A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms
This article presents a multivariable optimization of the energy and exergetic performance of a power generation system, which is integrated by a supercritical Brayton Cycle using carbon dioxide, and a Simple Organic Rankine Cycle (SORC) using toluene, with reheater (S CORH 2 SORC), and without rehe...
- Autores:
-
Valencia Ochoa, Guillermo
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/991
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/991
- Palabra clave:
- Energy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysis
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_65241728fc42b37fe232cac0510f3673 |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/991 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms |
title |
A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms |
spellingShingle |
A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms Energy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysis |
title_short |
A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms |
title_full |
A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms |
title_fullStr |
A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms |
title_full_unstemmed |
A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms |
title_sort |
A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms |
dc.creator.fl_str_mv |
Valencia Ochoa, Guillermo |
dc.contributor.author.none.fl_str_mv |
Valencia Ochoa, Guillermo |
dc.contributor.other.none.fl_str_mv |
Duarte Forero, Jorge Rojas, Jhan Piero |
dc.subject.keywords.spa.fl_str_mv |
Energy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysis |
topic |
Energy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysis |
description |
This article presents a multivariable optimization of the energy and exergetic performance of a power generation system, which is integrated by a supercritical Brayton Cycle using carbon dioxide, and a Simple Organic Rankine Cycle (SORC) using toluene, with reheater (S CORH 2 SORC), and without reheater (S CONRH 2 SORC) using the PSO algorithm. A thermodynamic model of the integrated system was developed from the application of mass, energy and exergy balances to each component, which allowed the calculation of the exergy destroyed a fraction of each equipment, the power generated, the thermal and exergetic efficiency of the system. In addition, through a sensitivity analysis, the effect of the main operational and design variables on thermal efficiency and total exergy destroyed was studied, which were the objective functions selected in the proposed optimization. The results show that the greatest exergy destruction occurs at the thermal source, with a value of 97 kW for the system without Reheater (NRH), but this is reduced by 92.28% for the system with Reheater (RH). In addition, by optimizing the integrated cycle for a particle number of 25, the maximum thermal efficiency of 55.53% (NRH) was achieved, and 56.95% in the RH system. Likewise, for a particle number of 15 and 20 in the PSO algorithm, exergy destruction was minimized to 60.72 kW (NRH) and 112.06 kW (RH), respectively. Comparative analyses of some swarm intelligence optimization algorithms were conducted for the integrated S-CO2-SORC system, evaluating performance indicators, where the PSO optimization algorithm was favorable in the analyses, guaranteeing that it is the ideal algorithm to solve this case study. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-06-01 |
dc.date.submitted.none.fl_str_mv |
2020-03-18 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T21:23:47Z |
dc.date.available.none.fl_str_mv |
2022-11-15T21:23:47Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/991 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.heliyon.2020.e04136 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/991 |
identifier_str_mv |
10.1016/j.heliyon.2020.e04136 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
Elsevier Ltd |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/1/1-s2.0-S2405844020309804-main.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/3/license.txt |
bitstream.checksum.fl_str_mv |
0e1e617daba9643300cd05a872bb66fa 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203420592046080 |
spelling |
