Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests

Extreme drought events have negative effects on forest diversity and functioning. At the species level, however, these effects are still unclear, as species vary in their response to drought through specific functional trait combinations. We used long-term demographic records of 21,821 trees and ext...

Full description

Autores:
González-M, Roy
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/1133
Acceso en línea:
https://hdl.handle.net/20.500.12834/1133
Palabra clave:
Biomass, demographic rates, hydraulic safety-efficiency trade-off, investment in tissues, trait probability density.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_6b5a1343686c741bee7d8ca3163dd1e4
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/1133
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests
dc.title.alternative.spa.fl_str_mv Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests
title Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests
spellingShingle Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests
Biomass, demographic rates, hydraulic safety-efficiency trade-off, investment in tissues, trait probability density.
title_short Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests
title_full Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests
title_fullStr Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests
title_full_unstemmed Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests
title_sort Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests
dc.creator.fl_str_mv González-M, Roy
dc.contributor.author.none.fl_str_mv González-M, Roy
dc.contributor.other.none.fl_str_mv M Posada, Juan
P Carmona, Carlos
Garzón, Fabián
Salinas, Viviana
Idárraga-Piedrahita, Álvaro
Pizano, Camila
Avella, Andrés
López-Camacho, René
Norden, Natalia
Nieto, Jhon
P Medina, Sandra
Rodríguez-M, Gina M
Franke-Ante, Rebeca
M Torres, Alba
Jurado, Rubén
Cuadros, Hermes
Castaño-Naranjo, Alejandro
García, Hernando
Salgado-Negret, Beatriz
dc.subject.keywords.spa.fl_str_mv Biomass, demographic rates, hydraulic safety-efficiency trade-off, investment in tissues, trait probability density.
topic Biomass, demographic rates, hydraulic safety-efficiency trade-off, investment in tissues, trait probability density.
description Extreme drought events have negative effects on forest diversity and functioning. At the species level, however, these effects are still unclear, as species vary in their response to drought through specific functional trait combinations. We used long-term demographic records of 21,821 trees and extensive databases of traits to understand the responses of 338 tropical dry forests tree species to ENSO2015, the driest event in decades in Northern South America. Functional differences between species were related to the hydraulic safety-efficiency trade-off, but unexpectedly, dominant species were characterised by high investment in leaf and wood tissues regardless of their leaf phenological habit. Despite broad functional trait combinations, tree mortality was more widespread in the functional space than tree growth, where less adapted species showed more negative net biomass balances. Our results suggest that if dry conditions increase in this ecosystem, ecological functionality and biomass gain would be reduced.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12-14
dc.date.submitted.none.fl_str_mv 2021-03-24
dc.date.accessioned.none.fl_str_mv 2022-12-17T18:40:01Z
dc.date.available.none.fl_str_mv 2022-12-17T18:40:01Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv González-M R, Posada JM, Carmona CP, Garzón F, Salinas V, Idárraga-Piedrahita Á, Pizano C, Avella A, López-Camacho R, Norden N, Nieto J, Medina SP, Rodríguez-M GM, Franke-Ante R, Torres AM, Jurado R, Cuadros H, Castaño-Naranjo A, García H, Salgado-Negret B. Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecol Lett. 2021 Mar;24(3):451-463. doi: 10.1111/ele.13659. Epub 2020 Dec 14. PMID: 33316132; PMCID: PMC9292319.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/1133
dc.identifier.doi.none.fl_str_mv 10.1111/ele.13659
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv González-M R, Posada JM, Carmona CP, Garzón F, Salinas V, Idárraga-Piedrahita Á, Pizano C, Avella A, López-Camacho R, Norden N, Nieto J, Medina SP, Rodríguez-M GM, Franke-Ante R, Torres AM, Jurado R, Cuadros H, Castaño-Naranjo A, García H, Salgado-Negret B. Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecol Lett. 2021 Mar;24(3):451-463. doi: 10.1111/ele.13659. Epub 2020 Dec 14. PMID: 33316132; PMCID: PMC9292319.
10.1111/ele.13659
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/1133
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Maestría en Ciencias Ambientales
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Ecology Letters
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1133/1/Ecology%20Letters%20-%202020%20-%20Gonz%20lez%e2%80%90M%20-%20Diverging%20functional%20strategies%20but%20high%20sensitivity%20to%20an%20extreme%20drought%20in.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1133/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1133/3/license.txt
bitstream.checksum.fl_str_mv 5f2c909236df7683518ca1c1de6367c3
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203410733334528
spelling González-M, Roy31bdbde6-b89e-43f9-910c-283ec7b0abedM Posada, JuanP Carmona, CarlosGarzón, FabiánSalinas, VivianaIdárraga-Piedrahita, ÁlvaroPizano, CamilaAvella, AndrésLópez-Camacho, RenéNorden, NataliaNieto, JhonP Medina, SandraRodríguez-M, Gina MFranke-Ante, RebecaM Torres, AlbaJurado, RubénCuadros, HermesCastaño-Naranjo, AlejandroGarcía, HernandoSalgado-Negret, Beatriz2022-12-17T18:40:01Z2022-12-17T18:40:01Z2020-12-142021-03-24González-M R, Posada JM, Carmona CP, Garzón F, Salinas V, Idárraga-Piedrahita Á, Pizano C, Avella A, López-Camacho R, Norden N, Nieto J, Medina SP, Rodríguez-M GM, Franke-Ante R, Torres AM, Jurado R, Cuadros H, Castaño-Naranjo A, García H, Salgado-Negret B. Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecol Lett. 2021 Mar;24(3):451-463. doi: 10.1111/ele.13659. Epub 2020 Dec 14. PMID: 33316132; PMCID: PMC9292319.https://hdl.handle.net/20.500.12834/113310.1111/ele.13659Universidad del AtlánticoRepositorio Universidad del AtlánticoExtreme drought events have negative effects on forest diversity and functioning. At the species level, however, these effects are still unclear, as species vary in their response to drought through specific functional trait combinations. We used long-term demographic records of 21,821 trees and extensive databases of traits to understand the responses of 338 tropical dry forests tree species to ENSO2015, the driest event in decades in Northern South America. Functional differences between species were related to the hydraulic safety-efficiency trade-off, but unexpectedly, dominant species were characterised by high investment in leaf and wood tissues regardless of their leaf phenological habit. Despite broad functional trait combinations, tree mortality was more widespread in the functional space than tree growth, where less adapted species showed more negative net biomass balances. Our results suggest that if dry conditions increase in this ecosystem, ecological functionality and biomass gain would be reduced.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ecology LettersDiverging functional strategies but high sensitivity to an extreme drought in tropical dry forestsDiverging functional strategies but high sensitivity to an extreme drought in tropical dry forestsPúblico generalBiomass, demographic rates, hydraulic safety-efficiency trade-off, investment in tissues, trait probability density.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaMaestría en Ciencias AmbientalesSede NorteAguirre‐Gutiérrez, J. , Malhi, Y. , Lewis, S.L. , Fauset, S. , Adu‐Bredu, S. , Affum‐Baffoe, K. et al. (2020). Long‐term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun., 11, 1–10. - PMC - PubMedAguirre‐Gutiérrez, J. , Oliveras, I. , Rifai, S. , Fauset, S. , Adu‐Bredu, S. , Affum‐Baffoe, K. et al. (2019). Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecol. Lett., 22, 855–865. - PubMedAllen, C.D. , Breshears, D.D. & McDowell, N.G. (2015). On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere, 6, 1–55.Allen, C.D. , Macalady, A.K. , Chenchouni, H. , Bachelet, D. , McDowell, N. , Vennetier, M. et al. (2010). A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage., 259, 660–684.Allen, K. , Dupuy, J.M. , Gei, M.G. , Hulshof, C. , Medvigy, D. , Pizano, C. et al. (2017a). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett., 12, 023001.Allen, W.L. , Street, S.E. & Capellini, I. (2017b). Fast life history traits promote invasion success in amphibians and reptiles. Ecol. Lett., 20, 222–230. - PMC - PubMedÁlvarez, E. , Duque, A. , Saldarriaga, J. , Cabrera, K. , de las Salas, G. , del Valle, I. et al. (2012). Tree above‐ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manage., 267, 297–308.Anyamba, A. , Chretien, J.P. , Britch, S.C. , Soebiyanto, R.P. , Small, J.L. , Jepsen, R. et al. (2019). Global disease outbreaks associated with the 2015–2016 El Niño event. Sci. Rep., 9, 1–14. - PMC - PubMedAubry‐Kientz, M. , Hérault, B. , Ayotte‐Trépanier, C. , Baraloto, C. & Rossi, V. (2013). Toward trait‐based mortality models for tropical forests. PLoS One, 8, e63678. - PMC - PubMedBaraloto, C. , Paine, C.E.T. , Poorter, L. , Beauchene, J. , Bonal, D. , Domenach, A.M. et al. (2010). Decoupled leaf and stem economics in rain forest trees. Ecol. Lett., 13, 1338–1347. - PubMedBeeckman, H. (2016). Wood anatomy and trait‐based ecology. IAWA J., 37, 127–151.Berry, S.L. & Roderick, M.L. (2005). Plant‐water relations and the fibre saturation point. New Phytol., 168, 25–37. - PubMedBrodribb, T.J. , Feild, T.S. & Sack, L. (2010). Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol., 37, 488–498.Carmona, C.P. , de Bello, F. , Mason, N.W.H. & Lepš, J. (2016). Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol., 31, 382–394. - PubMedCarmona, C.P. , de Bello, F. , Mason, N.W.H. & Lepš, J. (2019). Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology, 100, 1–8. - PubMedCarmona, C.P. , Rota, C. , Azcárate, F.M. & Peco, B. (2015). More for less: Sampling strategies of plant functional traits across local environmental gradients. Funct. Ecol., 29, 579–588.Chacón, J.E. & Duong, T. (2018). Multivariate kernel smoothing and its applications, 1st edn. Chapman and Hall/CRC, New York.Chave, J. , Coomes, D. , Jansen, S. , Lewis, S.L. , Swenson, N.G. & Zanne, A.E. (2009). Towards a worldwide wood economics spectrum. Ecol. Lett., 12, 351–366. - PubMedCondit, R. , Hubbell, S.P. & Foster, R.B. (1996). Changes in tree species abundance in a neotropical forest: Impact of climate change. J. Trop. Ecol., 12, 231–256.Cunningham, S.A. , Summerhayes, B. & Westoby, M. (1999). Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr., 69, 569–588.Díaz, S. , Kattge, J. , Cornelissen, J.H.C. , Wright, I.J. , Lavorel, S. , Dray, S. et al. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. - PubMedDodd, I.C. & Ryan, A.C. (2016). Whole‐Plant Physiological Responses to Water‐Deficit Stress. eLS Plant Science. John Wiley & Sons Ltd, Chichester, pp. 1–9.Esquivel‐Muelbert, A. , Baker, T.R. , Dexter, K.G. , Lewis, S.L. , Brienen, R.J.W. , Feldpausch, T.R. et al. (2019). Compositional response of Amazon forests to climate change. Glob. Chang. Biol., 25, 39–56. - PMC - PubMedEsquivel‐Muelbert, A. , Baker, T.R. , Dexter, K.G. , Lewis, S.L. , ter Steege, H. , Lopez‐Gonzalez, G. et al. (2017). Seasonal drought limits tree species across the Neotropics. Ecography (Cop.), 40, 618–629.Fauset, S. , Baker, T.R. , Lewis, S.L. , Feldpausch, T.R. , Affum‐Baffoe, K. , Foli, E.G. et al. (2012). Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett., 15, 1120–1129. - PubMedGleason, S.M. , Westoby, M. , Jansen, S. , Choat, B. , Hacke, U.G. , Pratt, R.B. et al. (2016). Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world’s woody plant species. New Phytol., 209, 123–136. - PubMedGuevara, H.A. (2001). Propiedades fisicomecánicas de la madera. Universidad Distrital Francisco José de Caldas, Bogotá.Hacke, U.G. , Sperry, J.S. , Pockman, W.T. , Davis, S.D. & McCulloh, K.A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457–461. - PubMedHelmling, S. , Olbrich, A. , Heinz, I. & Koch, G. (2018). Atlas of vessel elements. IAWA J., 39, 250–352.IAWA , Angyalossy‐Alfonso, V. , Baas, P. , Carlquist, S. , Peres Chimelo, J. & Rauber Coradin, V.T. et al. (2007). IAWA list of microscopic features for hardwood identification. IAWA Bull, 4th edn. National Herbarium of the Netherlands, Leiden.Jacobsen, A.L. , Agenbag, L. , Esler, K.J. , Pratt, R.B. , Ewers, F.W. & Davis, S.D. (2007). Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean‐type climate region of South Africa. J. Ecol., 95, 171–183.Jacobsen, A.L. , Ewers, F.W. , Pratt, R.B. , Paddock, W.A. & Davis, S.D. (2005). Do xylem fibers affect vessel cavitation resistance? Plant Physiol., 139, 546–556. - PMC - PubMedKogan, F. & Guo, W. (2017). Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens., 38, 161–178.L’Heureux, M.L. , Takahashi, K. , Watkins, A.B. , Barnston, A.G. , Becker, E.J. , Di Liberto, T.E. et al. (2017). Observing and predicting the 2015/16 El Niño. Bull. Am. Meteorol. Soc., 98, 1363–1382.van Laar, A. & Akça, A. (2007). Forest mensuration. In: Managing Forest Ecosystems (eds von Gadow, K. , Pukkala, T. & Tomé, M. )., Springer, Netherlands, p. 283.Lawlor, D.W. & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water‐deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot., 103, 561–579. - PMC - PubMedLi, S. , Lens, F. , Espino, S. , Karimi, Z. , Klepsch, M. , Schenk, H.J. et al. (2016). Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J., 37, 152–171.Linares‐Palomino, R. , Oliveira‐Filho, A.T. & Pennington, R.T. (2011). Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In Seasonally Dry Tropical Forests (eds Dirzo, R. , Young, H.S. , Mooney, H.A. , Ceballos, G. ). Island Press, Washington, DC, pp. 3–21.Lopezaraiza‐Mikel, M. , Álvarez‐Añorve, M. , Ávila‐Cabadilla, L. , Martén‐Rodríguez, S. , Calvo‐Alvarado, J. , Marcos do Espírito‐Santo, M. et al. (2013). Phenological patterns of tropical dry forests along latitudinal and successional gradients in the Neotropics. In: Tropical Dry Forests in the Americas: Ecology, Conservation, and Management (eds Sanchez‐Azofeifa, A. , Powers, J.S. , Fernandes, G.W. & Quesada, M. ). CRC Press, pp. 101–128.Madsen, B. & Gamstedt, E.K. (2013). Wood versus plant fibers: Similarities and differences in composite applications. Advances in Materials Science and Engineering, 2013, 1–14.Markesteijn, L. , Poorter, L. , Bongers, F. , Paz, H. & Sack, L. (2011a). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytol., 191, 480–495. - PubMedMarkesteijn, L. , Poorter, L. , Paz, H. , Sack, L. & Bongers, F. (2011b). Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell Environ., 34, 137–148. - PubMedMaza‐Villalobos, S. , Poorter, L. & Martínez‐Ramos, M. (2013). Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old‐field succession of a tropical dry forest. PLoS One, 8, e82040. - PMC - PubMedMcDowell, N. , Allen, C.D. , Anderson‐Teixeira, K. , Brando, P. , Brienen, R. , Chambers, J. et al. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol., 219, 851–869. - PubMedMéndez‐Alonzo, R. , Paz, H. , Zuluaga, R.C. , Rosell, J.A. & Olson, M.E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93, 2397–2406. - PubMedMendivelso, H.A. , Camarero, J.J. , Royo Obregón, O. , Gutiérrez, E. & Toledo, M. (2013). Differential growth responses to water balance of coexisting deciduous tree species arelinked to wood density in a Bolivian tropical dry forest. PLoS One, 8, e73855. - PMC - PubMedNiinemets, Ü. (2001). Global‐scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 2, 453–469.Nunes Garcia, B. , Libonati, R. & Nunes, A.M.B. (2018). Extreme drought events over the Amazon Basin: The perspective from the reconstruction of South American Hydroclimate. Water, 10, 1594.Olson, M.E. & Rosell, J.A. (2013). Vessel diameter‐stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol., 197, 1204–1213. - PubMedOnoda, Y. , Westoby, M. , Adler, P.B. , Choong, A.M.F. , Clissold, F.J. , Cornelissen, J.H.C. et al. (2011). Global patterns of leaf mechanical properties. Ecol. Lett., 14, 301–312. - PubMedOsnas, J.L.D. , Lichstein, J.W. , Reich, P.B. & Pacala, S.W. (2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science, 340(6133), 741–744.. - PubMedPennington, R.T. , Lavin, M. & Oliveira‐Filho, A. (2009). Woody plant diversity, evolution, and ecology in the tropics: Perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst., 40, 437–457.Pennington, R.T. , Lehmann, C.E.R. & Rowland, L.M. (2018). Tropical savannas and dry forests. Curr. Biol., 28, R541–R545. - PubMedPérez‐Harguindeguy, N. , Díaz, S. , Garnier, E. , Lavorel, S. , Poorter, H. , Jaureguiberry, P. et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot., 61, 167–234.Pineda‐García, F. , Paz, H. , Meinzer, F.C. & Angeles, G. (2015). Exploiting water versus tolerating drought: Water‐use strategies of trees in a secondary successional tropical dry forest. Tree Physiol., 36, 208–217. - PubMedPistón, N. , de Bello, F. , Dias, A.T.C. , Götzenberger, L. , Rosado, B.H.P. , de Mattos, E.A. et al. (2019). Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol., 107, 2317–2328.Poorter, H. , Niinemets, Ü. , Poorter, L. , Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis. New Phytol., 182, 565–588. - PubMedPoorter, L. , McDonald, I. , Alarcón, A. , Fichtler, E. , Licona, J.C. , Peña‐Claros, M. et al. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol., 185, 481–492. - PubMedPoorter, L. , van der Sande, M.T. , Arets, E.J.M.M. , Ascarrunz, N. , Enquist, B. , Finegan, B. et al. (2017). Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr., 26, 1423–1434.Poorter, L. , Wright, S.J. , Paz, H. , Ackerly, D.D. , Condit, R. , Ibarra‐Manríquez, G. et al. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908–1920. - PubMedPowers, J.S. & Tiffin, P. (2010). Plant functional type classifications in tropical dry forests in Costa Rica: Leaf habit versus taxonomic approaches. Funct. Ecol., 24, 927–936.Powers, J.S. , Vargas, G.G , Brodribb, T.J. , Schwartz, N.B. , Pérez‐Aviles, D. & Smith‐Martin, C.M. et al. (2020). A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Chang. Biol., 26, 3122–3133. - PubMedt versus taxonomic approaches. Funct. Ecol., 24, 927–936.Prado‐Junior, J.A. , Schiavini, I. , Vale, V.S. , Arantes, C.S. , van der Sande, M.T. , Lohbeck, M. et al. (2016). Conservative species drive biomass productivity in tropical dry forests. J. Ecol., 104, 817–827.Pratt, R.B. , Jacobsen, A.L. , Ewers, F.W. & Davis, S.D. (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol., 174, 787–798. - PubMedRosell, J.A. , Olson, M.E. & Anfodillo, T. (2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr. For. Reports, 3, 46–59.Salgado‐Negret, B. , Rodríguez, P. , Cabrera, E.N.M. , Ruíz Osorio, C. & Paz, H. (2015). Protocolo para la medicion de rasgos funcionales en plantas. La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 37–79.Salleo, S. & Nakdini, A. (2000). Sclerophylly: Evolutionary advantage or mere epiphenomenon? Plant Biosyst., 134, 247–259.Santiago, L.S. , Goldstein, G. , Meinzer, F.C. , Fisher, J.B. , Machado, K. , Woodruff, D. et al. (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543–550. - PubMedScholz, A. , Klepsch, M. , Karimi, Z. & Jansen, S. (2013). How to quantify conduits in wood? Front. Plant Sci., 4, 1–11. - PMC - PubMedSilva, J.O. , Espírito‐Santo, M.M. & Morais, H.C. (2015). Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic Appl. Ecol., 16, 210–219.Slik, J.W.F. (2004). El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114–120. - PubMedSobrado, M.A. (1997). Embolism vulnerability in drought‐deciduous and evergreen species of a tropical dry forest. Acta Oecologica, 18, 383–391.Somavilla, N.S. , Kolb, R.M. & Rossatto, D.R. (2014). Leaf anatomical traits corroborate the leaf economic spectrum: a case study with deciduous forest tree species. Rev. Bras. Bot., 37, 69–82.Sorieul, M. , Dickson, A. , Hill, S.J. & Pearson, H. (2016). Plant fibre: Molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials (Basel), 9, 1–36. - PMC - PubMedStekhoven, D.J. & Bühlmann, P. (2012). MissForest–Non‐parametric missing value imputation for mixed‐type data. Bioinformatics, 28, 112–118. - PubMedSterck, F. , Markesteijn, L. , Schieving, F. & Poorter, L. (2011). Functional traits determine trade‐offs and niches in a tropical forest community. Proc. Natl. Acad. Sci. U. S. A., 108, 20627–20632. - PMC - PubMedTalbot, J. , Lewis, S.L. , Lopez‐Gonzalez, G. , Brienen, R.J.W. , Monteagudo, A. , Baker, T.R. et al. (2014). Methods to estimate aboveground wood productivity from long‐term forest inventory plots. For. Ecol. Manage., 320, 30–38.Torres, A.M. , Adarve, J.B. , Cárdenas, M. , Vargas, J.A. , Londoño, V. , Rivera, K. et al. (2012). Dinámica sucesional de un fragmento de bosque seco tropical del Valle del Cauca. Colombia. Biota Colomb., 13, 66–84.Traba, J. , Iranzo, E.C. , Carmona, C.P. & Malo, J.E. (2019). Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos, 126, 1400–1409.Turner, I.M. (1994). Sclerophylly: Primarily protective? Funct. Ecol., 8, 669.Vicente‐Serrano, S.M. , Zouber, A. , Lasanta, T. & Pueyo, Y. (2012). Dryness is accelerating degradation of vulnerable shrublands in semiarid mediterranean environments. Ecol. Monogr., 82, 407–428.Wright, I.J. , Reich, P.B. , Westoby, M. , Ackerly, D.D. , Baruch, Z. , Bongers, F. et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. - PubMedZiemińska, K. , Westoby, M. & Wright, I.J. (2015). Broad anatomical variation within a narrow wood density range ‐ A study of twig wood across 69 Australian angiosperms. PLoS One, 10, 1–25. - PMC - PubMedhttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINALEcology Letters - 2020 - Gonz lez‐M - Diverging functional strategies but high sensitivity to an extreme drought in.pdfEcology Letters - 2020 - Gonz lez‐M - Diverging functional strategies but high sensitivity to an extreme drought in.pdfapplication/pdf1118425https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1133/1/Ecology%20Letters%20-%202020%20-%20Gonz%20lez%e2%80%90M%20-%20Diverging%20functional%20strategies%20but%20high%20sensitivity%20to%20an%20extreme%20drought%20in.pdf5f2c909236df7683518ca1c1de6367c3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1133/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1133/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1133oai:repositorio.uniatlantico.edu.co:20.500.12834/11332022-12-17 13:40:02.896DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==