Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administ...
- Autores:
-
Orozco, Dayana
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/786
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/786
- Palabra clave:
- Alkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis.
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_801d78c9199e3b918c594285c8afbea2 |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/786 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents |
title |
Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents |
spellingShingle |
Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents Alkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis. |
title_short |
Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents |
title_full |
Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents |
title_fullStr |
Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents |
title_full_unstemmed |
Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents |
title_sort |
Recent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents |
dc.creator.fl_str_mv |
Orozco, Dayana |
dc.contributor.author.none.fl_str_mv |
Orozco, Dayana |
dc.contributor.other.none.fl_str_mv |
Kouznetsov, Vladimir V. Bermudez, Armando Vargas Mendez, Leonor Y. Mendoza Salgado, Arturo Rene Melendez Gomez, Carlos Mario |
dc.subject.keywords.spa.fl_str_mv |
Alkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis. |
topic |
Alkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis. |
description |
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, – Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedl¨ander synthesis, Conrad– Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-12-19 |
dc.date.submitted.none.fl_str_mv |
2019-11-26 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T19:16:39Z |
dc.date.available.none.fl_str_mv |
2022-11-15T19:16:39Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/786 |
dc.identifier.doi.none.fl_str_mv |
10.1039/c9ra09905k |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/786 |
identifier_str_mv |
10.1039/c9ra09905k Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Química |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
Royal Society of Chemistry |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/1/c9ra09905k.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/3/license.txt |
bitstream.checksum.fl_str_mv |
6b8a57a7249bac1f32b9eff2914bb711 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203418483359744 |
spelling |