Valencia Ochoa, Guillermo1601011b-0fa9-473b-b829-dad629428f37Duarte Forero, JorgeRojas, Jhan Piero2022-11-15T21:23:47Z2022-11-15T21:23:47Z2020-06-012020-03-18https://hdl.handle.net/20.500.12834/99110.1016/j.heliyon.2020.e04136Universidad del AtlánticoRepositorio Universidad del AtlánticoThis article presents a multivariable optimization of the energy and exergetic performance of a power generation system, which is integrated by a supercritical Brayton Cycle using carbon dioxide, and a Simple Organic Rankine Cycle (SORC) using toluene, with reheater (S CORH 2 SORC), and without reheater (S CONRH 2 SORC) using the PSO algorithm. A thermodynamic model of the integrated system was developed from the application of mass, energy and exergy balances to each component, which allowed the calculation of the exergy destroyed a fraction of each equipment, the power generated, the thermal and exergetic efficiency of the system. In addition, through a sensitivity analysis, the effect of the main operational and design variables on thermal efficiency and total exergy destroyed was studied, which were the objective functions selected in the proposed optimization. The results show that the greatest exergy destruction occurs at the thermal source, with a value of 97 kW for the system without Reheater (NRH), but this is reduced by 92.28% for the system with Reheater (RH). In addition, by optimizing the integrated cycle for a particle number of 25, the maximum thermal efficiency of 55.53% (NRH) was achieved, and 56.95% in the RH system. Likewise, for a particle number of 15 and 20 in the PSO algorithm, exergy destruction was minimized to 60.72 kW (NRH) and 112.06 kW (RH), respectively. Comparative analyses of some swarm intelligence optimization algorithms were conducted for the integrated S-CO2-SORC system, evaluating performance indicators, where the PSO optimization algorithm was favorable in the analyses, guaranteeing that it is the ideal algorithm to solve this case study.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Elsevier LtdA comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithmsPúblico generalEnergy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede Norte[1] G. Valencia Ochoa, J. Nunez Alvarez, C. Acevedo, Research Evolution on Renewable Energies Resources from 2007 to 2017: a Comparative Study on Solar, Geothermal, Wind and Biomass Energy, 2019.[2] G.V. Ochoa, J.N. Alvarez, M.V. Chamorro, Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar-Colombia, Data Br. 27 (2019) 104753.[3] F.B. Budes, G.V. Ochoa, Y.C. Escorcia, An Economic Evaluation of Renewable and Conventional Electricity Generation Systems in a Shopping Center Using HOMER Pro®, 2017.[4] D. Milani, M.T. Luu, R. McNaughton, A. Abbas, A comparative study of solar heliostat assisted supercritical CO2 recompression Brayton cycles: dynamic modelling and control strategies, J. Supercrit. Fluids 120 (2017) 113–124.[5] G. Valencia, A. Fontalvo, Y. Cardenas Escorcia, J. Duarte, C. Isaza-Roldan, Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC, Energies 12 (2019) 2378.[6] G. Valencia Ochoa, C. Acevedo Pe~naloza, J. Duarte Forero, Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine, Energies 12 (21) (2019).[7] G. Valencia, C. Pe~naloza, J. Rojas, Thermoeconomic modelling and parametric study of a Simple ORC for the recovery of waste heat in a 2 MW gas engine under different working fluids, Appl. Sci. 9 (Oct. 2019) 4526.[8] S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort, Techno-economic survey of organic rankine cycle (ORC) systems, Renew. Sustain. Energy Rev. 22 (2013) 168–186.[9] J. Dyreby, S. Klein, G. Nellis, D. Reindl, Design considerations for supercritical carbon dioxide Brayton cycles with recompression, J. Eng. Gas Turbines Power 136 (10) (2014).[10] P. Garg, P. Kumar, K. Srinivasan, Supercritical carbon dioxide Brayton cycle for concentrated solar power, J. Supercrit. Fluids 76 (2013) 54–60.[11] J. Sarkar, Second law analysis of supercritical CO2 recompression Brayton cycle, Energy 34 (9) (2009) 1172–1178.[12] M.S. Khan, M. Abid, H.M. Ali, K.P. Amber, M.A. Bashir, S. Javed, Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids, Appl. Therm. Eng. 148 (2019) 295–306.[13] L. Coco-Enríquez, J. Mu~noz-Ant on, J.M. Martínez-Val, Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles, Int. J. Hydrogen Energy 40 (44) (2015) 15284–15300.[14] J. Wang, Z. Sun, Y. Dai, S. Ma, Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network, Appl. Energy 87 (4) (2010) 1317–1324.[15] R. Chacartegui, J.M.M. De Escalona, D. S anchez, B. Monje, T. S anchez, Alternative cycles based on carbon dioxide for central receiver solar power plants, Appl. Therm. Eng. 31 (5) (2011) 872–879.[16] S.J. Bae, Y. Ahn, J. Lee, J.I. Lee, Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide rankine cycle combined fuel cell, in: In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 2014.[17] F. Alshammari, A. Pesyridis, A. Karvountzis-Kontakiotis, B. Franchetti, Y. Pesmazoglou, Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance, Appl. Energy 215 (2018) 543–555.[18] G. Valencia, J. Nú~nez, J. Duarte, Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines, Entropy 21 (7) (2019).[19] P. Song, M. Wei, L. Shi, S.N. Danish, C. Ma, A review of scroll expanders for organic rankine cycle systems, Appl. Therm. Eng. 75 (2015) 54–64.[20] S. Quoilin, S. Declaye, B.F. Tchanche, V. Lemort, Thermo-economic optimization of waste heat recovery Organic Rankine Cycles, Appl. Therm. Eng. 31 (14–15) (2011) 2885–2893.[21] G. Valencia, J. Duarte, C. Isaza-Roldan, Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC, Appl. Sci. 9 (19) (2019).[22] O. Badr, P.W. O’Callaghan, S.D. Probert, Rankine-cycle systems for harnessing power from low-grade energy sources, Appl. Energy 36 (4) (1990) 263–292.[23] A. Toffolo, A. Lazzaretto, G. Manente, M. Paci, A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems, Appl. Energy 121 (2014) 219–232.[24] V. Zare, A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants, Energy Convers. Manag. 105 (2015) 127–138.[25] K. Seshadri, Thermal design and optimization 21 (5) (1996).[26] R. Smith, Chemical Process: Design and Integration, John Wiley & Sons, 2005.[27] G. Towler, R. Sinnott, Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Elsevier, 2012.[28] B. Franchetti, A. Pesiridis, I. Pesmazoglou, E. Sciubba, L. Tocci, Thermodynamic and Technical Criteria for the Optimal Selection of the Working Fluid in a Mini- ORC, 2016.[29] S. Kelly, G. Tsatsaronis, T. Morosuk, Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts, Energy 34 (3) (2009) 384–391[30] M. Yürüsoy, A. Keçebas¸, Advanced exergo-environmental analyses and assessments of a real district heating system with geothermal energy, Appl. Therm. Eng. 113 (2017) 449–459.[31] L. Barrios Guzman, Y. C ardenas Escorcia, G. Valencia Ochoa, An alisis tendencial de las investigaciones de eficiencia energ etica en sistemas de refrigeraci on durante los a~nos 2013 a 2017, Espacios 38 (54) (2017).[32] H. Jouhara, M.A. Sayegh, Energy efficient thermal systems and processes, Therm. Sci. Eng. Prog. 7 (125–130) (2018) 1–5.[33] R.V. Padilla, Y.C. Soo Too, R. Benito, W. Stein, Exergetic analysis of supercritical CO 2 Brayton cycles integrated with solar central receivers, Appl. Energy 148 (2015) 348–365.[34] M. Aslam Siddiqi, B. Atakan, Alkanes as fluids in Rankine cycles in comparison to water and benzene, Proc. 24th Int. Conf. Effic. Cost Optim. Simul. Environ. Impact Energy Syst. ECOS 45 (1) (2011) 1544–1558[35] B.F. Tchanche, G. Lambrinos, A. Frangoudakis, G. Papadakis, Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system, Appl. Energy 87 (4) (2010) 1295–1306.[36] S. Kiranyaz, Particle swarm optimization, Adapt. Learn. Optim. 15 (2014) 45–82.[37] M. Lovay, G. Peretti, E. Romero, Aplicaci on del algoritmo Evoluci on Diferencial en un m etodo de dimensionamiento para filtros bicuadr aticos, in: 6th Argentine Symposium on Industrial Informatics, 46th Argentine Conference on Informatics, 2017, pp. 222–233.[38] X.-S. Yang, 1 - optimization and metaheuristic algorithms in engineering, in: X.- S. Yang, A.H. Gandomi, S. Talatahari, A.H. Alavi (Eds.), Metaheuristics in Water, Geotechnical and Transport Engineering, Elsevier, Oxford, 2013, pp. 1–23.[39] J. Kennedy, R. Eberhart, Particle swarm optimization, Int. Conf. Neural Networks 4 (1995) 1942–1948.[40] Y. Feng, Y. Zhang, B. Li, J. Yang, Y. Shi, Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC), Energy Convers. Manag. 96 (2015) 58–71.[41] G. Valencia Ochoa, J. C ardenas Gutierrez, J. Duarte Forero, Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine, Resources 9 (2020).[42] H. Qi, et al., Application of multi-phase particle swarm optimization technique to inverse radiation problem, J. Quant. Spectrosc. Radiat. Transf. 109 (3) (2008) 476–493.[43] G. Niu, B. Chen, J. Zeng, Repulsive particle swarm optimization based on new diversity, Chinese Contr. Decis. Conf. (2010) 815–819.http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S2405844020309804-main.pdf1-s2.0-S2405844020309804-main.pdfapplication/pdf2761519https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/1/1-s2.0-S2405844020309804-main.pdf0e1e617daba9643300cd05a872bb66faMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/991oai:repositorio.uniatlantico.edu.co:20.500.12834/9912022-11-15 16:23:48.183DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |