Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents

Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administ...

Full description

Autores:
Orozco, Dayana
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/786
Acceso en línea:
https://hdl.handle.net/20.500.12834/786
Palabra clave:
Alkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_801d78c9199e3b918c594285c8afbea2
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/786
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
title Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
spellingShingle Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
Alkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis.
title_short Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
title_full Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
title_fullStr Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
title_full_unstemmed Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
title_sort Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
dc.creator.fl_str_mv Orozco, Dayana
dc.contributor.author.none.fl_str_mv Orozco, Dayana
dc.contributor.other.none.fl_str_mv Kouznetsov, Vladimir V.
Bermudez, Armando
Vargas Mendez, Leonor Y.
Mendoza Salgado, Arturo Rene
Melendez Gomez, Carlos Mario
dc.subject.keywords.spa.fl_str_mv Alkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis.
topic Alkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis.
description Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, – Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedl¨ander synthesis, Conrad– Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-12-19
dc.date.submitted.none.fl_str_mv 2019-11-26
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:16:39Z
dc.date.available.none.fl_str_mv 2022-11-15T19:16:39Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/786
dc.identifier.doi.none.fl_str_mv 10.1039/c9ra09905k
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/786
identifier_str_mv 10.1039/c9ra09905k
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Química
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Royal Society of Chemistry
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/1/c9ra09905k.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/3/license.txt
bitstream.checksum.fl_str_mv 6b8a57a7249bac1f32b9eff2914bb711
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203418483359744
spelling Orozco, Dayana756553c8-6ed9-425a-aa69-2293af60d679Kouznetsov, Vladimir V.Bermudez, ArmandoVargas Mendez, Leonor Y.Mendoza Salgado, Arturo ReneMelendez Gomez, Carlos Mario2022-11-15T19:16:39Z2022-11-15T19:16:39Z2019-12-192019-11-26https://hdl.handle.net/20.500.12834/78610.1039/c9ra09905kUniversidad del AtlánticoRepositorio Universidad del AtlánticoLeishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, – Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedl¨ander synthesis, Conrad– Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Royal Society of ChemistryRecent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agentsPúblico generalAlkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede Norte1 M. Njoroge, N. M. Njuguna, P. Mutai, D. S. Ongarora, P. W. Smith and K. Chibale, Chem. Rev., 2014, 114, 11138– 11163.2 P. M. Njogu and K. Chibale, Curr. Med. Chem., 2013, 20, 1715–1742.3 A. Kryshchyshyn, D. Kaminskyy, P. Grellier and R. Lesyk, Eur. J. Med. Chem., 2014, 85, 51–64.4 S. Vandekerckhove and M. D’hooghe, Bioorg. Med. Chem., 2015, 23, 5098–5119.5 P. Y. Chung, Z. X. Bian, H. Y. Pun, D. Chan, A. S. Chan, C. H. Chui, J. T. Tang and K. H. Lam, Future Med. Chem., 2015, 7, 947–967.6 V. V. Kouznetsov, L. Y. Vargas-M´endez and C. M. Mel´endez, Curr. Org. Chem., 2005, 9, 141–161; S. Madapa, Z. Tusi and S. Batra, Curr. Med. Chem., 2008, 12, 1116–1183.7 S. Madapa, Z. Tusi and S. Batra, Curr. Med. Chem., 2008, 12, 1116–1183.8 A. Marella, O. P. Tanwar, R. Saha, M. R. Ali, S. Srivastava, M. Akhter, S. Srivastava, M. Akhter, M. Shaquiquzzaman and M. M. Alam, Saudi Pharm. J., 2013, 21, 1–12.9 S.M. Prajapati, K. D. Patel, R. H. Vekariya, S. N. Panchal and H. D. Patel, RSC Adv., 2014, 4, 24463–24476.10 J. B. Bharate, R. A. Vishwakarma and S. B. Bharat, RSC Adv., 2015, 5, 42020–42053.11 G. A. Ramann and B. J. Cowen, Molecules, 2016, 21, 986– 1009.12 K. Stuart, R. Brun, S. L. Cro, A. Fairlamb, R. E. G¨urtler, J. McKerrow, S. Reed and R. Tarleton, J. Clin. Invest., 2008, 118, 1301–1310.13 E. Castillo, M. A. Dea-Ayuela, F. Bol´as-Fern´andez, M. Rangel and M. E. Gonz´alez-Rosende, Curr. Med. Chem., 2010, 17, 4027–4051.14 A. Cavalli, F. Lizzi, S. Bongarzone, F. Belluti, L. Piazzi and M. L. Bolognesi, FEMS Immunol. Med. Microbiol., 2010, 58, 51–60.15 L. S. Bernardes, C. L. Zani and I. Carvalho, Curr. Med. Chem., 2013, 20, 2673–2696.16 A. S. Nagle, S. Khare, A. B. Kumar, F. Supek, A. Buchynskyy, C. J. Mathison, N. K. Chennamaneni, N. Pendem, F. S. Buckner, M. H. Gelb and V. Molteni, Chem. Rev., 2014, 114, 11305–11347.17 M. C. Field, D. Horn, A. H. Fairlamb, M. A. Ferguson, D. W. Gray, K. D. Read, M. De Rycker, L. S. Torrie, P. G. Wyatt, S. Wyllie and I. H. Gilbert, Nat. Rev. Microbiol., 2017, 15, 217–231.18 B. Zulqar, T. B. Shelper and V. M. Aver, Drug Discovery Today, 2017, 22, 1516–1531.19 M. P. Barrett and S. L. Cro, Br. Med. Bull., 2012, 104, 175– 196.20 C. Bern, Chagas' Disease, N. Engl. J. Med., 2015, 373, 456– 466.21 M. T. Scotti, L. Scotti, H. Ishiki, F. F. Ribeiro, R. M. Duarte da Cruz, M. P. de Oliveira and F. J. B. Mendonça, Comb. Chem. High Throughput Screen., 2016, 19, 537–553.22 M. Willcox, Planta Med., 2011, 77, 662–671.23 V. V. Kouznetsov and A. G´omez-Barrio, Eur. J. Med. Chem., 2009, 44, 3091–3113.24 V. V. Kouznetsov, New Quinoline-Based Multiple Ligands in Antimalarial Drug Development in: Antimalarial Drug Research and Development, ed. A. C. Banet and P. E. Brassier, Nova Biomedica, New York, 2013, ch. II, pp. 69– 128.25 S. Hoet, F. Opperdoes, R. Brun and J. Quetin-Leclercq, Nat. Prod. Rep., 2004, 21, 353–364.26 