Comparative Study of the Reaction Kinetics of Three Residual Biomasses

Kinetic analysis for the combustion of three agro-industrial biomass residues (coconut husk, corn husk, and rice husk) was carried out in order to provide information for the generation of energy from them. The analysis was performed using the results of the data obtained by thermogravimetric analys...

Full description

Autores:
Martinez, Arnaldo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/799
Acceso en línea:
https://hdl.handle.net/20.500.12834/799
Palabra clave:
Biomass; Combustion; Kinetic parameters; DAEM
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIATLANT2_6b41d6c893edc46bc2d77208918dd02a
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/799
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Comparative Study of the Reaction Kinetics of Three Residual Biomasses
title Comparative Study of the Reaction Kinetics of Three Residual Biomasses
spellingShingle Comparative Study of the Reaction Kinetics of Three Residual Biomasses
Biomass; Combustion; Kinetic parameters; DAEM
title_short Comparative Study of the Reaction Kinetics of Three Residual Biomasses
title_full Comparative Study of the Reaction Kinetics of Three Residual Biomasses
title_fullStr Comparative Study of the Reaction Kinetics of Three Residual Biomasses
title_full_unstemmed Comparative Study of the Reaction Kinetics of Three Residual Biomasses
title_sort Comparative Study of the Reaction Kinetics of Three Residual Biomasses
dc.creator.fl_str_mv Martinez, Arnaldo
dc.contributor.author.none.fl_str_mv Martinez, Arnaldo
dc.contributor.other.none.fl_str_mv Meriño, Lourdes
Albis, Alberto
Ortega, Jorge
dc.subject.keywords.spa.fl_str_mv Biomass; Combustion; Kinetic parameters; DAEM
topic Biomass; Combustion; Kinetic parameters; DAEM
description Kinetic analysis for the combustion of three agro-industrial biomass residues (coconut husk, corn husk, and rice husk) was carried out in order to provide information for the generation of energy from them. The analysis was performed using the results of the data obtained by thermogravimetric analysis (TGA) at three heating rates (10, 20, and 30 K/min). The biomass residues were characterized in terms of proximate analysis, elemental analysis, calorific value, lignin content, α-cellulose content, hemicellulose content, and holocellulose content. The biomass fuels were thermally degraded in an oxidative atmosphere. The results showed that the biomass thermal degradation process is comprised of the combustion of hemicellulose, cellulose, and lignin. The kinetic parameters of the distributed activation energy model indicated that the activation energy distribution for the pseudocomponents follows lignin, cellulose, and hemicellulose in descending order. The activation energy values for each set of reactions are similar between the heating rates, which suggests that it is independent of the heating rate between 10 K/min and 30 K/min. For all the biomass samples, the increased heating rate resulted in the overlap of the hemicellulose and cellulose degradation events
publishDate 2020
dc.date.submitted.none.fl_str_mv 2020-10-08
dc.date.issued.none.fl_str_mv 2021-03-01
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:21:34Z
dc.date.available.none.fl_str_mv 2022-11-15T19:21:34Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/799
dc.identifier.doi.none.fl_str_mv 10.15376/biores.16.2.2891-2905
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/799
identifier_str_mv 10.15376/biores.16.2.2891-2905
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Agroindustrial
dc.publisher.sede.spa.fl_str_mv Sede Norte
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/799/1/BioRes_16_2_2891_Martinez_MAO_Comparat_Study_Reaction_Kinetics_3_Residual_Biomasses_18235.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/799/2/license.txt
bitstream.checksum.fl_str_mv 7aeefda2632b269ab6dc32183c384636
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203419933540352