Orozco, Dayana756553c8-6ed9-425a-aa69-2293af60d679Kouznetsov, Vladimir V.Bermudez, ArmandoVargas Mendez, Leonor Y.Mendoza Salgado, Arturo ReneMelendez Gomez, Carlos Mario2022-11-15T19:16:39Z2022-11-15T19:16:39Z2019-12-192019-11-26https://hdl.handle.net/20.500.12834/78610.1039/c9ra09905kUniversidad del AtlánticoRepositorio Universidad del AtlánticoLeishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, – Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedl¨ander synthesis, Conrad– Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Royal Society of ChemistryRecent synthetic efforts in the preparation of 2- (3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agentsPúblico generalAlkaloids, Chemotherapy, Cost effectiveness, Diseases, Molecules, Protozoa, Classical methods, Critical discussions, General information, Neglected tropical disease, Parasitic infections, Quinoline derivative, Reaction conditions, Sleeping sickness, Green Synthesis.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede Norte1 M. Njoroge, N. M. Njuguna, P. Mutai, D. S. Ongarora, P. W. Smith and K. Chibale, Chem. Rev., 2014, 114, 11138– 11163.2 P. M. Njogu and K. Chibale, Curr. Med. Chem., 2013, 20, 1715–1742.3 A. Kryshchyshyn, D. Kaminskyy, P. Grellier and R. Lesyk, Eur. J. Med. Chem., 2014, 85, 51–64.4 S. Vandekerckhove and M. D’hooghe, Bioorg. Med. Chem., 2015, 23, 5098–5119.5 P. Y. Chung, Z. X. Bian, H. Y. Pun, D. Chan, A. S. Chan, C. H. Chui, J. T. Tang and K. H. Lam, Future Med. Chem., 2015, 7, 947–967.6 V. V. Kouznetsov, L. Y. Vargas-M´endez and C. M. Mel´endez, Curr. Org. Chem., 2005, 9, 141–161; S. Madapa, Z. Tusi and S. Batra, Curr. Med. Chem., 2008, 12, 1116–1183.7 S. Madapa, Z. Tusi and S. Batra, Curr. Med. Chem., 2008, 12, 1116–1183.8 A. Marella, O. P. Tanwar, R. Saha, M. R. Ali, S. Srivastava, M. Akhter, S. Srivastava, M. Akhter, M. Shaquiquzzaman and M. M. Alam, Saudi Pharm. J., 2013, 21, 1–12.9 S.M. Prajapati, K. D. Patel, R. H. Vekariya, S. N. Panchal and H. D. Patel, RSC Adv., 2014, 4, 24463–24476.10 J. B. Bharate, R. A. Vishwakarma and S. B. Bharat, RSC Adv., 2015, 5, 42020–42053.11 G. A. Ramann and B. J. Cowen, Molecules, 2016, 21, 986– 1009.12 K. Stuart, R. Brun, S. L. Cro, A. Fairlamb, R. E. G¨urtler, J. McKerrow, S. Reed and R. Tarleton, J. Clin. Invest., 2008, 118, 1301–1310.13 E. Castillo, M. A. Dea-Ayuela, F. Bol´as-Fern´andez, M. Rangel and M. E. Gonz´alez-Rosende, Curr. Med. Chem., 2010, 17, 4027–4051.14 A. Cavalli, F. Lizzi, S. Bongarzone, F. Belluti, L. Piazzi and M. L. Bolognesi, FEMS Immunol. Med. Microbiol., 2010, 58, 51–60.15 L. S. Bernardes, C. L. Zani and I. Carvalho, Curr. Med. Chem., 2013, 20, 2673–2696.16 A. S. Nagle, S. Khare, A. B. Kumar, F. Supek, A. Buchynskyy, C. J. Mathison, N. K. Chennamaneni, N. Pendem, F. S. Buckner, M. H. Gelb and V. Molteni, Chem. Rev., 2014, 