M. J. Chan-Bacab and L. M. Pena-Rodriguez, Nat. Prod. Rep., 2001, 18, 674–688.27 X. Ma, C. Tan, D. Zhu, D. R. Gang and P. Xiao, J. Ethnopharmacol., 2007, 113, 15–34.28 A. J. Oluwafemi, E. O. Okanla, P. Camps, D. Mu˜noz- Torrerob, Z. B. Mackey, P. K. Chiang, S. Seville and C. W. Wright, Nat. Prod. Commun., 2009, 4, 193–198.29 A. Fournet, R. Hocquemiller, F. Roblot, A. Cav´e, P. Richomme and J. Bruneton, J. Nat. Prod., 1993, 56, 1547–1552.30 A. Fournet, M. E. Ferreira, A. Rojas de Arias, S. Torres de Ortiz, S. Fuentes, H. Nakayama, A. Schinini and R. Hocquemiller, Antimicrob. Agents Chemother., 1996, 40, 2447–2451.31 K. A. Reynolds, W. A. Loughlin and D. J. Young, Mini-Rev. Med. Chem., 2013, 13, 730–743.32 F. Zongo, C. Ribuot, A. Boumendjel and I. Guissou, J. Ethnopharmacol., 2013, 148, 14–26.33 S. Cretton, L. Breant, L. Pourrez, C. Ambuehl, L. Marcourt, S. N. Ebrahimi, M. Hamburger, R. Perozzo, S. Karimou, M. Kaiser, M. Muriel and M. Cuendet, J. Nat. Prod., 2014, 77, 2304–2311.34 J. L. Tucker, Org. Process Res. Dev., 2006, 10, 315–319.35 V. F. Batista, D. C. Pinto and A. Silva A, ACS Sustain. Chem. Eng., 2016, 4, 4064–4078.36 M. A. Fakhfakh, X. Franck, A. Fournet, R. Hocquemiller and B. Figad`ere, Tetrahedron Lett., 2001, 42, 3847–3850.37 M. A. Fakhfakh, A. Fournet, E. Prina, J. F. Mouscadet, X. Franck, R. Hocquemiller and B. Figad`ere, Bioorg. Med. Chem., 2003, 11, 5013–5023.38 N. Campos-Vieira, C. Herrenknecht, J. Vacus, A. Fournet, C. Bories, B. Figad`ere, L. S. Espindola and P. M. Loiseau, Biomed. Pharmacother., 2008, 62, 684–689.39 A. Fournet, A. A. Barrios, V. Mu˜noz, R. Hocquemiller, F. Roblot, J. Bruneton, P. Richomme and J. C. Gantier, US Patent no. 5541196, 1996.40 H. Nakayama, P. M. Loiseau, C. Bories, S. T. de Ortiz, A. Schinini, E. Serna, A. R. de Arias, M. A. Fakhfakh, X. Franck, B. Figad`ere, R. Hocquemiller and A. Fournet, Antimicrob. Agents Chemother., 2005, 49, 4950–4956.41 S. A. Yamashkin and E. A. Oreshkina, Chem. Heterocycl. Compd., 2006, 42, 701–718.42 V. V. Kouznetsov, Tetrahedron, 2009, 65, 2721–2750.43 P. Shah, D. Naik, N. Jariwala, D. Bhadane, S. Kumar, S. Kulkarni, K. K. Bhutani and I. P. Singh, Bioorg. Chem., 2018, 80, 591–601.44 H. Nakayama, J. Desrivot, C. Bories, X. Franck, B. Figadere, R. Hocquemiller, A. Fourn`et and P. M. Loiseau, Biomed. Pharmacother., 2007, 61, 186–188.45 N. Campos-Vieira, J. Vacus, A. Fournet, R. Baudouin, C. Bories, B. S´eon-M´eniel, B. Figadere and P. M. Loiseau, Parasite, 2011, 18, 333–336.46 K. Balaraman, N. Campos-Vieira, F. Moussa, J. Vacus, S. Cojean, S. Pomel, C. Bories, B. Figad`ere, V. Kesavane and P. M. Loiseau, Biomed. Pharmacother., 2015, 76, 127– 133.47 M. A. Fakhfakh, X. Franck, A. Fournet, R. Hocquemiller and B. Figadere, Synth. Commun., 2002, 32, 2863–2875.48 M. Mart´ınez-Grueiro, C. Gim´enez-Pardo, A. G´omez-Barrio, X. Franck, A. Fournet, R. Hocquemiller, A. Fournet, R. Hocquemiller and B. Figad`ere, Il Farmaco, 2005, 60, 219–224.49 H. Saggadi, D. Luart, N. Thiebault, I. Polaert, L. Estel