A NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACES

In this paper, we used the notion of triclosure spaces to introduce and study the concept of semi-open set in triclosure spaces. Besides, we show some of their properties. Moreover, the notions of semi-continuous and semi-irresolute functions in a triclosure spaces are studied. Furthermore, we prove...

Full description

Autores:
GRANADOS, CARLOS
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/893
Acceso en línea:
https://hdl.handle.net/20.500.12834/893
Palabra clave:
Triclosure spaces; semi-open sets; semi-continuous functions; semi-irresolute functions.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_8794de377a6e3bd77f8638b52127bccc
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/893
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv A NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACES
title A NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACES
spellingShingle A NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACES
Triclosure spaces; semi-open sets; semi-continuous functions; semi-irresolute functions.
title_short A NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACES
title_full A NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACES
title_fullStr A NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACES
title_full_unstemmed A NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACES
title_sort A NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACES
dc.creator.fl_str_mv GRANADOS, CARLOS
dc.contributor.author.none.fl_str_mv GRANADOS, CARLOS
dc.subject.keywords.spa.fl_str_mv Triclosure spaces; semi-open sets; semi-continuous functions; semi-irresolute functions.
topic Triclosure spaces; semi-open sets; semi-continuous functions; semi-irresolute functions.
description In this paper, we used the notion of triclosure spaces to introduce and study the concept of semi-open set in triclosure spaces. Besides, we show some of their properties. Moreover, the notions of semi-continuous and semi-irresolute functions in a triclosure spaces are studied. Furthermore, we prove some of their properties.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12-29
dc.date.submitted.none.fl_str_mv 2020-11-15
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:50:14Z
dc.date.available.none.fl_str_mv 2022-11-15T20:50:14Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/893
dc.identifier.doi.none.fl_str_mv 10.28919/jmcs/5212
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/893
identifier_str_mv 10.28919/jmcs/5212
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Journal of Mathematical and Computational Science
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/893/1/5212-11744-1-PB.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/893/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/893/3/license.txt
bitstream.checksum.fl_str_mv cdcf67e6dcef2205bd0f343166956348
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1812132170692558848
spelling GRANADOS, CARLOS989360de-282a-46d3-90c9-d42dbe1ea3812022-11-15T20:50:14Z2022-11-15T20:50:14Z2020-12-292020-11-15https://hdl.handle.net/20.500.12834/89310.28919/jmcs/5212Universidad del AtlánticoRepositorio Universidad del AtlánticoIn this paper, we used the notion of triclosure spaces to introduce and study the concept of semi-open set in triclosure spaces. Besides, we show some of their properties. Moreover, the notions of semi-continuous and semi-irresolute functions in a triclosure spaces are studied. Furthermore, we prove some of their properties.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Mathematical and Computational ScienceA NOTE ON SEMI-OPEN SETS IN TRICLOSURE SPACESPúblico generalTriclosure spaces; semi-open sets; semi-continuous functions; semi-irresolute functions.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede Norte[1] C. Boonpok, On continuous maps in closure spaces, Gen. Math. 17(2) (2009), 127-134.[2] C. Boonpok, J. Khampakdee, Between closed sets and generalized closed sets in closure spaces, Acta Math. Univ. Ostrav. 16 (2008), 3-14[3] E. Cech, Topological spaces, in: Topological Papers of Eduard Cech, Academia, Prague, 1968, 436–472.[4] J. Chvalina, On homeomorphic and equivalent set-systems, Arch. Math. 12 (1976), 107-116[5] J. Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. 17 (1981), 81-86[6] C. Granados, An introduction on triclosure spaces, J. Appl. Sci. Comput. 7(5) (2020), 59-63.[7] J. Khampakdee, C. Boonpok, Semi-open sets in biclosure spaces, Discuss. Math. Gen. Algebra Appl. 29 (2009), 181-201[8] M. Kovar, On 3-Topological Version of Theta- Regularity. Int. J. Math. Math. Sci. 23(6) (2000), 393-398.[9] N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Month. 70 (1963), 36–41.http://purl.org/coar/resource_type/c_6501ORIGINAL5212-11744-1-PB.pdf5212-11744-1-PB.pdfapplication/pdf125059https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/893/1/5212-11744-1-PB.pdfcdcf67e6dcef2205bd0f343166956348MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/893/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/893/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/893oai:repositorio.uniatlantico.edu.co:20.500.12834/8932022-11-15 15:50:15.206DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==