Fractional discrete vortex solitons

We examine the existence and stability of nonlinear discrete vortex solitons in a square lattice when the standard discrete Laplacian is replaced by a fractional version. This creates a new, effective site-energy term, and a coupling among sites, whose range depends on the value of the fractional ex...

Full description

Autores:
Mejía-Cortés, Cristian
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/1137
Acceso en línea:
https://hdl.handle.net/20.500.12834/1137
Palabra clave:
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_893022abb64c7ac2fc7596ed275509ef
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/1137
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Fractional discrete vortex solitons
dc.title.alternative.spa.fl_str_mv Fractional discrete vortex solitons
title Fractional discrete vortex solitons
spellingShingle Fractional discrete vortex solitons
title_short Fractional discrete vortex solitons
title_full Fractional discrete vortex solitons
title_fullStr Fractional discrete vortex solitons
title_full_unstemmed Fractional discrete vortex solitons
title_sort Fractional discrete vortex solitons
dc.creator.fl_str_mv Mejía-Cortés, Cristian
dc.contributor.author.none.fl_str_mv Mejía-Cortés, Cristian
dc.contributor.other.none.fl_str_mv I. Molina, Mario
description We examine the existence and stability of nonlinear discrete vortex solitons in a square lattice when the standard discrete Laplacian is replaced by a fractional version. This creates a new, effective site-energy term, and a coupling among sites, whose range depends on the value of the fractional exponent α, becoming effectively long-range at small α values. At long-distance, it can be shown that this coupling decreases faster than exponential: ∼ exp(−|n|)/ p |n|. In general, we observe that the stability domain of the discrete vortex solitons is extended to lower power levels, as the α coefficient diminishes, independently of their topological charge and/or pattern distribution.
publishDate 2020
dc.date.submitted.none.fl_str_mv 2020-12-14
dc.date.issued.none.fl_str_mv 2021-02-09
dc.date.accessioned.none.fl_str_mv 2022-12-19T02:41:11Z
dc.date.available.none.fl_str_mv 2022-12-19T02:41:11Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Mejía-Cortés, C., & Molina, M.I. (2021). Fractional discrete vortex solitons. Optics letters, 46 10, 2256-2259 .
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/1137
dc.identifier.doi.none.fl_str_mv 10.1364/OL.421970
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv Mejía-Cortés, C., & Molina, M.I. (2021). Fractional discrete vortex solitons. Optics letters, 46 10, 2256-2259 .
10.1364/OL.421970
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/1137
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Física
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv The Optical Society
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1137/1/Fractional_discrete_vortex_solitons.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1137/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1137/3/license.txt
bitstream.checksum.fl_str_mv 2c0c93fbc37ab6550834196862acdb52
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1828220218814496768
spelling Mejía-Cortés, Cristian2a493b1c-8a2c-45e8-a986-e6db285d682bI. Molina, Mario2022-12-19T02:41:11Z2022-12-19T02:41:11Z2021-02-092020-12-14Mejía-Cortés, C., & Molina, M.I. (2021). Fractional discrete vortex solitons. Optics letters, 46 10, 2256-2259 .https://hdl.handle.net/20.500.12834/113710.1364/OL.421970Universidad del AtlánticoRepositorio Universidad del AtlánticoWe examine the existence and stability of nonlinear discrete vortex solitons in a square lattice when the standard discrete Laplacian is replaced by a fractional version. This creates a new, effective site-energy term, and a coupling among sites, whose range depends on the value of the fractional exponent α, becoming effectively long-range at small α values. At long-distance, it can be shown that this coupling decreases faster than exponential: ∼ exp(−|n|)/ p |n|. In general, we observe that the stability domain of the discrete vortex solitons is extended to lower power levels, as the α coefficient diminishes, independently of their topological charge and/or pattern distribution.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2The Optical SocietyFractional discrete vortex solitonsFractional discrete vortex solitonsPúblico generalinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaFísicaSede NorteG. Molina-Terriza, J. P. Torres, and L. Torner, Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum, Phys. Rev. Lett. 88, 013601 (2001).A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Entanglement of the orbital angular momentum states of photons, Nature 412, 313 (2001).A. Chong, C. Wan, J. Chen, and Q. Zhan, Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum, Nature Photonics 14, 350 (2020).X. Zhuang, Unraveling dna condensation with optical tweezers, Science 305, 188 (2004), https://science.sciencemag.org/content/305/5681/188.full.pdf.I. A. Favre-Bulle, A. B. Stilgoe, E. K. Scott, and H. Rubinsztein-Dunlop, Optical trapping in vivo: theory, practice, and applications, Nanophotonics 8, 1023 (2019).J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, Beating the channel capacity limit for linear photonic superdense coding, Nature Physics 4, 282 (2008).S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, Conversion of spin into directed electric current in quantum wells, Phys. Rev. Lett. 86, 4358 (2001).P. Kevrekidis, The discrete nonlinear schr¨odinger equation (2009).J. Eilbeck, P. Lomdahl, and A. Scott, The discrete self-trapping equation, Physica D: Nonlinear Phenomena 16, 318 (1985).J. Eilbeck and M. Johansson, The discrete nonlinear schr¨odinger equation - 20 years on, in Localization and Energy Transfer in Nonlinear Systems (2002) pp. 44–67.J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Observation of twodimensional discrete solitons in optically induced nonlinear photonic lattices, Nature 422, 147 (2003).F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Physics Reports 463, 1 (2008).R. A. Vicencio, M. I. Molina, and Y. S. Kivshar, Switching of discrete optical solitons in engineered waveguide arrays, Phys. Rev. E 70, 026602 (2004).A. Davydov, Solitons and energy transfer along protein molecules, Journal of Theoretical Biology 66, 379 (1977).P. L. Christiansen and A. C. Scott, eds., Davydov’s soliton revisited : self-trapping of vibrational energy in protein, Nato Science Series B:, Vol. 243 (Plenum Press New York, 1990).V. Zakharov, Collapse and self-focusing of langmuir waves, Basic Plasma Physics: Selected Chapters, Handbook of Plasma Physics, Volume 1 , 419 (1983).V. E. Zakharov et al., Collapse of langmuir waves, Sov. Phys. JETP 35, 908 (1972).O. Morsch and M. Oberthaler, Dynamics of bose-einstein condensates in optical lattices, Rev. Mod. Phys. 78, 179 (2006).V. A. BRAZHNYI and V. V. KONOTOP, Theory of nonlinear matter waves in optical lattices, Modern Physics Letters B 18, 627 (2004), https://doi.org/10.1142/S0217984904007190.M. Molina and G. Tsironis, Dynamics of self-trapping in the discrete nonlinear schr¨odinger equation, Physica D: Nonlinear Phenomena 65, 267 (1993).G. Tsironis, W. Deering, and M. Molina, Applications of self-trapping in optically coupled devices, Physica D: Nonlinear Phenomena 68, 135 (1993).B. A. Malomed and P. G. Kevrekidis, Discrete vortex solitons, Phys. Rev. E 64, 026601 (2001).D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett. 92, 123903 (2004).E. Ar´evalo, Soliton theory of two-dimensional lattices: The discrete nonlinear schr¨odinger equation, Phys. Rev. Lett. 102, 224102 (2009).J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, Observation of vortex-ring “discrete” solitons in 2d photonic lattices, Phys. Rev. Lett. 92, 123904 (2004).C. Mej´ıa-Cort´es, J. Castillo-Barake, and M. I. Molina, Localized vortex beams in anisotropic lieb lattices, Opt. Lett. 45, 3569 (2020).K. J. H. Law, P. G. Kevrekidis, T. J. Alexander, W. Kr´olikowski, and Y. S. Kivshar, Stable higher-charge discrete vortices in hexagonal optical lattices, Phys. Rev. A 79, 025801 (2009).H. Leblond, B. A. Malomed, and D. Mihalache, Spatiotemporal vortex solitons in hexagonal arrays of waveguides, Phys. Rev. A 83, 063825 (2011).B. Terhalle, T. Richter, K. J. H. Law, D. G¨ories, P. Rose, T. J. Alexander, P. G. Kevrekidis, A. S. Desyatnikov, W. Krolikowski, F. Kaiser, C. Denz, and Y. S. Kivshar, Observation of double-charge discrete vortex solitons in hexagonal photonic lattices, Phys. Rev. A 79, 043821 (2009).D. Jovi´c Savi´c, A. Piper, R. Ziki´c, and D. Timotijevi´c, Vortex solitons at the interface sepa- ˇ rating square and hexagonal lattices, Physics Letters A 379, 1110 (2015).R. Herrmann, Fractional Calculus, 2nd ed. (WORLD SCIENTIFIC, 2014) https://www.worldscientific.com/doi/pdf/10.1142/8934.B. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Institute for Nonlinear Science (Springer New York, 2012).K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, 1993).N. S. Landkof, Foundations of modern potential theory, Vol. 180 (Springer, 1972).N. Cufaro Petroni and M. Pusterla, L´evy processes and schr¨odinger equation, Physica A: Statistical Mechanics and its Applications 388, 824 (2009).X. Yao and X. Liu, Off-site and on-site vortex solitons in space-fractional photonic lattices, Opt. Lett. 43, 5749 (2018).I. Sokolov, J. Klafter, and A. Blumen, Fractional kinetics, Physics Today - PHYS TODAY 55, 48 (2002).G. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports 371, 461 (2002).L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Annals of Mathematics 171, 1903 (2010).L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi13 geostrophic equation, Annals of Mathematics 171, 1903 (2010).N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62, 3135 (2000).N. Laskin, Fractional schr¨odinger equation, Phys. Rev. E 66, 056108 (2002).M. Allen, A fractional free boundary problem related to a plasma problem, Communications in Analysis and Geometry 27, 10.4310/CAG.2019.v27.n8.a1 (2015).A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, and K. Burrage, Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization, Journal of The Royal Society Interface 11, 20140352 (2014), https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2014.0352.H. Berestycki, J.-M. Roquejoffre, and L. Rossi, The influence of a line with fast diffusion on fisher-kpp propagation., J Math Biol 66, 743 (2013).M. I. Molina, The fractional discrete nonlinear schr¨odinger equation, Physics Letters A 384, 126180 (2020).M. I. Molina, The two-dimensional fractional discrete nonlinear schr¨odinger equation, Physics Letters A 384, 126835 (2020).O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, and J. L. Varona, Nonlocal discrete diffu- ´ sion equations and the fractional discrete laplacian, regularity and applications, Advances in Mathematics 330, 688 (2018).L. Roncal, Personal communication.C. Mej´ıa-Cort´es, J. M. Soto-Crespo, R. A. Vicencio, and M. I. Molina, Bound states and interactions of vortex solitons in the discrete ginzburg-landau equation, Phys. Rev. A 86, 023834 (2012).R. A. Vicencio, M. I. Molina, and Y. S. Kivshar, Controlled switching of discrete solitons in waveguide arrays, Opt. Lett. 28, 1942 (2003).A. Szameit and S. Nolte, Discrete optics in femtosecond-laser-written photonic structures, Journal of Physics B: Atomic, Molecular and Optical Physics 43, 163001 (2010).G. R. Castillo, L. Labrador-P´aez, F. Chen, S. Camacho-L´opez, and J. R. V. de Aldana, Depressed-cladding 3-d waveguide arrays fabricated with femtosecond laser pulses, J. Lightwave Technol. 35, 2520 (2017).J. Armijo, R. Allio, and C. Mej´ıa-Cort´es, Absolute calibration of the refractive index in photoinduced photonic lattices, Opt. Express 22, 20574 (2014).http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALFractional_discrete_vortex_solitons.pdfFractional_discrete_vortex_solitons.pdfapplication/pdf3253006https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1137/1/Fractional_discrete_vortex_solitons.pdf2c0c93fbc37ab6550834196862acdb52MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1137/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1137/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1137oai:repositorio.uniatlantico.edu.co:20.500.12834/11372022-12-18 21:41:12.57DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==