae como consecuencia alteraciones de la relación estructura-función en cualquier órgano. En los organismos vivos existen moléculas antioxidantes capaces de retardar o prevenir la oxidación; sin embargo, no siempre este proceso es eficiente por lo que se hace necesario proporcionar al cuerpo otras moléculas antioxidantes que ayuden a combatir el estrés oxidativoapplication/pdfspahttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Editorial Universidad del Atlántico.Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconasPúblico generalFlavonoidesdegradación oxidativamoléculas antioxidantesinfo:eu-repo/semantics/bookinfo:eu-repo/semantics/publishedVersionLibrohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2f33BarranquillaSede NorteSegal, L. M. & Wilson, R. A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genetics and Biology, 110, 1-9.Fang, G., Liu, C., Wang, Y., Dionysiou, D. & Zhou, D. (2017). Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation. Applied Catalysis B: Environmental, 214, 34-45.Domínguez-Sánchez, L., Taxt-Lamolle, S. F. M., Hole, E-O., Krivokapi, A., Sagstuen, E. & Haugen, H. J. (2013). TiO2 suspension exposed to H2O2 in ambient light or darkness: Degradation of methylene blue and EPR evidence for radical oxygen species. Applied Catalysis B: Environmental, 142, 662-667.Dunnill, C., Patton, T., Brennan, J., Barrett, J., Dryden, M., Cooke, J., Leaper, D. & Geore Paulus, N. T. (2017). Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. International Wound Journal, 14(1), 89-96.Jena, N. R. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. Journal of Biosciences, 37(3), 503-517.Aggelopoulos, C. A., Tataraki, D. & Rassias, G. (2018). Degradation of atrazine in soil by dielectric barrier discharge plasma - Potential singlet oxygen mediation. Chemical Engineering Journal, 347, 682-694.DeRosa, M. C. & Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233, 351-371.Carlton, T. S. (2006). Why the lower-energy term of singlet dioxygen has a doubly occupied. Journal of Chemical Education, 83(3), 477-480.Schweitzer, C. & Schmidt, R. (2003). Physical mechanisms of generation and deactivation of singlet oxygen. Chemical Reviews, 103, 1685-1757.Salokhiddinov, K. I., Byteva, I. M. & Gurinovich, G. P. (1981). Lifetime of singlet oxygen in various solvents. Journal of Applied Spectroscopy, 34, 561-564.Bregnhøj, M., Westberg, M., Jensen, F. & Ogilby, P. R. (2016). Solvent- dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions. Phys Chem Chem Phys, 18(33), 22946-22961.Garavelli, M., Bernardi, F., Olivucci, M. & Robb, M. A. (1998). DFT study of the reactions between Singlet-Oxygen and a carotenoid model. Journal of the American Chemical Society, 120(39), 10210-10222.Li, M. Y., Cline, C. S., Koker, E. B., Carmichael, H. H., Chignell, C. F. & Bilski, P. (2001). Quenching of singlet molecular oxygen (1O2) by azide anion in solvent mixtures. Photochemistry and Photobiology, 74(6), 760-764.Aubry, J. M. (1985). Search for singlet oxygen in the decomposition of hydrogen peroxide by mineral compounds in aqueous solutions. Journal of the American Chemical Society, 107, 5844-5849.Caminade, A. M., Khatib, F. E., Koenig, M. & Aubry, J. M. (1985). Ozonides de phosphite source d’oxygène singulet: rendement, mécanisme. Canadian Journal of Chemistry, 63, 3203-3209.Aubry, J. M., Pierlot, C., Rigaudy, J. & Schmidt, R. (2006). Reversible binding of oxygen to aromatic compounds. Accounts of Chemical Research, 36(9), 668-675.Maetzke, A. & Knak-Jensen, S. J. (2006). Reaction paths for production of singlet oxygen from hydrogen peroxide and hypochlorite. Chemical Physics Letters, 425(1), 40-43.Nardello, V., Marko, J., Vermeersch, G. & Aubry, J. M. (1995). 