and C. Len, Catal. Commun., 2014, 44, 15–18.50 J. Jin, S. Guidi, Z. Abada, Z. Amara, M. Selva, M. W. George, M. Poliakoff and T. McInally, Green Chem., 2017, 19, 2439– 2447.51 A. S. Amarasekara and M. A. Hasan, Tetrahedron Lett., 2014, 55, 3319–3321.52 A. Li, C. Huang, C. W. Luo, L. J. Li, W. J. Yi, T. W. Liu and Z. S. Chao, Catal. Commun., 2017, 98, 13–16.53 J. Safari, H. S. Banitaba and S. S. Samiei, J. Chem. Sci., 2009, 121, 481–484.54 Y. Matsubara, S. Hirakawa, Y. Yamaguchi and Z. I. Yoshida, Angew. Chem., Int. Ed., 2011, 50, 7670–7673.55 K. K. Chandrashekarappa, K. M. Mahadevan and K. B. Manjappa, Tetrahedron Lett., 2013, 54, 1368–1370.56 S. T. Le, C. Yasuoka, H. Asahara and N. Nishiwaki, Molecules, 2016, 21, 827–838.57 Y. Ogata, A. Kawasaki and H. Hirata, J. Chem. Soc., Perkin Trans. 2, 1972, 1120–1124.58 K. Mekouar, J. F. Mouscadet, D. Desma¨ele, F. Subra, H. Leh, D. Savour´e, C. Auclai and J. d'Angelo, J. Med. Chem., 1998, 41, 2846–2857.59 V. V. Kouznetsov, C. M. Mel´endez G´omez, M. G. Derita, L. Svetaz, E. Del Olmo and S. A. Zacchino, Bioorg. Med. Chem., 2012, 20, 6506–6512.60 V. Sridharan, C. Avendano and J. C. Men´endez, Tetrahedron, 2009, 65, 2087–2096.61 P. M. Loiseau, S. Gupta, A. Verma, S. Srivastava, S. K. Puri, F. Sliman, M. Normand-Bayle and D. Desmaele, Antimicrob. Agents Chemother., 2011, 55, 1777–1780.62 D. E. Pearson, R. D. Wysong and C. V Breder, J. Org. Chem., 1967, 32, 2358–2360.63 F. Tr´ecourt, M. Mallet, F. Mongin and G. Qu´eguiner, Synthesis, 1995, 1159–1162.64 M. Normand-Bayle, C. B´enard, F. Zouhiri, J. F. Mouscadet, H. Leh, C. M. Thomas, G. Mbemba, D. Desma¨ele and J. d'Angelo, Bioorg. Med. Chem. Lett., 2005, 15, 4019–4022.65 E. C. Taylor and S. F. Martin, J. Am. Chem. Soc., 1972, 94, 2874–2875.66 R. Musiol, B. Podeszwa, J. Finster, H. Niedbala and J. Polanski, Monatsh. Chem., 2006, 137, 1211–1217.67 J. Pola´nski, H. Niedbała, R. Musioł, D. Tabak, B. Podeszwa, R. Gieleciak, A. Bak, A. Palka and T. Magdziarz, Acta Pol. Pharm., 2004, 61, 3–4.68 T. N. Gavrishova, V. M. Lee, K. V. Gor’kov and M. F. Budyka, Russ. J. Appl. Chem., 2011, 84, 507–509.69 E. N. Gulakova, A. G. Sitin, L. G. Kuz’mina and O. A. Fedorova, Russ. J. Org. Chem., 2011, 47, 245–252.70 W. Cieslik, R. Musiol, J. E. Nycz, J. Jampilek, M. Vejsova, M. Wolff, B. Machura and J. Polanski, Bioorg. Med. Chem., 2012, 20, 6960–6968.71 M. Staderini, N. Cabezas, M. L. Bolognesi and J. Men´endez, Synlett, 2011, 2577–2579.72 D. Mao, G. Hong, S. Wu, X. Liu, J. Yu and L. Wang, Eur. J. Org. Chem., 2014, 3009–3019.73 Z. Jamal, Y. C. Teo and G. S. Lim, Tetrahedron, 2016, 72, 2132–2138.74 Z. Jamal and Y. C. Teo, Synlett, 2014, 25, 2049–2053.75 S. Yaragorla, G. Singh and R. Dada, Tetrahedron Lett., 2015, 56, 5924–5929.76 V. M. Li, T. N. Gavrishova and M. F. Budyka, Russ. J. Org. Chem., 2012, 48, 823–828.77 L. Xu, Z. Shao, L. Wang, H. Zhao and J. Xiao, Tetrahedron Lett., 2014, 55, 6856–6860.78 N. N. Rao and H. M. Meshram, Tetrahedron Lett., 2013, 54, 5087–5090.79 Z. L. Wang, RSC Adv., 2015, 5, 5563–5566.80 X. Y. Zhang, D. Q. Dong, T. Yue, S. H. Hao and Z. L. Wang, Tetrahedron Lett., 2014, 55, 5462–5464.81 B. Qian, P. Xie, Y. Xie and H. Huang, Org. Lett., 2011, 13, 2580–2583.82 Y. Yan, K. Xu, Y. Fang and Z. A. Wang, J. Org. Chem., 2011, 76, 6849–6855.83 B. Bachowska and G. Matusiak, Chem. Heterocycl. Compd., 2009, 45, 80–84.84 Y. G. Zhang, J. K. Xu, X. M. Li and S. K. Tian, Eur. J. Org. Chem., 2013, 3648–3652.85 Y. Li, F. Guo, Z. Zha and Z. Wang, Chem.–Asian J., 2013, 8, 534–537.86 L. Gong, L. J. Xing, T. Xu, X. P. Zhu, W. Zhou, N. Kang and B. Wang, Org. Biomol. Chem., 2014, 12, 6557–6560.87 R. Cinar, J. Nordmann, E. Dirksen and T. J. M¨uller, Org. Biomol. Chem., 2013, 11, 2597–2604.88 M. Rams-Baron, M. Dulski, A. Mrozek-Wilczkiewicz, M. Korzec, W. Cieslik, E. Spaczy´nska, P. Bartczak, A. Ratuszna, J. Polanski and R. Musiol, PLoS One, 2015, 10, e0131210.89 A. Mrozek-Wilczkiewicz, E. Spaczynska, K. Malarz, W. Cieslik, M. Rams-Baron, V. Kryˇstof and R. Musiol, PLoS One, 2015, 10, e0142678.90 M. A. A. El-Sayed, W. M. El-Husseiny, N. I. Abdel-Aziz, A. S. El-Azab, H. A. Abuelizz and A. A. M. Abdel-Aziz, J. Enzyme Inhib. Med. Chem., 2018, 33, 199–209.91 D. Kumar, A. Kumar, M. M. Qadri, M. I. Ansari, A. Gautam and A. K. Chakraborti, RSC Adv., 2015, 5, 2920–2927.92 M. Dabiri, P. Salehi, M. Baghbanzadeh and M. S. Nikcheh, Tetrahedron Lett., 2008, 49, 5366–5368.93 P. Sarma, S. Saikia and R. Borah, Synth. Commun., 2016, 46, 1187–1196.94 S. Yaragorla and P. V. Babu, Tetrahedron Lett., 2017, 58, 1879–1882.95 M. F. Baig, S. P. Shaik, V. L. Nayak, A. Alari and A. Kamal, Bioorg. Med. Chem. Lett., 2017, 27, 4039–4043.96 F. Xiao, D. Wang, G. J. Deng and F. A. Zhang, Org. Biomol. Chem., 2019, 17, 9163–9168.97 Z. Zhang, C. Pi, H. Tong, X. Cui and Y. Wu, Org. Lett., 2017, 19, 440–443.98 L. Bering and A. P. Antonchick, Org. Lett., 2015, 17, 3134– 3137.99 J. Wu, X. Cui, L. Chen, G. Jiang and Y. Wu, J. Am. Chem. Soc., 2009, 131, 13888–13889. 100 H. Xia, Y. Liu, P. Zhao, S. Gou100 H. Xia, Y. Liu, P. Zhao, S. Gou and J. Wang, Org. Lett., 2016, 18, 1796–1799.101 G. Yan, A. J. Borah and M. Yang, Adv. Synth. Catal., 2014, 356, 2375–2394.102 S. L. Khillare, M. K. Lande, N. S. Shinde and B. R. Arbad, Der Pharma Chem., 2017, 9, 30–36.103 X. Wang, X. Xie, Y. Cai, X. Yang, J. Li, Y. Li, W. Chen and M. He, Molecules, 2016, 21, 340–351.104 B. Mir and S. S. Samiei, J. Chem. Chem. Eng., 2011, 5, 644– 647.105 D. Shahabi and H. Tavakol, J. Mol. Liq., 2016, 220, 324–328.106 S. Anvar, I. Mohammadpoor-Baltork, S. Tangestaninejad, M. Moghadam, V. Mirkhani, A. R. Khosropour, A. L. Isfahani and R. Kia, ACS Comb. Sci., 2014, 16, 93–100.107 X. F. Lin, S. L. Cui and Y. G. Wang, Tetrahedron Lett., 2006, 47, 3127–3130.108 P. J. Stevenson, P. He and B. Daly, Tetrahedron, 2014, 70, 7350–7357.109 S. Mahat, A. Mukherjee, S. Santra, G. V. Zyryanov and A. Majee, Org. Biomol. Chem., 2019, 17, 7907–7917.109 S. Mahat, A. Mukherjee, S. Santra, G. V. Zyryanov and A. Majee, Org. Biomol. Chem., 2019, 17, 7907–7917.110 Y. Li, X. Cao, Y. Liu and J. P. Wan, Org. Biomol. Chem., 2017, 15, 9585–9589.111 X. Gen, X. Wu, P. Zhao, J. Zhang, Y. D. Wu and A. X. Wu, Org. Lett., 2017, 19, 4179–4182.112 R. S. Upadhayaya, S. S. Dixit, A. F¨oldesi and J. Chattopadhyaya, Bioorg. Med. Chem. Lett., 2013, 23, 2750–2758.113 C. E Brown, J. McNulty, C. Bord´on, R. Yolken and L. Jones- Brando, Org. Biomol. Chem., 2016, 14, 5951–5955.114 D. Bompart, J. N´u˜nez-Dur´an, D. Rodr´ıguez, V. V. Kouznetsov, C. M. Mel´endez, F. Sojo, F. Arvelo, G. Visbal, A. Alvarez, X. Serrano-Mart´ın and Y. Garc´ıa- March´an, Bioorg. Med. Chem. Lett., 2013, 21, 4426–4431.115 V. V. Kouznetsov, L. Y. Vargas, S. Milena, U. Mora Cruz, C. A. Coronado, C. M. Mel´endez, A. R. Romero and P. Escobar Rivero, Lett. Drug Des. Discov., 2007, 4, 293–296.116 A. S. G. Nefertiti, M. M. Batista, P. B. Da Silva, D. G. J. Batista, C. F. Da Silva, R. B. Peres, E. C. Torres- Santos, E. F. Cunha-Junior, E. Holt, D. W. Boykin, R. Brun, T. Wenzler and M. N. C. Soeiro, Antimicrob. Agents Chemother., 2018, 62, e01936-17.117 X. S. Wang, J. Zhou, M. Y. Yin, K. Yang and S. J. Tu, J. Comb. Chem., 2010, 12, 266–269.118 C. R. Borel, L. C. A. Barbosa, C. R. ´A Maltha and S. A. A Fernandes, Tetrahedron Lett., 2015, 56, 662–665.119 P. P. Varma, B. Sherigara, K. M. Mahadevan and V. Hulikal, Synth. Commun., 2010, 40, 2220–2231.120 K. H. Narasimhamurthy, S. Chandrappa, K. S. S Kumar, T. R. Swaroop and K. S. Rangappa, Chem. Lett., 2013, 42, 1073–1075.121 X. Xu, X. Zhang, W. Liu, Q. Zhao, Z. Wang, L. Yu and F. Shi, Tetrahedron Lett., 2015, 56, 3790–3792.122 S. Das, S. D. Maiti and S. De Sarkar, J. Org. Chem., 2018, 83, 2309–2316.123 N. T. Patil and V. S. Raut, J. Org. Chem., 2010, 75, 6961–6964.124 O. De Paolis, L. Teixeira and B. T¨or¨ok, Tetrahedron Lett., 2009, 50, 2939–2942.125 Z. Zheng, G. Deng and Y. Liang, RSC Adv., 2016, 6, 103478– 103481.126 Y. Liu, Y. Hu, Z. Cao, X. Zhan, W. Luo, Q. Liu and C. Guo, Adv. Synth. Catal., 2018, 360, 2691–2695.127 Q. Wang, M. Wang, H. J. Li, S. Zhu, Y. Liu and Y. C. Wu, Synthesis, 2016, 48, 3985–3995.128 C. Xu, H. M. Li, X. E. Yuan, Z. Q. Xiao, Z. Q. Wang, W. J Fu, B. J. Ji and X. Q. Hao, Org. Biomol. Chem., 2014, 12, 3114– 3122.129 X. Zhang, X. Xu, L. Yu and Q. Zhao, Tetrahedron Lett., 2014, 55, 2280–2282.130 S. Y. Lee, J. Jeon and C. H. Cheon, J. Org. Chem., 2018, 83, 5177–5186.131 S. Y. Lee and C. H. Cheon, J. Org. Chem., 2018, 83, 13036– 13044.132 X. Ren, S. Han, X. Gao, J. Li, D. Zou, Y. Wu and Y. Wu, Tetrahedron Lett., 2018, 59, 1065–1068.133 Y. Zhang, M. Wang, P. Li and L. Wang, Org. Lett., 2012, 14, 2206–2209.134 H. Sharghi, M. Aberi, M. Khataminejad and P. Shiri, Beilstein J. Org. Chem., 2017, 13, 1977–1981.135 P. Zhang, Y. Yang, Z. Chen, Z. Xu, X. Xu, Z. Zhou, X. Yu and W. Yi, Adv. Synth. Catal., 2019, 361, 3002–3007.136 X. Zhang and X. Xu, Chem.–Asian J., 2014, 9, 3089–3093.137 X. Xu, Y. Yang, X. Chen, X. Zhang and W. Yi, Org. Biomol. Chem., 2017, 15, 9061–9065.138 S. D. Jadhav and A. Singh, Org. Lett., 2017, 19, 5673–5676.139 X. Xu, Y. Yang, X. Zhang and W. Yi, Org. Lett., 2018, 20, 566– 569.140 M. Phanindrudu, S. B. Wakade, D. K. Tiwari, P. R. Likhar and D. K. Tiwari, J. Org. Chem., 2018, 83, 9137–9143.141 T. S. Jiang, X. Wang and X. Zhang, Tetrahedron Lett., 2018, 59, 2979–2982.142 J. Tummatorn, C. Thongsornkleeb and S. Ruchirawat, Tetrahedron, 2012, 68, 4732–4739.143 J. Tummatorn, P. Poonsilp, P. Nimnual, J. Janprasit, C. Thongsornkleeb and S. Ruchirawat, J. Org. Chem., 2015, 80, 4516–4525.144 C. Z. Luo, P. Gandeepan, Y. C. Wu, W. C. Chen and C. H. Cheng, RSC Adv., 2015, 5, 106012–106018.145 W. H. Pearson and W. K. Fang, Isr. J. Chem., 1997, 37, 39–46.146 X. Pang, M. Wu, J. Ni, F. Zhang, J. Lan, B. Chen and R. Yan, J. Org. Chem., 2017, 82, 10110–10120.147 R. Sharma, P. Kour and A. A. Kumar, J. Chem. Sci., 2018, 130, 73–98.148 M. Fallah-Mehrjardi, Mini-Rev. Org. Chem., 2017, 14, 187– 196.149 X. Xu, W. Liu, Z. Wang, Y. Feng, Y. Yan and X. Zhang, Tetrahedron Lett., 2016, 57, 226–229.150 S. Liu, G. Li and F. Xu, J. Chin. Chem. Soc., 2018, 1–5.151 X. Zhang and X. Xu, Chem.–Asian J., 2014, 9, 3089–3093.152 F. Xiao, Y. Chen, Y. Liu and J. Wang, Tetrahedron, 2008, 64, 2755–2761.153 C. E. Meyet and C. H. Larsen, J. Org. Chem., 2014, 79, 9835– 9841. 154 P. B. Sarode154 P. B. Sarode, S. P. Bahekar and H. S. Chandak, Tetrahedron Lett., 2016, 57, 5753–5756.155 X. Li, Z. Mao, Y. Wang, Y. W. Chen and X. Lin, Tetrahedron, 2011, 67, 3858–3862.156 V. Fasano, J. E. Radcliffe and M. J. Ingleson, Organometallics, 2017, 36, 1623–1629.157 Y. J. Tan, F. J. Wang, A. M. Asirib, H. M. Marwanib and Z. Zhang, J. Chin. Chem. Soc., 2018, 65, 65–73.158 F. Zhang, Q. Lai, X. Shi and Z. Song, Chin. Chem. Lett., 2018, 30, 392–394.159 H. Xu, W. Chen, P. Zhan and X. Liu, MedChemComm, 2015, 6, 61–74.160 V. Oliveri and G. Vecchio, Eur. J. Med. Chem., 2016, 120, 252–274.161 M. Albrecht, M. Fiege and O. Osetska, Coord. Chem. Rev., 2008, 252, 812–824.162 S. Yu, J. Wu, H. Lan, H. Xu, X. Shi, X. Zhu and Z. Yin, RSC Adv., 2018, 8, 33968–33971.163 K. M. Jiang, J. A. Kang, Y. Jin and J. Lin, Org. Chem. Front., 2018, 5, 434–441.164 J. Yang, X. Meng, K. Lu, Z. Lu, M. Huang and C. Wang, RSC Adv., 2018, 8, 31603–31607.165 M. Zhong, S. Sun, J. Cheng and Y. Shao, J. Org. Chem., 2016, 81, 10825–10831.166 W. Ahmed, S. Zhang, X. Yu, Y. Yamamoto and M. Bao, Green Chem., 2018, 20, 261–265.167 P. Gisbert, M. Albert-Soriano and I. M. Pastor, Eur. J. Org Chem., 2019, 4928–4940.168 P. da Silveira, S. Ligia and T. R. A. Vasconcelos, Mini-Rev. Org. Chem., 2019, 16, 602–608.http://purl.org/coar/resource_type/c_6501ORIGINALc9ra09905k.pdfc9ra09905k.pdfapplication/pdf3148969https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/1/c9ra09905k.pdf6b8a57a7249bac1f32b9eff2914bb711MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/786oai:repositorio.uniatlantico.edu.co:20.500.12834/7862022-11-15 14:16:40.163DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==