Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique

In this investigation, samples of AISI 316L steel were subjected to severe plastic deformation by the groove pressing (GP) technique using 2 dies A2 type tool steel dies with dimensions of 96 mm X 96 mm, a corrugated die with 2 mm teeth and 45° angle and a flat die. Each pass through the GP die incl...

Full description

Autores:
Aragón-Lozano, Walter-Yesid
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
spa
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/889
Acceso en línea:
https://hdl.handle.net/20.500.12834/889
Palabra clave:
austenitic stainless steel; corrosion rate; groove pressing; linear polarization resistance; severe plastic deformation; Tafel plot.
acero inoxidable austenítico; curvas de Tafel; deformación plástica severa; presión calibrada; resistencia a la polarización lineal; velocidad de corrosión.
aço inoxidável austenítico; curvas de Tafel; deformação plástica severa; pressão calibrada; resistência à polarização linear; velocidade de corrosão.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_76def18d1f58c1625b0a922a3c8f3969
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/889
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique
title Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique
spellingShingle Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique
austenitic stainless steel; corrosion rate; groove pressing; linear polarization resistance; severe plastic deformation; Tafel plot.
acero inoxidable austenítico; curvas de Tafel; deformación plástica severa; presión calibrada; resistencia a la polarización lineal; velocidad de corrosión.
aço inoxidável austenítico; curvas de Tafel; deformação plástica severa; pressão calibrada; resistência à polarização linear; velocidade de corrosão.
title_short Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique
title_full Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique
title_fullStr Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique
title_full_unstemmed Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique
title_sort Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique
dc.creator.fl_str_mv Aragón-Lozano, Walter-Yesid
dc.contributor.author.none.fl_str_mv Aragón-Lozano, Walter-Yesid
dc.contributor.other.none.fl_str_mv Fernández-Vega, Luis-Felipe
Higuera-Cobos, Oscar- Fabián
Tristancho-Reyes, José-Luis
Pedraza-Yepes, Cristian-Antonio
dc.subject.keywords.spa.fl_str_mv austenitic stainless steel; corrosion rate; groove pressing; linear polarization resistance; severe plastic deformation; Tafel plot.
acero inoxidable austenítico; curvas de Tafel; deformación plástica severa; presión calibrada; resistencia a la polarización lineal; velocidad de corrosión.
aço inoxidável austenítico; curvas de Tafel; deformação plástica severa; pressão calibrada; resistência à polarização linear; velocidade de corrosão.
topic austenitic stainless steel; corrosion rate; groove pressing; linear polarization resistance; severe plastic deformation; Tafel plot.
acero inoxidable austenítico; curvas de Tafel; deformación plástica severa; presión calibrada; resistencia a la polarización lineal; velocidad de corrosión.
aço inoxidável austenítico; curvas de Tafel; deformação plástica severa; pressão calibrada; resistência à polarização linear; velocidade de corrosão.
description In this investigation, samples of AISI 316L steel were subjected to severe plastic deformation by the groove pressing (GP) technique using 2 dies A2 type tool steel dies with dimensions of 96 mm X 96 mm, a corrugated die with 2 mm teeth and 45° angle and a flat die. Each pass through the GP die includes 2 states of corrugated and 2 states of straightening with a 180° rotation between each of them. This configuration provides the material with an equivalent theoretical deformation per pass of ε~1.16. The material was deformed by 4 passes per GP to an equivalent deformation of ε~4.64. Prior to the deformation, the specimens were subjected to an annealing heat treatment for 1 hour at 1000 °C with water cooling, in order to eliminate the lamination texture. The annealed and deformed material was characterized chemically and microstructurally by X-ray fluorescence and scanning electron microscopy, respectively. In order to evaluate the corrosion behavior of the material, linear polarization resistance and analysis by Tafel plot were used in a 0.6 M NaCl solution for 0 and 24 hours. The results show an atypical behavior regarding the corrosion resistance of AISI 316L steel. An increase in corrosion resistance of 45% of the material was observed after 4 passes per GP compared to annealed material (0 passes).
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-11-25
dc.date.submitted.none.fl_str_mv 2019-09-18
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:49:29Z
dc.date.available.none.fl_str_mv 2022-11-15T20:49:29Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/889
dc.identifier.doi.none.fl_str_mv 10.19053/01211129.v29.n54.2020.10343
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/889
identifier_str_mv 10.19053/01211129.v29.n54.2020.10343
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.sede.spa.fl_str_mv Sede Norte
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/889/1/jgonzalezsanabria%2c%2bArticulo_3_Espa%c3%b1ol.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/889/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/889/3/license.txt
bitstream.checksum.fl_str_mv 407d0c5f7022061226bd3f83082aea42
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203418912227328
spelling Aragón-Lozano, Walter-Yesidf6ce77bd-deee-4fa7-94b7-bf4122407267Fernández-Vega, Luis-FelipeHiguera-Cobos, Oscar- FabiánTristancho-Reyes, José-LuisPedraza-Yepes, Cristian-Antonio2022-11-15T20:49:29Z2022-11-15T20:49:29Z2019-11-252019-09-18https://hdl.handle.net/20.500.12834/88910.19053/01211129.v29.n54.2020.10343Universidad del AtlánticoRepositorio Universidad del AtlánticoIn this investigation, samples of AISI 316L steel were subjected to severe plastic deformation by the groove pressing (GP) technique using 2 dies A2 type tool steel dies with dimensions of 96 mm X 96 mm, a corrugated die with 2 mm teeth and 45° angle and a flat die. Each pass through the GP die includes 2 states of corrugated and 2 states of straightening with a 180° rotation between each of them. This configuration provides the material with an equivalent theoretical deformation per pass of ε~1.16. The material was deformed by 4 passes per GP to an equivalent deformation of ε~4.64. Prior to the deformation, the specimens were subjected to an annealing heat treatment for 1 hour at 1000 °C with water cooling, in order to eliminate the lamination texture. The annealed and deformed material was characterized chemically and microstructurally by X-ray fluorescence and scanning electron microscopy, respectively. In order to evaluate the corrosion behavior of the material, linear polarization resistance and analysis by Tafel plot were used in a 0.6 M NaCl solution for 0 and 24 hours. The results show an atypical behavior regarding the corrosion resistance of AISI 316L steel. An increase in corrosion resistance of 45% of the material was observed after 4 passes per GP compared to annealed material (0 passes).En esta investigación, muestras de acero AISI 316L fueron sometidas a deformación plástica severa por la técnica presión calibrada (GP) mediante el uso de 2 matrices de acero de herramientas tipo A2 con dimensiones de 96 mm X 96 mm, una matriz corrugada con dientes de 2 mm y ángulo de 45° y una matriz plana. Cada pase por la matriz GP incluye 2 estados de corrugado y 2 estados de enderezado con una rotación de 180° entre cada uno de ellos. Esta configuración provee al material una deformación teórica equivalente por pase de ε~1.16. Al material fue deformado por 4 pases por GP hasta una deformación equivalente de ε~4.64. Previo a la deformación, las probetas fueron sometidas a un tratamiento térmico de recocido durante una 1 hora a 1000 °C con enfriamiento en agua, con el fin de eliminar la textura de laminación. El material en estado de recocido y deformado se caracterizó química y microestructuralmente mediante fluorescencia de rayos X y microscopía electrónica de barrido, respectivamente. Con el fin de evaluar el comportamiento a la corrosión del material, se utilizó la resistencia a la polarización lineal y el análisis mediante las curvas de Tafel en una solución de 0.6 M de NaCl por un tiempo de 0 y 24 horas. Los resultados muestran un comportamiento atípico en cuanto a la resistencia a la corrosión del acero AISI 316L. Se observó un aumento en la resistencia a la corrosión del 45% del material después de 4 pases por GP en comparación con el material recocido (0 pases).Nesta pesquisa, amostras de aço AISI 316L foram submetidas a deformação plástica severa pela técnica pressão calibrada (GP) mediante o uso de 2 matrizes de aço de ferramentas tipo A2 com dimensões de 96 mm X 96 mm, uma matriz corrugada com dentes de 2 mm e ângulo de 45° e uma matriz plana. Cada passe pela matriz GP inclui 2 estados de corrugado e 2 estados de endireitado com uma rotação de 180° entre cada um deles. Esta configuração provê ao material uma deformação teórica equivalente por passe de ε~1.16. O material foi deformado por 4 passes por GP até uma deformação equivalente de ε~4.64. Prévio à deformação, as provetas foram submetidas a um tratamento