114, 11305–11347.17 M. C. Field, D. Horn, A. H. Fairlamb, M. A. Ferguson, D. W. Gray, K. D. Read, M. De Rycker, L. S. Torrie, P. G. Wyatt, S. Wyllie and I. H. Gilbert, Nat. Rev. Microbiol., 2017, 15, 217–231.18 B. Zulqar, T. B. Shelper and V. M. Aver, Drug Discovery Today, 2017, 22, 1516–1531.19 M. P. Barrett and S. L. Cro, Br. Med. Bull., 2012, 104, 175– 196.20 C. Bern, Chagas' Disease, N. Engl. J. Med., 2015, 373, 456– 466.21 M. T. Scotti, L. Scotti, H. Ishiki, F. F. Ribeiro, R. M. Duarte da Cruz, M. P. de Oliveira and F. J. B. Mendonça, Comb. Chem. High Throughput Screen., 2016, 19, 537–553.22 M. Willcox, Planta Med., 2011, 77, 662–671.23 V. V. Kouznetsov and A. G´omez-Barrio, Eur. J. Med. Chem., 2009, 44, 3091–3113.24 V. V. Kouznetsov, New Quinoline-Based Multiple Ligands in Antimalarial Drug Development in: Antimalarial Drug Research and Development, ed. A. C. Banet and P. E. Brassier, Nova Biomedica, New York, 2013, ch. II, pp. 69– 128.25 S. Hoet, F. Opperdoes, R. Brun and J. Quetin-Leclercq, Nat. Prod. Rep., 2004, 21, 353–364.26 M. J. Chan-Bacab and L. M. Pena-Rodriguez, Nat. Prod. Rep., 2001, 18, 674–688.27 X. Ma, C. Tan, D. Zhu, D. R. Gang and P. Xiao, J. Ethnopharmacol., 2007, 113, 15–34.28 A. J. Oluwafemi, E. O. Okanla, P. Camps, D. Mu˜noz- Torrerob, Z. B. Mackey, P. K. Chiang, S. Seville and C. W. Wright, Nat. Prod. Commun., 2009, 4, 193–198.29 A. Fournet, R. Hocquemiller, F. Roblot, A. Cav´e, P. Richomme and J. Bruneton, J. Nat. Prod., 1993, 56, 1547–1552.30 A. Fournet, M. E. Ferreira, A. Rojas de Arias, S. Torres de Ortiz, S. Fuentes, H. Nakayama, A. Schinini and R. Hocquemiller, Antimicrob. Agents Chemother., 1996, 40, 2447–2451.31 K. A. Reynolds, W. A. Loughlin and D. J. Young, Mini-Rev. Med. Chem., 2013, 13, 730–743.32 F. Zongo, C. Ribuot, A. Boumendjel and I. Guissou, J. Ethnopharmacol., 2013, 148, 14–26.33 S. Cretton, L. Breant, L. Pourrez, C. Ambuehl, L. Marcourt, S. N. Ebrahimi, M. Hamburger, R. Perozzo, S. Karimou, M. Kaiser, M. Muriel and M. Cuendet, J. Nat. Prod., 2014, 77, 2304–2311.34 J. L. Tucker, Org. Process Res. Dev., 2006, 10, 315–319.35 V. F. Batista, D. C. Pinto and A. Silva A, ACS Sustain. Chem. Eng., 2016, 4, 4064–4078.36 M. A. Fakhfakh, X. Franck, A. Fournet, R. Hocquemiller and B. Figad`ere, Tetrahedron Lett., 2001, 42, 3847–3850.37 M. A. Fakhfakh, A. Fournet, E. Prina, J. F. Mouscadet, X. Franck, R. Hocquemiller and B. Figad`ere, Bioorg. Med. Chem., 2003, 11, 5013–5023.38 N. Campos-Vieira, C. Herrenknecht, J. Vacus, A. Fournet, C. Bories, B. Figad`ere, L. S. Espindola and P. M. Loiseau, Biomed. Pharmacother., 2008, 62, 684–689.39 A. Fournet, A. A. Barrios, V. Mu˜noz, R. Hocquemiller, F. Roblot, J. Bruneton, P. Richomme