spelling Martinez, Arnaldo02e6b416-817c-4b56-9557-8573f35bd4ddMeriño, LourdesAlbis, AlbertoOrtega, Jorge2022-11-15T19:21:34Z2022-11-15T19:21:34Z2021-03-012020-10-08https://hdl.handle.net/20.500.12834/79910.15376/biores.16.2.2891-2905Universidad del AtlánticoRepositorio Universidad del AtlánticoKinetic analysis for the combustion of three agro-industrial biomass residues (coconut husk, corn husk, and rice husk) was carried out in order to provide information for the generation of energy from them. The analysis was performed using the results of the data obtained by thermogravimetric analysis (TGA) at three heating rates (10, 20, and 30 K/min). The biomass residues were characterized in terms of proximate analysis, elemental analysis, calorific value, lignin content, α-cellulose content, hemicellulose content, and holocellulose content. The biomass fuels were thermally degraded in an oxidative atmosphere. The results showed that the biomass thermal degradation process is comprised of the combustion of hemicellulose, cellulose, and lignin. The kinetic parameters of the distributed activation energy model indicated that the activation energy distribution for the pseudocomponents follows lignin, cellulose, and hemicellulose in descending order. The activation energy values for each set of reactions are similar between the heating rates, which suggests that it is independent of the heating rate between 10 K/min and 30 K/min. For all the biomass samples, the increased heating rate resulted in the overlap of the hemicellulose and cellulose degradation eventsBioresourcesapplication/pdfengComparative Study of the Reaction Kinetics of Three Residual BiomassesPúblico generalBiomass; Combustion; Kinetic parameters; DAEMinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería AgroindustrialSede Norteinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arango-Muñoz, M., Arenas-Castiblanco, E., and Cortés-Correa, F. (2015). “Determinación de parámetros cinéticos para la pirólisis rápida de aserrín de pino pátula [Determination of kinetic parameters for the rapid pyrolysis of paddle pine sawdust],” Boletín del Grupo Español del Carbón 38, 9-11.ASTM D 3173. (2017). “Standard test method for moisture in the analysis sample of coal and coke,” American Society for Testing and Materials, West Conshohocken, PAASTM D 3174. (2002). “Standard test method for ash in the analysis sample of coal and coke from coal,” American Society for Testing and Materials, West Conshohocken, PA.ASTM D 3175. (2017). “Standard test method for volatile matter in the analysis sample of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA.ASTM D 4239. (2017). “Standard test method for sulfur in the analysis sample of coal and coke using high-temperature tube furnace combustion,” American Society for Testing and Materials, West Conshohocken, PA.ASTM D 5373. (2016). “Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA.ASTM D 5865. (2013). “Standard test method for gross calorific value of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA.Bhavanam, A., and Sastry, R. C. (2015). “Kinetic study of solid waste pyrolysis using distributed activation energy model,” Bioresource Technology 178, 126-131. DOI: 10.1016/j.biortech.2014.10.028Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.-M., Ham-Pichavant, F., Cansell, F., and Aymonier, C. (2011). “Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass,” Biomass and Bioenergy 35(1), 298-307. DOI: 10.1016/j.biombioe.2010.08.067Demirbaş, A. (2001). “Biomass resource facilities and biomass conversion processing for fuels and chemicals,” Energy Conversion and Management 42(11), 1357-1378. DOI: 10.1016/S0196-8904(00)00137-0Donskoi, E., and McElwain, D. L. S. (2000). “Optimization of coal pyrolysis modeling,” Combustion and Flame 122(3) 359-367. DOI: 10.1016/S0010-2180(00)00115-2Flores, J. J. A., and Quiñones, J. G. R. (2018). “Study of kinetics in thermogravimetric processes of lignocellulosic materials,” Maderas: Ciencia y Tecnología 20(2) 221- 238. DOI: 10.4067/S0718-221X2018005002601Halim, N. A. A., Ngadi, N., Ibrahim, M. N. M., and Ansari, S. M. (2016). “Monomeric structure characterization of different sources biomass lignin,” Key Engineering Materials 700, 42-49. DOI: 10.4028/www.scientific.net/KEM.700.42Hu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M., Fazal, S., Xiao, B. (2016). “Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method,” Energy Conversion and Management 118, 1-11. DOI: 10.1016/j.enconman.2016.03.058Hu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M., Fazal, S., Xiao, B. (2016). “Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method,” Energy Conversion and Management 118, 1-11. DOI: 10.1016/j.enconman.2016.03.058Marafon, A. C., Amaral, A. F. C., and de Lemos, E. E. P. (2019). “Characterization of bamboo species and other biomasses with potential for thermal energy generation;” Pesquisa Agropecuária Tropical 49, 1-5. DOI: 10.1590/1983-40632019v4955282Lozano, S.-M. (2009). Evaluación de la Biomasa Como Recurso Energético Renovable en Cataluña [Evaluation of Biomass as a Renewable Resource in Catalonia], Ph.D. Dissertation, University of Girona, Catalonia, Spain.Melgar, A., Borge, D., and Pérez, J. F. (2008). “Kinetic study of the lignocellulosic biomass devolatilization process by thermogravimetric analysis for particles sizes from 2 to 19 mm,” DYNA 75(155), 123-131.Mlonka-Mędrala, A., Magdziarz, A., Dziok, T., Sieradzka, M., and Nowak, W. (2019). “Laboratory studies on the influence of biomass particle size on pyrolysis and combustion using TG GC/MS,” Fuel 252, 635-645. DOI: 10.1016/j.fuel.2019.04.091Ninduangdee, P., and Kuprianov, V. I. (2014). “Combustion of palm kernel shell in a fluidized bed: Optimization of biomass particle size and operating conditions,” Energy Conversion and Management 85, 800-808. DOI: 10.1016/j.enconman.2014.01.054Ona, T., Sonoda, T., Shibata, M., and Fukazawa, K. (1995). “Small-scale method to determine the content of wood components from multiple eucalypt samples,” TAPPI Journal 78(3), 121-126.Oliveros, A. L. S., Muñoz, E. O., Ariza, I. E. P., Barazza, C. S. K., and Arietta, A. R. A. (2019). “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma glandiflorum) [TG-MS study of the gasification of the carbonized shell of Copoazú (Theobroma glandiflorum)],” INGE CUC 15(1), 25-35. DOI: 10.17981/ingecuc.15.1.2019.03Rambo, M. K. D., Schmidt, F. L., and Ferreira, M. M. C. (2015). “Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities,” Talanta 144, 696-703. DOI: 10.1016/j.talanta.2015.06.045Raveendran, K., and Ganesh, A. (1996). “Heating value of biomass and biomass pyrolysis products,” Fuel 75(15), 1715-1720. DOI: 10.1016/S0016-2361(96)00158-5Ren, X., Chen, J., Li, G., Wang, Y., Lang, X., and Fan, S. (2018). “Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model,” Bioresource Technology 261, 403-411. DOI: 10.1016/j.biortech.2018.04.047Santander Oliveros, A., Ortiz Muñoz E., Piñeres Ariza I., Ariza Barraza C., and Albis Arrieta A. (2019), “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma glandiflorum),” Inge. Cuc. 15(1), 25-35. DOI: https://doi.org/10.17981/ingecuc.15.1.2019.03Sher, F., Iqbal, S. Z., Liu, H., Imran, M., and Snape, C. E. (2020). “Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources,” Energy Conversion and Management 203, 112266. DOI: 10.1016/j.enconman.2019.112266Song, C., Hu, H., Zhu, S., Wang, G., and Chen, G. (2004). “Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water,” Energy & Fuels 18(1), 90-96. DOI: 10.1021/ef0300141Várhegyi, G. (2007). “Aims and methods in non-isothermal reaction kinetics,” Journal of Analytical and Applied Pyrolysis 79(1-2), 278-288. DOI: 10.1016/j.jaap.2007.01.007Várhegyi, G., Szabó, P., and Antal, M. J. (2002). “Kinetics of charcoal devolatilization,” Energy & Fuels 16(3), 724-731. DOI: 10.1021/ef010227vWilk, M., Magdziarz, A., Jayaraman, K., Szymańska-Chargot, M., and Gökalp, I. (2019). “Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study,” Biomass and Bioenergy 120, 166-175. DOI: 10.1016/j.biombioe.2018.11.016Xiao, B., Sun, X.-F., and Sun, R.-C. (2001). “Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw,” Polymer Degradation and Stability 74(2), 307-319. DOI: 10.1016/S0141-3910(01)00163-XYaman, S. (2004). “Pyrolysis of biomass to produce fuels and chemical feedstocks,” Energy Conversion and Management 45(5), 651-671. DOI: 10.1016/S0196- 8904(03)00177-8Yao, F., Wu, Q., Lei, Y., Guo, W., and Xu, Y. (2008). “Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis,” Polymer Degradation and Stability 93(1), 90-98. DOI: 10.1016/j.polymdegradstab.2007.10.012http://purl.org/coar/resource_type/c_6501ORIGINALBioRes_16_2_2891_Martinez_MAO_Comparat_Study_Reaction_Kinetics_3_Residual_Biomasses_18235.pdfBioRes_16_2_2891_Martinez_MAO_Comparat_Study_Reaction_Kinetics_3_Residual_Biomasses_18235.pdfapplication/pdf691721https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/799/1/BioRes_16_2_2891_Martinez_MAO_Comparat_Study_Reaction_Kinetics_3_Residual_Biomasses_18235.pdf7aeefda2632b269ab6dc32183c384636MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/799/2/license.txt67e239713705720ef0b79c50b2ececcaMD5220.500.12834/799oai:repositorio.uniatlantico.edu.co:20.500.12834/7992022-11-15 14:21:35.669DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==