90Mo NMR and kinetic studies of peroxomolybdic intermediates involved in the catalytic disproportionation of hydrogen peroxide by molybdate ions. Inorganic Chemistry, 34(20), 4950-4957.Aubry, J. M. & Cazin, B. (1988). Chemical sources of singlet oxygen. 2. Quantitative generation of singlet oxygen from hydrogen peroxide disproportionation catalyzed by molybdate ions.Inorganic Chemistry, 27(12), 2013-2014.Aubry, J. M. & Bouttemy, S. (1997). Preparative oxidation of organic Compounds in microemulsions with singlet oxygen generated chemically by the sodium molybdate/hydrogen peroxide system. Journal of the American Chemical Society, 119(23), 5286-5294.Gollnick, K. (1968). Type II Photooxygenation Reactions in Solution Advances in Photochemistry. Advances in Photochemistry, 6, 1-122.Wilkinson, F. (1993). Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. Journal of Physical and Chemical Reference Data, 22(1), 113-261.Clement, S., Sobhan, M., Deng, W., Camilleri, E. & Goldys, E. M. (2017). Nanoparticle-mediated singlet oxygen generation from photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 332, 66-71.Neam?u, M., N?dejde, C., Hodoroaba, V.-D., Schneider, R. J. & Panne, U. (2018). Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: Synthesis, characterization and photocatalytic application. Applied Catalysis B: Environmental, 232,553-561.Wojtoniszak, M., Rogi?ska, D., Machali?ski, B., Drozdzik, M. & Mijowska, E. (2013). Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation. Materials Research Bulletin, 48(7), 2636-2639.Starik, A. M., Titova, N. S., Bezgin, L. V., Kopchenov, V. I. & Naumov, V. V. (2006). Control of combustion by generation of singlet oxygen molecules in electrical discharge. Czechoslovak Journal of Physics, 56(25), b1357-b1363.Mikata, Y., Takagi, S., Tanahashi, M., Ishii, S., Obata, M., Miyamoto, Y. … Yano, S. (2003). Detection of 1270 nm emission from singlet oxygen and photocytotoxic property of sugar-pendant 60 fullerenes. Bioorganic & medicinal chemistry letters, 13(19), 3289-3292.Wenli, Y. & Yaping Z. (2005). Chemiluminescence evaluation of oxidative damage to biomolecules induced by singlet oxygen and the protective effects of antioxidants. Biochimica et Biophysica Acta, 30(1), 30-34.Lion, Y., Delmelle, M. & Van de Vorst, A. (1976). New method of detecting singlet oxygen production. Nature, 263, 443.Díaz-Uribe, C. E., Daza, M., Páez-Mozo, E. A., Martínez, F., Guedes, C. & Di Mauro, E. (2013). Visible light singlet oxygen production with tetra(4-carboxyphenyl)porphyrin/SiO2. Journal of Photochemistry and Photobiology A Chemistry, 259, 47-52.Nardello, V., Marti, M. J., Pierlot, C. & Aubry, J. M. (1999). Photochemistry without light: oxidation of rubrene in a microemulsion with a chemical source of singlet molecular oxygen (1O2, 1Dg).Journal ofChemical Education, 76(9), 1285-1288.Frimer, A. (1979). The reaction of singlet oxygen with olefins: the question of mechanism. Chemical Reviews, 79(5), 359-387.Clennan, E. L. (2000). New mechanistic and synthetic aspects of singlet oxygen chemistry. Tetrahedron, 56(47), 9151-9179.Clennan, E. L. & Mehrsheikh-Mohammadi, M. E. (1983). Addition of singlet oxygen to conjugated dienes. The mechanism of endoperoxide formation. Journal of the American Chemical Society, 105(18), 5932-5933.Chien, S. H., Cheng, M. F., Lau, K. C. & Li, W. K. (2005). Theoretical study of the diels?alder reactions between singlet (1Dg) oxygen andacenes. The Journal of Physical Chemistry A., 109(33), 7509-7518.Díaz-Uribe, C. E., Vallejo, W. & Martínez, F. (2014). Photooxidation of anthracene under visible light with metallocarboxyphenylporphyrins. Revista Facultad de Ingeniería Universidad de Antioquia, 73, 225-230.Griesbeck, A. G., Goldfuss, B., Leven, M. & De Kiff, A. Comparison of the singlet oxygen ene reactions of cyclic versus acyclic ?,?-unsaturated ketones: an experimental and computational study. Tetrahedron Letters, 54(23), 2938-2941.Stratakis, M. & Orfanopoulos, M. (2000). Regioselectivity in the Ene reaction of singlet oxygen with alkenes. Tetrahedron, 56(46), 1595-1615.Foote, C. T. & Denny, R. W. (1971). Chemistry of singlet oxygen. XII. Electronic effects on rate and products of the reaction with olefins. Journal of the American Chemical Society, 93(20), 5162-5167.Jefford, C. W. (1981). The Hydroperoxidation of Olefins by Singlet Oxygen. Validity of the Zwitterionic Peroxide Model. Helvetica Chimica Acta, 64, 252.Maranzana, A., Chigo, G. & Tonachini, G. (2000). Diradical and Peroxirane Pathways in the [ p2 + p2] Cycloaddition Reactions of 1Dg Dioxygen with Ethene, Methyl Vinyl Ether, and Butadiene: A Density Functional and Multireference Perturbation Theory Study. Journal of the American Chemical Society, 122(7), 1414-1423.Ohkubo, K., Nanjo, T. & Fukuzumi, S. (2006). Photocatalytic oxygenation of olefins with oxygen: Isolation of 1,2-dioxetane and the photocatalytic O-O bond cleavage. Catalysis Today, 117(1), 356-361.Aherne, S. A. & O’Brien, N. M. (2002). Dietary flavonols: Chemistry, food content and metabolism. Nutrition, 18(1), 75-81.Sultana, B. & Anwar, F. (2008). Flavonols (kaempferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chemistry, 108(3), 879-884.Geissmann, T. A. (1962). The Chemistry of Flavonoids Compounds. Oxford: Pergamon Press.Rijke, E., Out, P., Niessen, W., Ariese, F., Gooijer, C. & Brinkman, U. (2006). Analytical separation and detection methods for flavonoids. Journal of Chromatography A., 1112(1), 31-63.Brodowska, K. M. (2017). Natural flavonoids: classification, potential role, and application of flavonoid analogues. European Journal of Biological Research, 7(2), 08-123.Castellano, G., González-Santander, J. L., Lara, A. & Torrens, F. (2013). Classification of flavonoid compounds by using entropy of informationtheory. Phytochemistry, 93, 182-191.Galleano, M., Verstraeten, S. V., Oteiza, P. I. & Fraga, C. G. (2010). Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics, 501(1), 23-30.Chang, S. K., Alasalvar, C. & Shahidi, F. (2018). Superfruits: Phytochemicals, antioxidant efficacies, and health effects - A comprehensive. Critical Reviews in Food Science and Nutrition, 23(10), 1-25.D’Amelia, V., Aversano, R., Chiaiese, P. & Carputo, D. (2018). The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochemistry Reviews, 17, 611-625.Pérez-Vizcaino, F. & Fragad, C. G. (2018). Research trends in flavonoids and health. Archives of Biochemistry and Biophysics, 646, 107-112.Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J. & Valko, M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends in Pharmacological Sciences, 38(7),592-607.Prasad, S., Gupta, S. C. & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95-105.Ochoa, C. D., Wu, R. F. & Terada, L. S. (2018). ROS signaling and ER stress in cardiovascular disease. Molecular Aspects of Medicine, 63,18-29.Wang, Y., Gao, Y., Ding, H., Liu, S., Han, X., Gui, J. & Liu, D. (2017). Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chemistry, 218, 152-158.Sharif, K. M., Rahman, M. M., Azmir, J., Mohamed, A., Jahurul, M. H. A., Sahena, F. & Zaidul, I. S. M. (2014). Experimental design of supercritical fluid extraction - A review. Journal of Food Engineering, 124, 105-116.García-Castello, E. M., Rodríguez-López, A. D., Mayor, L., Ballesteros, R., Conidi, C. & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. Food Science and Technology, 64(2),1114-1122.Azwanida, N. N. (2015). A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med Aromat Plants, 4, 196.Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S. & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, 49, 96-109.Pasrija, D. & Anandharamakrishnan, C. (2015). Techniques for Extraction of Green Tea Polyphenols: A Review. In Food and Bioprocess Technology, 8(5), 935-950.Ahmed, N., Konduru, N. K., Ahmad, S. & Owais, M. (2014). Synthesis of flavonoids based novel tetrahydropyran conjugates (Prins products) and their antiproliferative activity against human cancer cell lines. European Journal of Medicinal Chemistry, 75, 233-246.Yang, Z., He, Y. & Toste, F. D. (2016). Biomimetic Approach to the Catalytic Enantioselective Synthesis of Flavonoids. Journal of the American Chemical Society, 138(1), 9775-9778.Cole, A. M., Hossain, S., Cole, A. M. & Phanstiel, O. (2016). Synthesis and Bioevaluation of Substituted Chalcones, Coumaranones and other Flavonoids as anti-HIV agents. Bioorg Med Chem, 24(12),2768-2776.Helgren, T. R., Xu, L. L., Sotelo, D., Mehta, Y. R., Korkmaz, M. A., Pavlinov, I. & Aldrich, L. N. (2018). Microwave-Assisted, Asymmetric Synthesis of 3-Amino-2,3-Dihydrobenzofuran Flavonoid Derivatives from Chalcones. Chemistry: A European Journal, 24(18), 4509-4514.Bukhari, S. N. A., Jasamai, M., Jantan, I. & Ahmad, W. (2013). Review of Methods and Various Catalysts Used for Chalcone Synthesis. Mini-Reviews in Organic Chemistry, 10(1), 73-83.Kostanecki, S. V. & Tambor, J. (1899). Ueber die sechs isomeren Monooxybenzalacetophenone (Monooxychalkone). Chemische Berichte, 32, 1921.Gaonkar, S. L. & Vignesh, U. N. (2017). Synthesis and pharmacological properties of chalcones: a review. Research on Chemical Intermediates, 43, 6043-6077.Verma, S., Srivastava, A. K. & Pandey, O. P. (2018). A Review on Chalcones Synthesis and their Biological Activity. PharmaTutor, 6(2),22-39.Mascarello, A., Chiaradia, L. D., Vernal, J., Villarino, A., Guido, R. V., Perizzolo, P., … Terenzi, H. (2010). Inhibition of Mycobacterium tuberculosis tyrosine phosphatase PtpA by synthetic chalcones: Kinetics, molecular modeling, toxicity and effect on growth. Bioorganic & Medicinal Chemistry, 18(11), 3783-3789.Tomar, V., Bhattacharjee, G., Kamaluddin, Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. European Journal of Medicinal Chemistry, 45(2), 745-751.Rizvi, S. U. F., Siddiqui, H. L., Johns, M., Detorio, M. & Schinazi, R. F. (2012). Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Medicinal Chemistry Research, 21(21), 3741-3749.Abdullah, M. I., Mahmood, A., Madni, M., Masood, S. & Kashif, M. (2014). Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorganic Chemistry, 54, 31-37.Birari, R. B., Gupta, S., Mohan, C. G. & Bhutani, K. K. (2011). Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: experimental and computational studies. Phytomedicine, 18(8), 795-801.Mahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. European Journal of Medicinal Chemistry, 92, 839-865.Wang, L., Chen, G., Lu, X., Wang, S., Han, S., Li, Y., … Wu, C. (2015). Novel chalcone derivatives as hypoxia-inducible factor (HIF)-1 inhibitor: synthesis, anti-invasive and anti-angiogenic properties. European Journal of Medicinal Chemistry, 89, 88-97.Shweta, S., Bikash, M. & Rakesh, S. (2013). Chalcones as an emerging lead molecule for antimalarial therapy: a review. Journal of Modern Medicinal Chemistry, 1, 64-77.Evranos Aksöz, B. & Ertan, R. (2011). Chemical and Structural Properties of Chalcones I. FABAD. Journal of Pharmaceutical Sciences, 36(4), 223-242.Lawrence, N. J, Patterson, R. P, Ooi, L.-L., Cook, D. & Ducki, S. (2006). Effects of ?-substitutions on structure and biological activity of anticancer chalcones. Bioorganic & Medicinal Chemistry Letters, 16(22), 5844-5848.Kotireddy, V. & Ramana, K. V. (2016). A review on chalcones. European Journal of Pharmaceutical and Medical Research, 12(2), 564-572.Rosa, G., Seca, A. M. L., Barreto, M. C. & Pinto, D. (2017). Chalcone: A Valuable Scaffold Upgrading by Green Methods. ACS Sustainable Chemistry & Engineering, 5(9), 7467-7480.Schwöbel, J. A. H., Wondrousch, D., Koleva, Y. K., Madden, J. C., Cronin, M. T. D. & Schüürmann, G. (2010). Prediction of Michael-type acceptor reactivity toward glutathione. Chemical Research in Toxicology, 23(10), 1576-1585.Amslinger, S., Al-Rifai, N., Winter, K., Wörmann, K., Scholz, R., Baumeister, P., Wild, M. (2013). Reactivity assessment of chalcones by a kinetic thiol assay. Organic & Biomolecular Chemistry, 11(4), 549-554.Gomes, M. N., Muratov, E. N., Pereira, M., Peixoto, J. C., Rosseto, L. P., Cravo, P. V. L., Andrade, C. H. & Neves, B. J. (2017). Chalcone Derivatives: Promising Starting Points for Drug Design. Molecules, 22(8), 1210-1234.Nasir Abbas Bukhari, S., Jasamai, M., Jantan, I. & Ahmad, W. (2013). Review of Methods and Various Catalysts Used for Chalcone Synthesis. Mini-Reviews in Organic Chemistry, 10(1), 73-83.Foroumadi, A., Emami, S., Sorkhi, M., Nakhjiri, M., Nazarian, Z., Heydari, S., … Shafiee, A. (2010). Chromene?Based Synthetic Chalcones as Potent Antileishmanial Agents: Synthesis and Biological Activity. Chemical Biology & Drug Design, 75(6), 590-596.Sivakumar, P. M., Prabhakar, P. K. & Doble, M. (2011). Synthesis, antioxidant evaluation, and quantitative structure–activity relationship studies of chalcones. Medicinal Chemistry Research, 20, 482-492.Díaz-Uribe, C. E., Vallejo, W., Castellar, W., Trilleras, J., Ortiz, S., Rodríguez- Serrano, A., Zarate, X. & Quiroga, J. (2015). Novel (E)-1-(pyrrole-2-yl)-3-(aryl)-2-(propen-1-one) derivatives as efficient singlet oxygen quenchers: kinetics and quantum chemical calculations. RSC Advances, 5(5), 71565-71572.Gruszka, J., Pawlak, A. & Kruk, J. (2008). Tocochromanols, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers- determination of singlet oxygen quenching rate constants and oxidation products. Free Radical Biology and Medicine, 45(6), 920-928.Di Mascio, P., Kaiser, S., Devasagayam, T. P. A., Sundquist, A. R. & Sies, H. (1991). Carotenoids, tocopherols and thiols as biological singlet oxygen quenchers. Oxidative Damage & Repair, 18(6), 311-314.Tournaire, C., Croux, S., Maurette, M. T., Beck, I., Hocquaux, M., Braun, A. M. & Olivero, E. (1993). Antioxidant activity of flavonoids: Efficiency of singlet oxygen (1?g) quenching. Journal of Photochemistry and Photobiology B: Biology, 19(3), 205-215.Liang, D., Zhang, Y., Wu, Z., Chen, Y. J. & Huang, D. (2018). A near infrared singlet oxygen probe and its applications in in vivo imaging and measurement of singlet oxygen quenching activity of flavonoids. Sensors and Actuators B: Chemical, 266, 645-654.Mukai, K., Nagai, S. & Ohara, K. (2005). Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. Free Radical Biology and Medicine, 39(6), 752-761.Mukai, K., Itoh, S., Daifuku, K., Morimoto, H. & Inoue, K. (1993). Kinetic study of the quenching reaction of singlet oxygen by biological hydroquinones and related compounds. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1183(2), 323-326.Díaz-Uribe, C. E., Oliveros, G., Muñoz-Acevedo, A. & Vallejo Lozada, W. A. (2016). Kinetic study of the quenching of singlet oxygen by naringin isolated from peels of the fruit of bitter orange (Citrus aurantium I.). Revista Cubana de Plantas Medicinales, 21(3), 359-368.. Aubry, J. M. & Bouttemy, S. (1997). Preparative oxidation of organic compounds in microemulsions with singlet oxygen generated chemically by the sodium molybdate/hydrogen peroxide system. Journal of the American Chemical Society, 119(23), 5286-5294.Thomas, M. J. & Foote, C. S. (1978). Chemistry of singlet oxygen-XXVI. Photooxygenation of phenols. Photochemistry and Photobiology, 27(6), 683-693.Nagai, S., Ohara, K. & Mukai, K. (2005). Kinetic Study of the Quenching Reaction of Singlet Oxygen by Flavonoids in Ethanol Solution. The Journal of Physical Chemistry B., 109(9), 4234-4240.Vieyra, F. E., Boggetti, H. J., Zampini, I. C., Ordoñez, R. M., Isla, M. I., Álvarez, R. M., … Borsarelli, C. D. (2009). Singlet oxygen quenching and radical scavenging capacities of structurally-related flavonoids present in Zuccagnia punctata Cav. Free Radical Research, 43(6),553-564.Montenegro, M. A., Nazareno, M. A. & Borsarelli, C. D. (2007). Kinetic study of the photosensitized oxygenation of the flavanone naringin and its chalcone. Journal of Photochemistry and Photobiology A: Chemistry, 186(1), 47-56. 101. Ávila, V., Bertolotti, S. G., Criado, S., Pappano, N., Debattista, N. &García, N. A. (2001). Antioxidant properties of natural flavonoids: quenching and generation of singlet molecular oxygen. International Journal of Food Science and Technology, 36(38), 25-35.Darmanyan, A. P. & Jenks, W. S. (1998). Charge-Transfer Quenching of Singlet Oxygen O2(1Dg) by Amines and Aromatic Hydrocarbons. The Journal of Physical Chemistry A., 102(1), 7420-7426.http://purl.org/coar/resource_type/c_3248ORIGINALEstudio+cinético+de+la+reactividad+del+oxígeno+singulete+con+flavonoides+y+derivados+de+Chalconas.pdfEstudio+cinético+de+la+reactividad+del+oxígeno+singulete+con+flavonoides+y+derivados+de+Chalconas.pdfapplication/pdf2443128https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/921/1/Estudio%2bcin%c3%a9tico%2bde%2bla%2breactividad%2bdel%2box%c3%adgeno%2bsingulete%2bcon%2bflavonoides%2by%2bderivados%2bde%2bChalconas.pdf123dc6838cfd83177ef64c07c24d7afbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/921/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/921/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/921oai:repositorio.uniatlantico.edu.co:20.500.12834/9212022-11-15 15:58:01.937DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==