and J. C. Gantier, US Patent no. 5541196, 1996.40 H. Nakayama, P. M. Loiseau, C. Bories, S. T. de Ortiz, A. Schinini, E. Serna, A. R. de Arias, M. A. Fakhfakh, X. Franck, B. Figad`ere, R. Hocquemiller and A. Fournet, Antimicrob. Agents Chemother., 2005, 49, 4950–4956.41 S. A. Yamashkin and E. A. Oreshkina, Chem. Heterocycl. Compd., 2006, 42, 701–718.42 V. V. Kouznetsov, Tetrahedron, 2009, 65, 2721–2750.43 P. Shah, D. Naik, N. Jariwala, D. Bhadane, S. Kumar, S. Kulkarni, K. K. Bhutani and I. P. Singh, Bioorg. Chem., 2018, 80, 591–601.44 H. Nakayama, J. Desrivot, C. Bories, X. Franck, B. Figadere, R. Hocquemiller, A. Fourn`et and P. M. Loiseau, Biomed. Pharmacother., 2007, 61, 186–188.45 N. Campos-Vieira, J. Vacus, A. Fournet, R. Baudouin, C. Bories, B. S´eon-M´eniel, B. Figadere and P. M. Loiseau, Parasite, 2011, 18, 333–336.46 K. Balaraman, N. Campos-Vieira, F. Moussa, J. Vacus, S. Cojean, S. Pomel, C. Bories, B. Figad`ere, V. Kesavane and P. M. Loiseau, Biomed. Pharmacother., 2015, 76, 127– 133.47 M. A. Fakhfakh, X. Franck, A. Fournet, R. Hocquemiller and B. Figadere, Synth. Commun., 2002, 32, 2863–2875.48 M. Mart´ınez-Grueiro, C. Gim´enez-Pardo, A. G´omez-Barrio, X. Franck, A. Fournet, R. Hocquemiller, A. Fournet, R. Hocquemiller and B. Figad`ere, Il Farmaco, 2005, 60, 219–224.49 H. Saggadi, D. Luart, N. Thiebault, I. Polaert, L. Estel and C. Len, Catal. Commun., 2014, 44, 15–18.50 J. Jin, S. Guidi, Z. Abada, Z. Amara, M. Selva, M. W. George, M. Poliakoff and T. McInally, Green Chem., 2017, 19, 2439– 2447.51 A. S. Amarasekara and M. A. Hasan, Tetrahedron Lett., 2014, 55, 3319–3321.52 A. Li, C. Huang, C. W. Luo, L. J. Li, W. J. Yi, T. W. Liu and Z. S. Chao, Catal. Commun., 2017, 98, 13–16.53 J. Safari, H. S. Banitaba and S. S. Samiei, J. Chem. Sci., 2009, 121, 481–484.54 Y. Matsubara, S. Hirakawa, Y. Yamaguchi and Z. I. Yoshida, Angew. Chem., Int. Ed., 2011, 50, 7670–7673.55 K. K. Chandrashekarappa, K. M. Mahadevan and K. B. Manjappa, Tetrahedron Lett., 2013, 54, 1368–1370.56 S. T. Le, C. Yasuoka, H. Asahara and N. Nishiwaki, Molecules, 2016, 21, 827–838.57 Y. Ogata, A. Kawasaki and H. Hirata, J. Chem. Soc., Perkin Trans. 2, 1972, 1120–1124.58 K. Mekouar, J. F. Mouscadet, D. Desma¨ele, F. Subra, H. Leh, D. Savour´e, C. Auclai and J. d'Angelo, J. Med. Chem., 1998, 41, 2846–2857.59 V. V. Kouznetsov, C. M. Mel´endez G´omez, M. G. Derita, L. Svetaz, E. Del Olmo and S. A. Zacchino, Bioorg. Med. Chem., 2012, 20, 6506–6512.60 V. Sridharan, C. Avendano and J. C. Men´endez, Tetrahedron, 2009, 65, 2087–2096.61 P. M. Loiseau, S. Gupta, A. Verma, S. Srivastava, S. K. Puri, F. Sliman, M. Normand-Bayle and D. Desmaele, Antimicrob. Agents Chemother., 2011, 55, 1777–1780.62 D. E. Pearson, R. D. Wysong and C. V Breder, J. Org. Chem., 1967, 32, 2358–2360.63 F. Tr´ecourt, M. Mallet, F. Mongin and G. Qu´eguiner, Synthesis, 1995, 1159–1162.64 M. Normand-Bayle, C. B´enard, F. Zouhiri, J. F. Mouscadet, H. Leh, C. M. Thomas, G. Mbemba, D. Desma¨ele and J. d'Angelo, Bioorg. Med. Chem. Lett., 2005, 15, 4019–4022.65 E. C. Taylor and S. F. Martin, J. Am. Chem. Soc., 1972, 94, 2874–2875.66 R. Musiol, B. Podeszwa, J. Finster, H. Niedbala and J. Polanski, Monatsh. Chem., 2006, 137, 1211–1217.67 J. Pola´nski, H. Niedbała, R. Musioł, D. Tabak, B. Podeszwa, R. Gieleciak, A. Bak, A. Palka and T. Magdziarz, Acta Pol. Pharm., 2004, 61, 3–4.68 T. N. Gavrishova, V. M. Lee, K. V. Gor’kov and M. F. Budyka, Russ. J. Appl. Chem., 2011, 84, 507–509.69 E. N. Gulakova, A. G. Sitin, L. G. Kuz’mina and O. A. Fedorova, Russ. J. Org. Chem., 2011, 47, 245–252.70 W. Cieslik, R. Musiol, J. E. Nycz, J. Jampilek, M. Vejsova, M. Wolff, B. Machura and J. Polanski, Bioorg. Med. Chem., 2012, 20, 6960–6968.71 M. Staderini, N. Cabezas, M. L. Bolognesi and J. Men´endez, Synlett, 2011, 2577–2579.72 D. Mao, G. Hong, S. Wu, X. Liu, J. Yu and L. Wang, Eur. J. Org. Chem., 2014, 3009–3019.73 Z. Jamal, Y. C. Teo and G. S. Lim, Tetrahedron, 2016, 72, 2132–2138.74 Z. Jamal and Y. C. Teo, Synlett, 2014, 25, 2049–2053.75 S. Yaragorla, G. Singh and R. Dada, Tetrahedron Lett., 2015, 56, 5924–5929.76 V. M. Li, T. N. Gavrishova and M. F. Budyka, Russ. J. Org. Chem., 2012, 48, 823–828.77 L. Xu, Z. Shao, L. Wang, H. Zhao and J. Xiao, Tetrahedron Lett., 2014, 55, 6856–6860.78 N. N. Rao and H. M. Meshram, Tetrahedron Lett., 2013, 54, 5087–5090.79 Z. L. Wang, RSC Adv., 2015, 5, 5563–5566.80 X. Y. Zhang, D. Q. Dong, T. Yue, S. H. Hao and Z. L. Wang, Tetrahedron Lett., 2014, 55, 5462–5464.81 B. Qian, P. Xie, Y. Xie and H. Huang, Org. Lett., 2011, 13, 2580–2583.82 Y. Yan, K. Xu, Y. Fang and Z. A. Wang, J. Org. Chem., 2011, 76, 6849–6855.83 B. Bachowska and G. Matusiak, Chem. Heterocycl. Compd., 2009, 45, 80–84.84 Y. G. Zhang, J. K. Xu, X. M. Li and S. K. Tian, Eur. J. Org. Chem., 2013, 3648–3652.85 Y. Li, F. Guo, Z. Zha and Z. Wang, Chem.–Asian J., 2013, 8, 534–537.86 L. Gong, L. J. Xing, T. Xu, X. P. Zhu, W. Zhou, N. Kang and B. Wang, Org. Biomol. Chem., 2014, 12, 6557–6560.87 R. Cinar, J. Nordmann, E. Dirksen and T. J. M¨uller, Org. Biomol. Chem., 2013, 11, 2597–2604.88 M. Rams-Baron, M. Dulski, A. Mrozek-Wilczkiewicz, M. Korzec, W. Cieslik, E. Spaczy´nska, P. Bartczak, A. Ratuszna, J. Polanski and R. Musiol, PLoS One, 2015, 10, e0131210.89 A. Mrozek-Wilczkiewicz, E. Spaczynska, K. Malarz, W. Cieslik, M. Rams-Baron, V. Kryˇstof and