NEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL m

We introduce two biparametric families of Apostol-Frobenius-Euler polynomials of level m. We give some algebraic properties, as well as some other identities which connect these polynomial class with the generalized λ-Stirling type numbers of the second kind, the generalized Apostol–Bernoulli polyno...

Full description

Autores:
Bedoya, D.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/886
Acceso en línea:
https://hdl.handle.net/20.500.12834/886
Palabra clave:
generalized Apostol-type polynomials; Apostol–Frobennius–Euler polynomials; Apostol-Bernoulli polynomials of higher order; Apostol–Genocchi polynomials of higher order; generaized λ-Stirling numbers of second kind.
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIATLANT2_7b731a1a32fdc62bd878c68639bcb0d8
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/886
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv NEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL m
title NEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL m
spellingShingle NEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL m
generalized Apostol-type polynomials; Apostol–Frobennius–Euler polynomials; Apostol-Bernoulli polynomials of higher order; Apostol–Genocchi polynomials of higher order; generaized λ-Stirling numbers of second kind.
title_short NEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL m
title_full NEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL m
title_fullStr NEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL m
title_full_unstemmed NEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL m
title_sort NEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL m
dc.creator.fl_str_mv Bedoya, D.
dc.contributor.author.none.fl_str_mv Bedoya, D.
dc.contributor.other.none.fl_str_mv Ortega, M.
Ramírez, W.
Urieles, A
dc.subject.keywords.spa.fl_str_mv generalized Apostol-type polynomials; Apostol–Frobennius–Euler polynomials; Apostol-Bernoulli polynomials of higher order; Apostol–Genocchi polynomials of higher order; generaized λ-Stirling numbers of second kind.
topic generalized Apostol-type polynomials; Apostol–Frobennius–Euler polynomials; Apostol-Bernoulli polynomials of higher order; Apostol–Genocchi polynomials of higher order; generaized λ-Stirling numbers of second kind.
description We introduce two biparametric families of Apostol-Frobenius-Euler polynomials of level m. We give some algebraic properties, as well as some other identities which connect these polynomial class with the generalized λ-Stirling type numbers of the second kind, the generalized Apostol–Bernoulli polynomials, the generalized Apostol–Genocchi polynomials, the generalized Apostol–Euler polynomials and Jacobi polynomials. Finally, we will show the differential properties of this new family of polynomials.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-10-27
dc.date.submitted.none.fl_str_mv 2020-05-07
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:48:50Z
dc.date.available.none.fl_str_mv 2022-11-15T20:48:50Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/886
dc.identifier.doi.none.fl_str_mv 10.30970/ms.55.1.10-23
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/886
identifier_str_mv 10.30970/ms.55.1.10-23
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Matemáticas
dc.publisher.sede.spa.fl_str_mv Sede Norte
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/886/1/70-Article%20Text%20%28pdf%29-671-2-10-20210312.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/886/2/license.txt
bitstream.checksum.fl_str_mv bbcf1a0d40fb619f395b6f201de3f187
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203415504355328
spelling Bedoya, D.3ce2d14f-65c7-4303-bd1f-20e7e7638f40Ortega, M.Ramírez, W.Urieles, A2022-11-15T20:48:50Z2022-11-15T20:48:50Z2020-10-272020-05-07https://hdl.handle.net/20.500.12834/88610.30970/ms.55.1.10-23Universidad del AtlánticoRepositorio Universidad del AtlánticoWe introduce two biparametric families of Apostol-Frobenius-Euler polynomials of level m. We give some algebraic properties, as well as some other identities which connect these polynomial class with the generalized λ-Stirling type numbers of the second kind, the generalized Apostol–Bernoulli polynomials, the generalized Apostol–Genocchi polynomials, the generalized Apostol–Euler polynomials and Jacobi polynomials. Finally, we will show the differential properties of this new family of polynomials.application/pdfengNEW BIPARAMETRIC FAMILIES OF APOSTOL-FROBENIUS-EULER POLYNOMIALS OF LEVEL mPúblico generalgeneralized Apostol-type polynomials; Apostol–Frobennius–Euler polynomials; Apostol-Bernoulli polynomials of higher order; Apostol–Genocchi polynomials of higher order; generaized λ-Stirling numbers of second kind.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaMatemáticasSede Norteinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf21. Araci S., Acikgoz M., Construction of Fourier expansion of Apostol-Frobenius-Euler polynomials and its applications, Adv. Difference Equ., 20182. Askey R., Orthogonal polynomials and special functions, Regional Conference Series in Applied Mathematics, SIAM. J. W. Arrowsmith Ltd., Bristol 3, England, 1973. Carlitz L., Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–2604. Comtet L., Advanced combinatorics: the art of finite and infinite expansions, Reidel, Dordrecht and Boston, 1975. Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, Addison-Wesley Publishing Company, Inc., New York, 19946. Kurt B., Simsek Y., On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ., 1 (2013)7. Masjed-Jamei M., Koepf W., Symbolic computation of some power-trigonometric series, J. Symbolic Comput., 80 (2017), 273–2848. Natalini P., Bernardini A., A generalization of the Bernoulli polynomials, J. Appl. Math., 3 (2003), 155–163.9. Kilar N., Simsek Y., Two parametric kinds of Eulerian-type polynomials associated with Eulers formula, Symmetry, 11 (2019), 1–19.10. Quintana Y., Ram´irez W., Urieles A., On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo, 53 (2018).11. Quintana Y., Ram´irez W., Urieles G., Generalized Apostol-type polynomial matrix and its algebraic properties, Math. Repor., 2, (2019), №212. Quintana Y., Ram´irez, W., Urieles A., Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14, (2020), №4, 583–596.13. Ram´irez W., Castilla L., Urieles A., An extended generalized q–extensions for the Apostol type polynomials, Abstr. Appl. Anal., 2018, Article ID 2937950, DOI: 10.1155/2018/2937950.14. Ortega M., Ramirez W., Urieles A., New generalized Apostol–Frobenius-Euler polynomials and their matrix approach, Kragujevac. Journal. of Mathematics, 45 (2021), 393–407.15. Simsek Y., Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application, Fixed point Theory and Applications, 87 (2013).16. Y. Simsek, q–Analogue of twisted l–series and q–twisted Euler numbers, Journal of Number Theory, 110 (2005), 267–278.17. Y. Simsek, Generating functions for q–Apostol type Frobenius–Euler numbers and polynomials, Axioms, 1 (2012), 395–403; doi:10.3390/axioms1030395.18. Y. Simsek, O. Yurekli, V. Kurt, On interpolation functions of the twisted generalized Frobenius–Euler numbers, Advanced Studies in Contemporary Math., 15 (2007), №2, 187–194.19. Y. Simsek, T. Kim, H.M. Srivastava, q–Bernoulli numbers and polynomials associated with multiple q–zeta functions and basic L–series, Russ. J. Math. Phys., 12 (2005), №2, 241–268.20. Y. Simsek, T. Kim, D.W. Park, Y.S. Ro, L.C. Jang, S.H. Rim, An explicit formula for the multiple Frobenius-Euler numbers and polynomials, JP J. Algebra Number Theory Appl., 4 (2004), №3, 519–529.21. Srivastava H.M., Garg M., Choudhary S, A new generalization of the Bernoulli and related polynomials, Russian J. of Math. Phys., 17, (2010), 251–261.22. Srivastava H.M., Garg M., Choudhary S., Some new families of generalized Euler and Genocchi polynomials, Taiwanese J. Math., 15 (2011), №1, 283–305.23. Urieles A., Ortega M., Ramirez W., Veg S., New results on the q–generalized Bernoulli polynomials of level m, Demonstratio Mathematica, 52 (2019), 511–522.24. Urieles A., Ram´irez W., Ortega M.J., et al., Fourier expansion and integral representation generalized Apostol-type Frobenius-Euler polynomials, Adv. Differ. Equ., 534 (2020), https://doi.org/ 10.1186/s13662-020-02988-0.http://purl.org/coar/resource_type/c_6501ORIGINAL70-Article Text (pdf)-671-2-10-20210312.pdf70-Article Text (pdf)-671-2-10-20210312.pdfapplication/pdf350187https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/886/1/70-Article%20Text%20%28pdf%29-671-2-10-20210312.pdfbbcf1a0d40fb619f395b6f201de3f187MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/886/2/license.txt67e239713705720ef0b79c50b2ececcaMD5220.500.12834/886oai:repositorio.uniatlantico.edu.co:20.500.12834/8862022-11-15 15:48:51.772DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==