Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass

This work evaluated the removal of minocycline (MC) by the nonliving Chlorella sp. biomass (NLB) and modified by a lipid extraction procedure (LEB). Both biomasses have different morphology (NLB: globular-like; LEB: flakes and blocks) and size distribution. The pH showed a significant synergistic in...

Full description

Autores:
Saldaña, Karen
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/857
Acceso en línea:
https://hdl.handle.net/20.500.12834/857
https://www.scopus.com/record/display.uri?eid=2-s2.0-85121430857&doi=10.1016%2fj.biteb.2021.100921&origin=inward&txGid=245479b2c1c4079791efc4438c407f58
Palabra clave:
Bioremediation
Minocycline
Microalgae biomass
Adsorption isotherms
Adsorption mechanism
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_7ac5d234c9d2714e7a78b94833a1f893
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/857
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass
title Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass
spellingShingle Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass
Bioremediation
Minocycline
Microalgae biomass
Adsorption isotherms
Adsorption mechanism
title_short Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass
title_full Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass
title_fullStr Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass
title_full_unstemmed Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass
title_sort Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass
dc.creator.fl_str_mv Saldaña, Karen
dc.contributor.author.none.fl_str_mv Saldaña, Karen
dc.contributor.other.none.fl_str_mv Angulo, Edgardo
Mercado, Ivan
Castellar, Grey
Cubillán, Néstor
dc.subject.keywords.spa.fl_str_mv Bioremediation
Minocycline
Microalgae biomass
Adsorption isotherms
Adsorption mechanism
topic Bioremediation
Minocycline
Microalgae biomass
Adsorption isotherms
Adsorption mechanism
description This work evaluated the removal of minocycline (MC) by the nonliving Chlorella sp. biomass (NLB) and modified by a lipid extraction procedure (LEB). Both biomasses have different morphology (NLB: globular-like; LEB: flakes and blocks) and size distribution. The pH showed a significant synergistic influence on MC removal (p < 0.05). MC initial concentration (C0) and biomass dosage significantly interact, suggesting that LEB agglomeration decreased removal. NLB removed 90.8 ± 1.3% of MC and LEB 80.8 ± 1.4% at C0 = 53.89 mg/L, 50 mg of biomass and pH 10. The adsorption kinetics and isotherms suggested multilayer formation by physical and chemical adsorption on heterogeneous and macroporous surfaces. According to results, NLB as an adsorbent had an economic disadvantage because of production costs despite good removal efficiency. However, it is possible to take advantage of the biomass after removing value-added compounds (LEB) as a zero-waste strategy.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-16
dc.date.submitted.none.fl_str_mv 2021-10-06
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:45:54Z
dc.date.available.none.fl_str_mv 2022-11-15T19:45:54Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Saldaña, K., Angulo, E., Mercado, I., Castellar, G., & Cubillán, N. (2022). Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass. Bioresource Technology Reports, 17, 100921. https://doi.org/https://doi.org/10.1016/j.biteb.2021.100921
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/857
dc.identifier.doi.none.fl_str_mv 10.1016/j.biteb.2021.100921
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
dc.identifier.url.none.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85121430857&doi=10.1016%2fj.biteb.2021.100921&origin=inward&txGid=245479b2c1c4079791efc4438c407f58
identifier_str_mv Saldaña, K., Angulo, E., Mercado, I., Castellar, G., & Cubillán, N. (2022). Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass. Bioresource Technology Reports, 17, 100921. https://doi.org/https://doi.org/10.1016/j.biteb.2021.100921
10.1016/j.biteb.2021.100921
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/857
https://www.scopus.com/record/display.uri?eid=2-s2.0-85121430857&doi=10.1016%2fj.biteb.2021.100921&origin=inward&txGid=245479b2c1c4079791efc4438c407f58
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Química
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Bioresource Technology Reports
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/857/1/1-s2.0-S2589014X21002991-main.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/857/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/857/3/license.txt
bitstream.checksum.fl_str_mv 333a22b250c5d0b9fc1849342c735a12
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203420035252224
spelling Saldaña, Karen328c1f04-f3c0-4c2a-be1b-53552c1a7867Angulo, EdgardoMercado, IvanCastellar, GreyCubillán, Néstor2022-11-15T19:45:54Z2022-11-15T19:45:54Z2021-12-162021-10-06Saldaña, K., Angulo, E., Mercado, I., Castellar, G., & Cubillán, N. (2022). Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass. Bioresource Technology Reports, 17, 100921. https://doi.org/https://doi.org/10.1016/j.biteb.2021.100921https://hdl.handle.net/20.500.12834/85710.1016/j.biteb.2021.100921Universidad del AtlánticoRepositorio Universidad del Atlánticohttps://www.scopus.com/record/display.uri?eid=2-s2.0-85121430857&doi=10.1016%2fj.biteb.2021.100921&origin=inward&txGid=245479b2c1c4079791efc4438c407f58This work evaluated the removal of minocycline (MC) by the nonliving Chlorella sp. biomass (NLB) and modified by a lipid extraction procedure (LEB). Both biomasses have different morphology (NLB: globular-like; LEB: flakes and blocks) and size distribution. The pH showed a significant synergistic influence on MC removal (p < 0.05). MC initial concentration (C0) and biomass dosage significantly interact, suggesting that LEB agglomeration decreased removal. NLB removed 90.8 ± 1.3% of MC and LEB 80.8 ± 1.4% at C0 = 53.89 mg/L, 50 mg of biomass and pH 10. The adsorption kinetics and isotherms suggested multilayer formation by physical and chemical adsorption on heterogeneous and macroporous surfaces. According to results, NLB as an adsorbent had an economic disadvantage because of production costs despite good removal efficiency. However, it is possible to take advantage of the biomass after removing value-added compounds (LEB) as a zero-waste strategy.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bioresource Technology ReportsRemoval of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomassPúblico generalBioremediationMinocyclineMicroalgae biomassAdsorption isothermsAdsorption mechanisminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede NorteAalizadeh, R., von der Ohe, P.C., Thomaidis, N.S., 2017. Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by ant colony optimization-support vector machine QSTR models. Environ Sci Process Impacts 19, 438–448. https://doi.org/10.1039/C6EM00679E.Alver, E., Metin, A.Ü., 2012. Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem. Eng. J. 200–202, 59–67. https://doi.org/10.1016/j.cej.2012.06.038.Angulo, E., Bula, L., Mercado, I., Monta˜no, A., Cubill´an, N., 2018. Bioremediation of Cephalexin with non-living Chlorella sp., biomass after lipid extraction. Bioresour. Technol. 257, 17–22. https://doi.org/10.1016/j.biortech.2018.02.079.Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917. https://doi.org/10.1139/o59-099.Brigante, M., Schulz, P.C., 2012a. Adsorption of the antibiotic minocycline on cerium (IV) oxide: effect of pH, ionic strength and temperature. Microporous Mesoporous Mater. 156, 138–144.Brigante, M., Schulz, P.C., 2012b. Cerium (IV) oxide: synthesis in alkaline and acidic media, characterization and adsorption properties. Chem. Eng. J. 191, 563–570.Brigante, M., Parolo, M.E., Schulz, P.C., Avena, M., 2014. Synthesis, characterization of mesoporous silica powders and application to antibiotic remotion from aqueous solution. Effect of supported Fe-oxide on the SiO2 adsorption properties. Powder Technol. 253, 178–186.Bushra, R., Ahmed, A., Shahadat, M., 2017. Mechanism of adsorption on nanomaterials. In: RSC Detection Science. Royal Society of Chemistry, pp. 90–111. https://doi.org/ 10.1039/9781782623625-00090.Choi, K.-J., Son, H.-J., Kim, S.-H., 2007. Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic. Sci. Total Environ. 387, 247–256. https://doi.org/ 10.1016/j.scitotenv.2007.07.024.Choi, K.J., Kim, S.G., Kim, S.H., 2008. Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 151, 38–43. https://doi.org/ 10.1016/j.jhazmat.2007.05.059.Costa, J.A.V., Freitas, B.C.B., Moraes, L., Zaparoli, M., Morais, M.G., 2020. Progress in the physicochemical treatment of microalgae biomass for value-added product recovery. Bioresour. Technol. 301, 122727 https://doi.org/10.1016/J. BIORTECH.2019.122727.Daghrir, R., Drogui, P., 2013. Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11, 209–227. https://doi.org/10.1007/s10311-013-0404-8.Dalm, D., Palm, G.J., Aleksandrov, A., Simonson, T., Hinrichs, W., 2010. Nonantibiotic properties of tetracyclines: Structural basis for inhibition of secretory phospholipase A2. J. Mol. Biol. 398, 83–96. https://doi.org/10.1016/J.JMB.2010.02.049.Ebadi, A., Soltan Mohammadzadeh, J.S., Khudiev, A., 2009. What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 15, 65–73. https:// doi.org/10.1007/s10450-009-9151-3.EnkeMm, Z.E., Ngangom, B.L., Tamunjoh, S.S.A., Boyom, F.F., 2018. Antibiotic residues in food animals: public health concern. Acta Ecol. Sin. https://doi.org/10.1016/j. chnaes.2018.10.004.Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, ¨O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., 2009. Gaussian 09 Revision A.2. Wallingford.Guo, X., Su, G., Li, Z., Chang, J., Zeng, X., Sun, Y., Lu, Y., Lin, L., 2015. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp. Bioresour. Technol. 191, 385–390. https://doi.org/10.1016/J. BIORTECH.2015.04.014.Guo, W.-Q., Zheng, H.-S., Li, S., Du, J.-S., Feng, X.-C., Yin, R.-L., Wu, Q.-L., Ren, N.-Q., Chang, J.-S., 2016. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresour. Technol. 221, 284–290. https://doi.org/10.1016/J.BIORTECH.2016.09.036.Hanifzadeh, M., Sarrafzadeh, M.-H., Nabati, Z., Tavakoli, O., Feyzizarnagh, H., 2018. Technical, economic and energy assessment of an alternative strategy for mass production of biomass and lipid from microalgae. J. Environ. Chem. Eng. 6, 866–873. https://doi.org/10.1016/J.JECE.2018.01.008.Hu, X., Jia, L., Cheng, J., Sun, Z., 2019. Magnetic ordered mesoporous carbon materials for adsorption of minocycline from aqueous solution: preparation, characterization and adsorption mechanism. J. Hazard. Mater. 362, 1–8. https://doi.org/10.1016/J. JHAZMAT.2018.09.003.Kümmerer, K., Henninger, A., 2003. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 9, 1203–1214. https://doi.org/10.1111/j.1469-0691.2003.00739.x.Li, J., Zhanga, N., Ng, D.H.L., 2015. Synthesis of 3D hierarchical structure of γ-AlO(OH)/ MgAl-LDH/C and its performance in organic dyes and antibiotics adsorption. J. Mater. Chem. A 1–10.Li, L., Abild-Pedersen, F., Greeley, J., Nørskov, J.K., 2015. Surface Tension Effects on the Reactivity of Metal Nanoparticles. J. Phys. Chem. Lett. 6, 3797–3801. https://doi. org/10.1021/acs.jpclett.5b01746.Liu, M., Zhang, Y., Yang, M., Tian, Z., Ren, L., Zhang, S., 2012. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ. Sci. Technol. 46, 7551–7557. https://doi.org/10.1021/ES301145M.Lu, L., Li, J., Yu, J., Song, P., Ng, D.H.L., 2016. A hierarchically porous MgFe2O4/ γ-Fe2O3 magnetic microspheres for efficient removals of dye and pharmaceutical from water. Chem. Eng. J. 283, 524–534. https://doi.org/10.1016/j. cej.2015.07.081.Lv, J., Li, Y.M., 2018. Effect of ozonation on minocycline degradation and NNitrosodimethylamine formation. J. Environ. Sci. Health A Toxic/Hazard. Subst. Environ. Eng. 53, 617–628. https://doi.org/10.1080/10934529.2018.1429724.Martin, G.J.O., Hill, D.R.A., Olmstead, I.L.D., Bergamin, A., Shears, M.J., Dias, D.A., Kentish, S.E., Scales, P.J., Bott´e, C.Y., Callahan, D.L., 2014. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One 9, e103389. https://doi.org/10.1371/journal.pone.0103389.McKay, G., Otterburn, M.S., Sweeney, A.G., 1980. The removal of colour from effluent using various adsorbents-III. Silica: rate processes. Water Res. 14, 15–20. https://doi. org/10.1016/0043-1354(80)90037-8.Menegazzo, M.L., Fonseca, G.G., 2019. Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. Renew. Sustain. Energy Rev. https:// doi.org/10.1016/j.rser.2019.01.064.Montes D’Oca, M.G., Viˆegas, C.V., Lem˜oes, J.S., Miyasaki, E.K., Mor´on-Villarreyes, J.A., Primel, E.G., Abreu, P.C., 2011. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenergy 35, 1533–1538. https://doi.org/10.1016/J.BIOMBIOE.2010.12.047.Morgan, D.J., Okeke, I.N., Laxminarayan, R., Perencevich, E.N., Weisenberg, S., 2011. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(11)70054-8.Palm, G.J., Buchholz, I., Werten, S., Girbardt, B., Berndt, L., Delcea, M., Hinrichs, W., 2020. Thermodynamics, cooperativity and stability of the tetracycline repressor (TetR) upon tetracycline binding. Biochim. Biophys. Acta - Proteins Proteomics 1868, 140404. https://doi.org/10.1016/J.BBAPAP.2020.140404.Pan, L., Cao, Y., Zang, J., Huang, Q., Wang, L., Zhang, Y., Fan, S., Tang, J., Xie, Z., 2019. Preparation of iron-loaded granular activated carbon catalyst and its application in tetracycline antibiotic removal from aqueous solution. Int. J. Environ. Res. Public Health 16, 2270. https://doi.org/10.3390/ijerph16132270.Parolo, M.E., Avena, M.J., Pettinari, G., Zajonkovsky, I., Valles, J.M., Baschini, M.T., 2010. Antimicrobial properties of tetracycline and minocycline-montmorillonites. Appl. Clay Sci. 49, 194–199. https://doi.org/10.1016/j.clay.2010.05.005.Pena, A., Paulo, M., Silva, L.J.G., Seifrtov´a, M., Lino, C.M., Solich, P., 2010. Tetracycline antibiotics in hospital and municipal wastewaters: a pilot study in Portugal. Anal. Bioanal. Chem. 3968 (396), 2929–2936. https://doi.org/10.1007/S00216-010- 3581-3, 2010.R Development Core Team, 2016. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. R A Lang. Environ. Stat. Comput.Saadi, R., Saadi, Z., Fazaeli, R., Fard, N.E., 2015. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 32, 787–799.Sajjadi, B., Chen, W.Y., Raman, A.A.A., Ibrahim, S., 2018. Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew. Sustain. Energy Rev. https://doi.org/ 10.1016/j.rser.2018.07.050.Sanganyado, E., Gwenzi, W., 2019. Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks. Sci. Total Environ. 669, 785–797. https://doi.org/10.1016/J.SCITOTENV.2019.03.162.Scrucca, L., 2013. GA : a package for genetic algorithms in R. J. Stat. Softw. 53, 1–37. https://doi.org/10.18637/jss.v053.i04.Tran, H.N., You, S.-J., Hosseini-Bandegharaei, A., Chao, H.-P., 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res. 120, 88–116. https://doi.org/10.1016/J. WATRES.2017.04.014.Tran, N.H., Reinhard, M., Gin, K.Y.-H., 2018. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 133, 182–207. https://doi.org/10.1016/J. WATRES.2017.12.029.Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A., Laxminarayan, R., 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U. S. A. 112, 5649–5654. https://doi.org/10.1073/ pnas.1503141112.Wheeler, R., 2004. AlgDesign.WHO, EMP, IAU, 2019. The 2019 WHO AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use.Wu, Y., Sun, Y., Zhou, C., Niu, J., 2019. Regeneration of porous electrospun membranes embedding alumina nanoparticles saturated with minocycline by UV radiation. Chemosphere 237, 124495. https://doi.org/10.1016/J. CHEMOSPHERE.2019.124495.Ye, C., Mu, D., Horowitz, N., Xue, Z., Chen, J., Xue, M., Zhou, Y., Klutts, M., Zhou, W., 2018. Life cycle assessment of industrial scale production of spirulina tablets. Algal Res. 34, 154–163. https://doi.org/10.1016/J.ALGAL.2018.07.013.Zhang, Z., Liu, H., Wu, L., Lan, H., Qu, J., 2015. Preparation of amino-Fe (III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper. Chemosphere 138, 625–632.Zhou, D., Qiao, B., Li, G., Xue, S., Yin, J., 2017. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions. Bioresour. Technol. 238, 609–615. https://doi.org/10.1016/J. BIORTECH.2017.04.097.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL1-s2.0-S2589014X21002991-main.pdf1-s2.0-S2589014X21002991-main.pdfapplication/pdf2216117https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/857/1/1-s2.0-S2589014X21002991-main.pdf333a22b250c5d0b9fc1849342c735a12MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/857/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/857/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/857oai:repositorio.uniatlantico.edu.co:20.500.12834/8572022-11-15 14:45:55.815DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==