R. Musiol, PLoS One, 2015, 10, e0142678.90 M. A. A. El-Sayed, W. M. El-Husseiny, N. I. Abdel-Aziz, A. S. El-Azab, H. A. Abuelizz and A. A. M. Abdel-Aziz, J. Enzyme Inhib. Med. Chem., 2018, 33, 199–209.91 D. Kumar, A. Kumar, M. M. Qadri, M. I. Ansari, A. Gautam and A. K. Chakraborti, RSC Adv., 2015, 5, 2920–2927.92 M. Dabiri, P. Salehi, M. Baghbanzadeh and M. S. Nikcheh, Tetrahedron Lett., 2008, 49, 5366–5368.93 P. Sarma, S. Saikia and R. Borah, Synth. Commun., 2016, 46, 1187–1196.94 S. Yaragorla and P. V. Babu, Tetrahedron Lett., 2017, 58, 1879–1882.95 M. F. Baig, S. P. Shaik, V. L. Nayak, A. Alari and A. Kamal, Bioorg. Med. Chem. Lett., 2017, 27, 4039–4043.96 F. Xiao, D. Wang, G. J. Deng and F. A. Zhang, Org. Biomol. Chem., 2019, 17, 9163–9168.97 Z. Zhang, C. Pi, H. Tong, X. Cui and Y. Wu, Org. Lett., 2017, 19, 440–443.98 L. Bering and A. P. Antonchick, Org. Lett., 2015, 17, 3134– 3137.99 J. Wu, X. Cui, L. Chen, G. Jiang and Y. Wu, J. Am. Chem. Soc., 2009, 131, 13888–13889. 100 H. Xia, Y. Liu, P. Zhao, S. Gou100 H. Xia, Y. Liu, P. Zhao, S. Gou and J. Wang, Org. Lett., 2016, 18, 1796–1799.101 G. Yan, A. J. Borah and M. Yang, Adv. Synth. Catal., 2014, 356, 2375–2394.102 S. L. Khillare, M. K. Lande, N. S. Shinde and B. R. Arbad, Der Pharma Chem., 2017, 9, 30–36.103 X. Wang, X. Xie, Y. Cai, X. Yang, J. Li, Y. Li, W. Chen and M. He, Molecules, 2016, 21, 340–351.104 B. Mir and S. S. Samiei, J. Chem. Chem. Eng., 2011, 5, 644– 647.105 D. Shahabi and H. Tavakol, J. Mol. Liq., 2016, 220, 324–328.106 S. Anvar, I. Mohammadpoor-Baltork, S. Tangestaninejad, M. Moghadam, V. Mirkhani, A. R. Khosropour, A. L. Isfahani and R. Kia, ACS Comb. Sci., 2014, 16, 93–100.107 X. F. Lin, S. L. Cui and Y. G. Wang, Tetrahedron Lett., 2006, 47, 3127–3130.108 P. J. Stevenson, P. He and B. Daly, Tetrahedron, 2014, 70, 7350–7357.109 S. Mahat, A. Mukherjee, S. Santra, G. V. Zyryanov and A. Majee, Org. Biomol. Chem., 2019, 17, 7907–7917.109 S. Mahat, A. Mukherjee, S. Santra, G. V. Zyryanov and A. Majee, Org. Biomol. Chem., 2019, 17, 7907–7917.110 Y. Li, X. Cao, Y. Liu and J. P. Wan, Org. Biomol. Chem., 2017, 15, 9585–9589.111 X. Gen, X. Wu, P. Zhao, J. Zhang, Y. D. Wu and A. X. Wu, Org. Lett., 2017, 19, 4179–4182.112 R. S. Upadhayaya, S. S. Dixit, A. F¨oldesi and J. Chattopadhyaya, Bioorg. Med. Chem. Lett., 2013, 23, 2750–2758.113 C. E Brown, J. McNulty, C. Bord´on, R. Yolken and L. Jones- Brando, Org. Biomol. Chem., 2016, 14, 5951–5955.114 D. Bompart, J. N´u˜nez-Dur´an, D. Rodr´ıguez, V. V. Kouznetsov, C. M. Mel´endez, F. Sojo, F. Arvelo, G. Visbal, A. Alvarez, X. Serrano-Mart´ın and Y. Garc´ıa- March´an, Bioorg. Med. Chem. Lett., 2013, 21, 4426–4431.115 