Fractional discrete vortex solitons

We examine the existence and stability of nonlinear discrete vortex solitons in a square lattice when the standard discrete Laplacian is replaced by a fractional version. This creates a new, effective site-energy term, and a coupling among sites, whose range depends on the value of the fractional ex...

Full description

Autores:
Mejía-Cortés, Cristian
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/1137
Acceso en línea:
https://hdl.handle.net/20.500.12834/1137
Palabra clave:
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
Description
Summary:We examine the existence and stability of nonlinear discrete vortex solitons in a square lattice when the standard discrete Laplacian is replaced by a fractional version. This creates a new, effective site-energy term, and a coupling among sites, whose range depends on the value of the fractional exponent α, becoming effectively long-range at small α values. At long-distance, it can be shown that this coupling decreases faster than exponential: ∼ exp(−|n|)/ p |n|. In general, we observe that the stability domain of the discrete vortex solitons is extended to lower power levels, as the α coefficient diminishes, independently of their topological charge and/or pattern distribution.