térmico de recozimento durante uma 1 hora a 1000 °C com esfriamento em água, com o fim de eliminar a textura de laminação. O material em estado de recozimento e deformado caracterizou-se química e microestruturalmente mediante fluorescência de raios X e microscopia eletrônica de varredura, respectivamente. Com o fim de avaliar o comportamento à corrosão do material, utilizou-se a resistência à polarização linear e a análise mediante as curvas de Tafel em uma solução de 0.6 M de NaCl por um tempo de 0 e 24 horas. Os resultados mostram um comportamento atípico em quanto à resistência à corrosão do aço AISI 316L. Observou-se um aumento na resistência à corrosão de 45% do material depois de 4 passes por GP em comparação com o material recozido (0 passes).application/pdfspahttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing TechniquePúblico generalaustenitic stainless steel; corrosion rate; groove pressing; linear polarization resistance; severe plastic deformation; Tafel plot.acero inoxidable austenítico; curvas de Tafel; deformación plástica severa; presión calibrada; resistencia a la polarización lineal; velocidad de corrosión.aço inoxidável austenítico; curvas de Tafel; deformação plástica severa; pressão calibrada; resistência à polarização linear; velocidade de corrosão.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede Norte[1] L. Jinlong, L. Hongyun, L. Tongxiang, and G. Wenli, “The effects of grain refinement and deformation on corrosion resistance of passive film formed on the surface of 304 stainless steels,” Materials Research Bulletin, vol. 70, pp. 896-907, 2015. https://doi.org/10.1016/j.materresbull.2015.06.030[2] S. Tanhaei, K. Gheisari, and S. R. Alavi Zaree, “Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel,” International Journal of Minerals, Metallurgy and Materials, vol. 25 (6), pp. 630-640, 2018. https://doi.org/10.1007/s12613-018- 1610-y[3] H. Miyamoto, M. Yuasa, R. Muhammad, and H. Fujiwara, “Corrosion Behavior of Severely Deformed Pure and Single-Phase Materials,” Materials Transactions, vol. 60 (7), pp. 1243-1255, 2019. https://doi.org/10.2320/matertrans.mf201935[4] X. Wu, Y. Li, Y. Guo, Q. Ruan, and J. Lu, “Grain refinement and mechanical properties of metals processed by constrained groove pressing,” Materials Science and Engineering, vol. 504, e 012027, 2019. https://doi.org/10.1088/1757-899x/504/1/012027[5] G. Faraji, H. Kim, and T. Kashi, Severe plastic deformation: methods, processing and properties, United Kingdom, Oxford: Elsevier, 2018.[6] NKS, Aceros Inoxidables 316 y 316L. https://nks.com/es/distribuidor-de-acero-inoxidable/acerosinoxidables- 316/[7] B. Fontalvo-Gelvez, and E. S. Jiménez-Lora “Comportamiento mecánico de un acero AISI 316L sometido a deformación plástica severa por la técnica presión calibrada,” Grade Thesis, Universidad del Atlántico, Barranquilla, Colombia, 2018[8] INCETEMA, Potenciostat Galvanostat PG - Tekcorr 4.2 USB, Universidad Tecnológica de Pereira, 2014.[9] American Society for Testing and Materials, G102-Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, 2015.[10] S. Kumar, and T. Raghu, "Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique," Materials & Design, vol. 57, pp. 114-120, 2014. https://doi.org/10.1016/j.matdes.2013.12.053[11] G. E. Dieter, Mechanical Metallurgy, McGraww Hill Book Company, 1988.[12] J. Avendaño, and E. Escobar, “Estudio de la resistencia a la corrosión de la aleación Ni2+XMn1-XGa en soluciones de NaCl y H2SO4 mediante técnicas electroquímicas,” Grade Thesis, Universidad del Atlántico, Barranquilla, Colombia, 2016.[13] R. Wiston, and H. Uhlig, “Corrosion and Corrosion Control”, Passivity, Eds. New Jersy: Wiley-Interscience, 2014, pp 90-95.[14] E. S. Jiménez-Lora, B. A. Fontalvo-Gélvez, O. F. Higuera-Cobos, I. C. Niño-Camacho, and H. A. González- Romero, “Effect generated by the calibrated pressure in the metallographic structure and mechanical properties of AISI 316L austenitic stainless steel,” Prospectiva, vol. 17 (1), 70-74, 2019. https://doi.org/10.15665/rp.v17i1.1825[15] American Society for Testing and Materials, G59 - Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, 2014.http://purl.org/coar/resource_type/c_6501ORIGINALjgonzalezsanabria,+Articulo_3_Español.pdfjgonzalezsanabria,+Articulo_3_Español.pdfapplication/pdf474255https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/889/1/jgonzalezsanabria%2c%2bArticulo_3_Espa%c3%b1ol.pdf407d0c5f7022061226bd3f83082aea42MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/889/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/889/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/889oai:repositorio.uniatlantico.edu.co:20.500.12834/8892022-11-15 15:49:31.025DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==