V. V. Kouznetsov, L. Y. Vargas, S. Milena, U. Mora Cruz, C. A. Coronado, C. M. Mel´endez, A. R. Romero and P. Escobar Rivero, Lett. Drug Des. Discov., 2007, 4, 293–296.116 A. S. G. Nefertiti, M. M. Batista, P. B. Da Silva, D. G. J. Batista, C. F. Da Silva, R. B. Peres, E. C. Torres- Santos, E. F. Cunha-Junior, E. Holt, D. W. Boykin, R. Brun, T. Wenzler and M. N. C. Soeiro, Antimicrob. Agents Chemother., 2018, 62, e01936-17.117 X. S. Wang, J. Zhou, M. Y. Yin, K. Yang and S. J. Tu, J. Comb. Chem., 2010, 12, 266–269.118 C. R. Borel, L. C. A. Barbosa, C. R. ´A Maltha and S. A. A Fernandes, Tetrahedron Lett., 2015, 56, 662–665.119 P. P. Varma, B. Sherigara, K. M. Mahadevan and V. Hulikal, Synth. Commun., 2010, 40, 2220–2231.120 K. H. Narasimhamurthy, S. Chandrappa, K. S. S Kumar, T. R. Swaroop and K. S. Rangappa, Chem. Lett., 2013, 42, 1073–1075.121 X. Xu, X. Zhang, W. Liu, Q. Zhao, Z. Wang, L. Yu and F. Shi, Tetrahedron Lett., 2015, 56, 3790–3792.122 S. Das, S. D. Maiti and S. De Sarkar, J. Org. Chem., 2018, 83, 2309–2316.123 N. T. Patil and V. S. Raut, J. Org. Chem., 2010, 75, 6961–6964.124 O. De Paolis, L. Teixeira and B. T¨or¨ok, Tetrahedron Lett., 2009, 50, 2939–2942.125 Z. Zheng, G. Deng and Y. Liang, RSC Adv., 2016, 6, 103478– 103481.126 Y. Liu, Y. Hu, Z. Cao, X. Zhan, W. Luo, Q. Liu and C. Guo, Adv. Synth. Catal., 2018, 360, 2691–2695.127 Q. Wang, M. Wang, H. J. Li, S. Zhu, Y. Liu and Y. C. Wu, Synthesis, 2016, 48, 3985–3995.128 C. Xu, H. M. Li, X. E. Yuan, Z. Q. Xiao, Z. Q. Wang, W. J Fu, B. J. Ji and X. Q. Hao, Org. Biomol. Chem., 2014, 12, 3114– 3122.129 X. Zhang, X. Xu, L. Yu and Q. Zhao, Tetrahedron Lett., 2014, 55, 2280–2282.130 S. Y. Lee, J. Jeon and C. H. Cheon, J. Org. Chem., 2018, 83, 5177–5186.131 S. Y. Lee and C. H. Cheon, J. Org. Chem., 2018, 83, 13036– 13044.132 X. Ren, S. Han, X. Gao, J. Li, D. Zou, Y. Wu and Y. Wu, Tetrahedron Lett., 2018, 59, 1065–1068.133 Y. Zhang, M. Wang, P. Li and L. Wang, Org. Lett., 2012, 14, 2206–2209.134 H. Sharghi, M. Aberi, M. Khataminejad and P. Shiri, Beilstein J. Org. Chem., 2017, 13, 1977–1981.135 P. Zhang, Y. Yang, Z. Chen, Z. Xu, X. Xu, Z. Zhou, X. Yu and W. Yi, Adv. Synth. Catal., 2019, 361, 3002–3007.136 X. Zhang and X. Xu, Chem.–Asian J., 2014, 9, 3089–3093.137 X. Xu, Y. Yang, X. Chen, X. Zhang and W. Yi, Org. Biomol. Chem., 2017, 15, 9061–9065.138 S. D. Jadhav and A. Singh, Org. Lett., 2017, 19, 5673–5676.139 X. Xu, Y. Yang, X. Zhang and W. Yi, Org. Lett., 2018, 20, 566– 569.140 M. Phanindrudu, S. B. Wakade, D. K. Tiwari, P. R. Likhar and D. K. Tiwari, J. Org. Chem., 2018, 83, 9137–9143.141 T. S. Jiang, X. Wang and X. Zhang, Tetrahedron Lett., 2018, 59, 2979–2982.142 J. Tummatorn, C. Thongsornkleeb and