TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study

TiO2 thin films, sensitized by an anthocyanins-rich extract of a common species found in the Colombian Caribbean region (Bactris guineensis fruits), were used for the photocatalytic degradation of methylene blue. The sensitization process was verified by diffuse reflectance spectroscopy (DRS). The q...

Full description

Autores:
Diaz-Uribe, Carlos
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/984
Acceso en línea:
https://hdl.handle.net/20.500.12834/984
Palabra clave:
TiO2; Natural sensitizer; Anthocyanin; DFT
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_669bb07d37d6759f8d5f1935800c453e
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/984
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study
title TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study
spellingShingle TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study
TiO2; Natural sensitizer; Anthocyanin; DFT
title_short TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study
title_full TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study
title_fullStr TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study
title_full_unstemmed TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study
title_sort TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study
dc.creator.fl_str_mv Diaz-Uribe, Carlos
dc.contributor.author.none.fl_str_mv Diaz-Uribe, Carlos
dc.contributor.other.none.fl_str_mv Vallejo, William
Romero, Eduardo
Villareal, M.
Padilla, M.
Hazbun, N.
Munoz-Acevedo, Amner
Schott, Eduardo
Zarate, Ximena
dc.subject.keywords.spa.fl_str_mv TiO2; Natural sensitizer; Anthocyanin; DFT
topic TiO2; Natural sensitizer; Anthocyanin; DFT
description TiO2 thin films, sensitized by an anthocyanins-rich extract of a common species found in the Colombian Caribbean region (Bactris guineensis fruits), were used for the photocatalytic degradation of methylene blue. The sensitization process was verified by diffuse reflectance spectroscopy (DRS). The qualitative and quantitative analyses of the anthocyanins were carried out using highperformance liquid chromatography with photodiode array detection (HPLC-DAD), which provided the total content anthocyanin equivalent to delphinidin chloride (TAEDC) per mL of the extract, of 10.0 ± 0.8 mg TAEDC/mL. Here, three main anthocyanins were identified, being cyanidin-3-rutinoside the most abundant constituent (ca. 76%). The interaction of the dyes with a TiO2 slab model and their adsorption energies were determined through computational simulations. In addition, the molecular modelling evidenced that the sensitization of the semiconductor improved the light absorption in the visible range of the spectrum. As a final point, the photocatalytic test showed that the photocatalytic activity increased 26% for TiO2/B. guineensis thin films under visible radiation respect to bare TiO2.
publishDate 2019
dc.date.submitted.none.fl_str_mv 2019-11-26
dc.date.issued.none.fl_str_mv 2020-03-11
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:22:26Z
dc.date.available.none.fl_str_mv 2022-11-15T21:22:26Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/984
dc.identifier.doi.none.fl_str_mv 10.1016/j.jscs.2020.03.004
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/984
identifier_str_mv 10.1016/j.jscs.2020.03.004
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Química
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Elsevier B.V.
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/984/1/1-s2.0-S1319610320300302-main.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/984/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/984/3/license.txt
bitstream.checksum.fl_str_mv 3d96a01ce1fb5ad78d04a40bb18257b9
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203423118065664
spelling Diaz-Uribe, Carlosf7c8b9b3-7d44-4293-a915-3130c37cadffVallejo, WilliamRomero, EduardoVillareal, M.Padilla, M.Hazbun, N.Munoz-Acevedo, AmnerSchott, EduardoZarate, Ximena2022-11-15T21:22:26Z2022-11-15T21:22:26Z2020-03-112019-11-26https://hdl.handle.net/20.500.12834/98410.1016/j.jscs.2020.03.004Universidad del AtlánticoRepositorio Universidad del AtlánticoTiO2 thin films, sensitized by an anthocyanins-rich extract of a common species found in the Colombian Caribbean region (Bactris guineensis fruits), were used for the photocatalytic degradation of methylene blue. The sensitization process was verified by diffuse reflectance spectroscopy (DRS). The qualitative and quantitative analyses of the anthocyanins were carried out using highperformance liquid chromatography with photodiode array detection (HPLC-DAD), which provided the total content anthocyanin equivalent to delphinidin chloride (TAEDC) per mL of the extract, of 10.0 ± 0.8 mg TAEDC/mL. Here, three main anthocyanins were identified, being cyanidin-3-rutinoside the most abundant constituent (ca. 76%). The interaction of the dyes with a TiO2 slab model and their adsorption energies were determined through computational simulations. In addition, the molecular modelling evidenced that the sensitization of the semiconductor improved the light absorption in the visible range of the spectrum. As a final point, the photocatalytic test showed that the photocatalytic activity increased 26% for TiO2/B. guineensis thin films under visible radiation respect to bare TiO2.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Elsevier B.V.TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT studyPúblico generalTiO2; Natural sensitizer; Anthocyanin; DFTinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede Norte[1] S.A. Ansari, M.H. Cho, Growth of three-dimensional flowerlike SnS2 on g-C3N4 sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material, Sustain. Energy Fuels. 1 (2017) 510–519, https://doi.org/10.1039/c6se00049e.[2] S.A. Ansari, S.G. Ansari, H. Foaud, M.H. Cho, Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance, New J. Chem. 41 (2017) 9314–9320, https://doi.org/10.1039/ c6nj04070e.[3] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO 2 Photocatalysis: mechanisms and materials, Chem. Rev. 114 (2014) 9919–9986, https://doi.org/10.1021/cr5001892.[4] A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M. Ma¨ ntta¨ ri, M. Sillanpa¨ a¨ , A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant, Chemosphere 107 (2014) 163–174, https://doi.org/10.1016/J. CHEMOSPHERE.2014.01.040.[5] S. Khameneh Asl, M. Kianpour Rad, S.K. Sadrnezhaad, M.R. Vaezi, The effect of microstructure on the photocatalytic properties of TiO2, Adv. Mater. Res. 264–265 (2011) 1340– 1345, https://doi.org/10.4028/www.scientific.net/AMR.264- 265.1340.[6] T. Dikici, M. Toparli, Microstructure and mechanical properties of nanostructured and microstructured TiO2 films, Mater. Sci. Eng. A. 661 (2016) 19–24, https://doi.org/10.1016/J. MSEA.2016.03.023.[7] C. Diaz-Uribe, W. Vallejo, W. Ramos, Methylene blue photocatalytic mineralization under visible irradiation on TiO2 thin films doped with chromium, Appl. Surf. Sci. 319 (2014) 121–127, https://doi.org/10.1016/J.APSUSC.2014.06.157.[8] M. Humayun, F. Raziq, A. Khan, W. Luo, W. Luo, Modification strategies of TiO 2 for potential applications in photocatalysis: a critical review, Green Chem. Lett. Rev. 11 (2018) 86–102, https://doi.org/10.1080/17518253.2018.1440324.[9] A. Kotta, S.A. Ansari, N. Parveen, H. Fouad, O.Y. Alothman, U. Khaled, H.K. Seo, S.G. Ansari, Z.A. Ansari, Mechanochemical synthesis of melamine doped TiO2 nanoparticles for dye sensitized solar cells application, J. Mater. Sci. Mater. Electron. 29 (2018) 9108–9116, https://doi. org/10.1007/s10854-018-8938-y.[10] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125 (2012) 331–349, https://doi.org/10.1016/J. APCATB.2012.05.036.[11] C. Dı´az-Uribe, J. Viloria, L. Cervantes, W. Vallejo, K. Navarro, E. Romero, C. Quin˜ ones, Photocatalytic Activity of Ag-TiO 2 Composites Deposited by Photoreduction under UV Irradiation, Int. J. Photoenergy. 2018 (2018) 1–8, https://doi. org/10.1155/2018/6080432.[12] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, J. Photochem. Photobiol. C Photochem. Rev. 24 (2015) 16–42, https://doi.org/10.1016/J.JPHOTOCHEMREV.2015.06.001.[13] Z. Wang, X. Lang, Visible light photocatalysis of dye-sensitized TiO2: The selective aerobic oxidation of amines to imines, Appl. Catal. B Environ. 224 (2018) 404–409, https://doi.org/10.1016/J. APCATB.2017.10.002.[14] W. Vallejo, C. Diaz-Uribe, A ´ . Cantillo, Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxyphthalocyanines, J. Photochem. Photobiol. A Chem. 299 (2015) 80–86, https://doi.org/10.1016/J. JPHOTOCHEM.2014.11.009.[15] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interface Sci. 209 (2014) 172–184, https://doi.org/ 10.1016/J.CIS.2014.04.002.[16] W. Maiaugree, S. Lowpa, M. Towannang, P. Rutphonsan, A. Tangtrakarn, S. Pimanpang, P. Maiaugree, N. Ratchapolthavisin, W. Sang-Aroon, W. Jarernboon, V. Amornkitbamrung, A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste, Sci. Rep. 5 15230 (2015), https://doi.org/10.1038/ srep15230.[17] H. Yang, L. Jiang, Y. Li, G. Li, Y. Yang, J. He, J. Wang, Z. Yan, H. Yang, L. Jiang, Y. Li, G. Li, Y. Yang, J. He, J. Wang, Z. Yan, Highly efficient red cabbage anthocyanin inserted TiO2 aerogel nanocomposites for photocatalytic reduction of Cr(VI) under visible light, Nanomaterials 8 (2018) 937, https://doi.org/ 10.3390/nano8110937.[18] C. Dı´az-Uribe, W. Vallejo, K. Campos, W. Solano, J. Andrade, A. Mun˜ oz-Acevedo, E. Schott, X. Zarate, Improvement of the photocatalytic activity of TiO2 using Colombian Caribbean species (Syzygium cumini) as natural sensitizers: Experimental and theoretical studies, Dye. Pigment. 150 (2018) 370–376, https://doi.org/10.1016/J.DYEPIG.2017.12.027.[19] C. Osorio, J.G. Carriazo, O. Almanza, Antioxidant activity of corozo (Bactris guineensis) fruit by electron paramagnetic resonance (EPR) spectroscopy, Eur. Food Res. Technol. 233 (2011) 103–108, https://doi.org/10.1007/s00217-011-1499-4.[20] M.B. Rojano, I. Isabel, C. Zapata, C. Farid, B. Cortes, Anthocyanin stability and the oxygen radical absorbance capacity (ORAC) values of Corozo aqueous extracts (Bactris guineensis), 2012. http://scielo.sld.cu (accessed May 13, 2019).[21] C. Diaz-Uribe, W. Vallejo, G. Camargo, A. Mun˜ oz-Acevedo, C. Quin˜ ones, E. Schott, X. Zarate, Potential use of an anthocyaninrich extract from berries of Vaccinium meridionale Swartz as sensitizer for TiO2 thin films – An experimental and theoretical study, J. Photochem. Photobiol. A Chem. 384 (2019), https:// doi.org/10.1016/J.JPHOTOCHEM.2019.112050 112050[22] C. Quin˜ ones, J. Ayala, W. Vallejo, Methylene blue photoelectrodegradation under UV irradiation on Au/Pdmodified TiO2 films, Appl. Surf. Sci. 257 (2010) 367–371, https://doi.org/10.1016/J.APSUSC.2010.06.079.[23] A.I. Kontos, A.G. Kontos, D.S. Tsoukleris, M.-C. Bernard, N. Spyrellis, P. Falaras, Nanostructured TiO2 films for DSSCS prepared by combining doctor-blade and sol–gel techniques, J. Mater. Process. Technol. 196 (2008) 243–248, https://doi.org/ 10.1016/J.JMATPROTEC.2007.05.051.[24] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange– correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393 (2004) 51–57, https:// doi.org/10.1016/j.cplett.2004.06.011.[25] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985) 270–283, https://doi.org/ 10.1063/1.448799.[26] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys. 82 (1985) 299–310, https://doi.org/10.1063/1.448975.[27] W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys. 82 (1985) 284–298, https://doi.org/10.1063/ 1.448800.[28] H. Horbowicz, M. Kosson, R. Grzesiuk, A. Debski, Anthocyanins of fruits and vegetables-their occurrence, analysis and role in human nutrition, Veg. Crop. Res. Bull. 68 (2008) 5–22, https://doi.org/10.2478/v10032-008-0001-8.[29] X. Zarate, S. Schott-Verdugo, A. Rodriguez-Serrano, E. Schott, The nature of the donor motif in acceptor-bridge-donor dyes as an influence in the electron photo-injection mechanism in DSSCs, J. Phys. Chem. A. 120 (2016) 1613–1624, https://doi. org/10.1021/acs.jpca.5b12215.[30] X. Zarate, M. Saavedra-Torres, A. Rodriguez-Serrano, T. Gomez, E. Schott, Exploring the relevance of thiophene rings as bridge unit in acceptor-bridge-donor dyes on self-aggregation and performance in DSSCs, J. Comput. Chem. 39 (2018) 685– 698, https://doi.org/10.1002/jcc.25136.[31] X. Zarate, F. Claveria-Cadiz, D. Arias-Olivares, A. Rodriguez- Serrano, N. Inostroza, E. Schott, Effects of the acceptor unit in dyes with acceptor–bridge–donor architecture on the electron photo-injection mechanism and aggregation in DSSCs, Phys. Chem. Chem. Phys. 18 (2016) 24239–24251, https://doi.org/ 10.1039/C6CP04662B.[32] W. Sang-aroon, S. Saekow, V. Amornkitbamrung, Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells, J. Photochem. Photobiol. A Chem. 236 (2012) 35–40, https://doi. org/10.1016/J.JPHOTOCHEM.2012.03.014.[33] T. Gomez, F. Jaramillo, E. Schott, R. Arratia-Pe´rez, X. Zarate, Simulation of natural dyes adsorbed on TiO2 for photovoltaic applications, Sol. Energy. 142 (2017) 215–223, https://doi.org/ 10.1016/J.SOLENER.2016.12.023.[34] C. Osorio, B. Acevedo, S. Hillebrand, J. Carriazo, P. Winterhalter, A.L. Morales, Microencapsulation by spraydrying of anthocyanin pigments from Corozo (Bactris guineensis) fruit, J. Agric. Food Chem. 58 (2010) 6977–6985, https://doi.org/10.1021/jf100536g.[35] E. Corradini, P. Foglia, P. Giansanti, R. Gubbiotti, R. Samperi, A. Lagana` , Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants, Nat. Prod. Res. 25 (2011) 469–495, https://doi.org/ 10.1080/14786419.2010.482054.[36] L.M. Sikhwivhilu, S. Sinha Ray, N.J. Coville, Influence of bases on hydrothermal synthesis of titanate nanostructures, Appl. Phys. A. 94 (2009) 963–973, https://doi.org/10.1007/s00339-008- 4877-4.[37] Y. Park, W. Kim, D. Monllor-Satoca, T. Tachikawa, T. Majima, W. Choi, Role of interparticle charge transfers in agglomerated photocatalyst nanoparticles: demonstration in aqueous suspension of dye-sensitized TiO2, J. Phys. Chem. Lett. 4 (2013) 189–194, https://doi.org/10.1021/jz301881d.[38] K.T. Ahliha A, F. Nurosyid, A. Supriyanto, Optical properties of anthocyanin dyes on TiO 2 as photosensitizers for application of dye-sensitized solar cell (DSSC) Related content, IOP Conf. Ser, Mater. Sci. Eng. 33 (2018), https://doi.org/10.1088/1757- 899X/333/1/012018 012018.[39] P.I.E.L.U. Okoli, J.O. Ozuomba, A.J. Ekpunobi, Anthocyanindyed TiO2 electrode and its performance on dye-sensitized solar cell, Res. J. Recent Sci. 1 (2012) 22–27 (accessed September 30, 2018) http://www.isca.in/rjrs/archive/v1/i5/4.ISCA-RJRS-2012- 73.php.[40] E.L. Simmons, Relation of the diffuse reflectance remission function to the fundamental optical parameters, Opt. Acta Int. J. Opt. 19 (1972) 845–851, https://doi.org/10.1080/713818505.[41] B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, Phys. Status Solidi. 252 (2015) 1700–1710, https://doi.org/10.1002/pssb.201552007.[42] K. Madhusudan Reddy, S.V. Manorama, A. Ramachandra Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys. 78 (2003) 239–245, https:// doi.org/10.1016/S0254-0584(02)00343-7.[43] Z. Youssef, L. Colombeau, N. Yesmurzayeva, F. Baros, R. Vanderesse, T. Hamieh, J. Toufaily, C. Frochot, T. Roques- Carmes, S. Acherar, Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification, Dye. Pigment. 159 (2018) 49–71, https://doi.org/10.1016/J.DYEPIG.2018.06.002.[44] K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol. A Chem. 134 (2000) 139–142, https://doi.org/10.1016/S1010-6030(00)00264-1.[45] H. Hug, M. Bader, P. Mair, T. Glatzel, Biophotovoltaics: Natural pigments in dye-sensitized solar cells, Appl. Energy. 115 (2014) 216–225, https://doi.org/10.1016/J. APENERGY.2013.10.055.[46] S. Shalini, R. Balasundaraprabhu, T.S. Kumar, N. Prabavathy, S. Senthilarasu, S. Prasanna, Status and outlook of sensitizers/ dyes used in dye sensitized solar cells (DSSC): a review, Int. J. Energy Res. 40 (2016) 1303–1320, https://doi.org/10.1002/ er.3538.[47] S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dyesensitized solar cells: Progress and future challenges, Energy Environ. Sci. 6 (2013) 1443–1464, https://doi.org/10.1039/ c3ee24453a.http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S1319610320300302-main.pdf1-s2.0-S1319610320300302-main.pdfapplication/pdf2242050https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/984/1/1-s2.0-S1319610320300302-main.pdf3d96a01ce1fb5ad78d04a40bb18257b9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/984/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/984/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/984oai:repositorio.uniatlantico.edu.co:20.500.12834/9842022-11-15 16:22:27.53DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==