S. Ruchirawat, Tetrahedron, 2012, 68, 4732–4739.143 J. Tummatorn, P. Poonsilp, P. Nimnual, J. Janprasit, C. Thongsornkleeb and S. Ruchirawat, J. Org. Chem., 2015, 80, 4516–4525.144 C. Z. Luo, P. Gandeepan, Y. C. Wu, W. C. Chen and C. H. Cheng, RSC Adv., 2015, 5, 106012–106018.145 W. H. Pearson and W. K. Fang, Isr. J. Chem., 1997, 37, 39–46.146 X. Pang, M. Wu, J. Ni, F. Zhang, J. Lan, B. Chen and R. Yan, J. Org. Chem., 2017, 82, 10110–10120.147 R. Sharma, P. Kour and A. A. Kumar, J. Chem. Sci., 2018, 130, 73–98.148 M. Fallah-Mehrjardi, Mini-Rev. Org. Chem., 2017, 14, 187– 196.149 X. Xu, W. Liu, Z. Wang, Y. Feng, Y. Yan and X. Zhang, Tetrahedron Lett., 2016, 57, 226–229.150 S. Liu, G. Li and F. Xu, J. Chin. Chem. Soc., 2018, 1–5.151 X. Zhang and X. Xu, Chem.–Asian J., 2014, 9, 3089–3093.152 F. Xiao, Y. Chen, Y. Liu and J. Wang, Tetrahedron, 2008, 64, 2755–2761.153 C. E. Meyet and C. H. Larsen, J. Org. Chem., 2014, 79, 9835– 9841. 154 P. B. Sarode154 P. B. Sarode, S. P. Bahekar and H. S. Chandak, Tetrahedron Lett., 2016, 57, 5753–5756.155 X. Li, Z. Mao, Y. Wang, Y. W. Chen and X. Lin, Tetrahedron, 2011, 67, 3858–3862.156 V. Fasano, J. E. Radcliffe and M. J. Ingleson, Organometallics, 2017, 36, 1623–1629.157 Y. J. Tan, F. J. Wang, A. M. Asirib, H. M. Marwanib and Z. Zhang, J. Chin. Chem. Soc., 2018, 65, 65–73.158 F. Zhang, Q. Lai, X. Shi and Z. Song, Chin. Chem. Lett., 2018, 30, 392–394.159 H. Xu, W. Chen, P. Zhan and X. Liu, MedChemComm, 2015, 6, 61–74.160 V. Oliveri and G. Vecchio, Eur. J. Med. Chem., 2016, 120, 252–274.161 M. Albrecht, M. Fiege and O. Osetska, Coord. Chem. Rev., 2008, 252, 812–824.162 S. Yu, J. Wu, H. Lan, H. Xu, X. Shi, X. Zhu and Z. Yin, RSC Adv., 2018, 8, 33968–33971.163 K. M. Jiang, J. A. Kang, Y. Jin and J. Lin, Org. Chem. Front., 2018, 5, 434–441.164 J. Yang, X. Meng, K. Lu, Z. Lu, M. Huang and C. Wang, RSC Adv., 2018, 8, 31603–31607.165 M. Zhong, S. Sun, J. Cheng and Y. Shao, J. Org. Chem., 2016, 81, 10825–10831.166 W. Ahmed, S. Zhang, X. Yu, Y. Yamamoto and M. Bao, Green Chem., 2018, 20, 261–265.167 P. Gisbert, M. Albert-Soriano and I. M. Pastor, Eur. J. Org Chem., 2019, 4928–4940.168 P. da Silveira, S. Ligia and T. R. A. Vasconcelos, Mini-Rev. Org. Chem., 2019, 16, 602–608.http://purl.org/coar/resource_type/c_6501ORIGINALc9ra09905k.pdfc9ra09905k.pdfapplication/pdf3148969https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/1/c9ra09905k.pdf6b8a57a7249bac1f32b9eff2914bb711MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/786/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/786oai:repositorio.uniatlantico.edu.co:20.500.12834/7862022-11-15 14:16:40.163DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |