A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms

This article presents a multivariable optimization of the energy and exergetic performance of a power generation system, which is integrated by a supercritical Brayton Cycle using carbon dioxide, and a Simple Organic Rankine Cycle (SORC) using toluene, with reheater (S CORH 2 SORC), and without rehe...

Full description

Autores:
Valencia Ochoa, Guillermo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/991
Acceso en línea:
https://hdl.handle.net/20.500.12834/991
Palabra clave:
Energy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysis
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_65241728fc42b37fe232cac0510f3673
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/991
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms
title A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms
spellingShingle A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms
Energy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysis
title_short A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms
title_full A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms
title_fullStr A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms
title_full_unstemmed A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms
title_sort A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms
dc.creator.fl_str_mv Valencia Ochoa, Guillermo
dc.contributor.author.none.fl_str_mv Valencia Ochoa, Guillermo
dc.contributor.other.none.fl_str_mv Duarte Forero, Jorge
Rojas, Jhan Piero
dc.subject.keywords.spa.fl_str_mv Energy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysis
topic Energy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysis
description This article presents a multivariable optimization of the energy and exergetic performance of a power generation system, which is integrated by a supercritical Brayton Cycle using carbon dioxide, and a Simple Organic Rankine Cycle (SORC) using toluene, with reheater (S CORH 2 SORC), and without reheater (S CONRH 2 SORC) using the PSO algorithm. A thermodynamic model of the integrated system was developed from the application of mass, energy and exergy balances to each component, which allowed the calculation of the exergy destroyed a fraction of each equipment, the power generated, the thermal and exergetic efficiency of the system. In addition, through a sensitivity analysis, the effect of the main operational and design variables on thermal efficiency and total exergy destroyed was studied, which were the objective functions selected in the proposed optimization. The results show that the greatest exergy destruction occurs at the thermal source, with a value of 97 kW for the system without Reheater (NRH), but this is reduced by 92.28% for the system with Reheater (RH). In addition, by optimizing the integrated cycle for a particle number of 25, the maximum thermal efficiency of 55.53% (NRH) was achieved, and 56.95% in the RH system. Likewise, for a particle number of 15 and 20 in the PSO algorithm, exergy destruction was minimized to 60.72 kW (NRH) and 112.06 kW (RH), respectively. Comparative analyses of some swarm intelligence optimization algorithms were conducted for the integrated S-CO2-SORC system, evaluating performance indicators, where the PSO optimization algorithm was favorable in the analyses, guaranteeing that it is the ideal algorithm to solve this case study.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-06-01
dc.date.submitted.none.fl_str_mv 2020-03-18
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:23:47Z
dc.date.available.none.fl_str_mv 2022-11-15T21:23:47Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/991
dc.identifier.doi.none.fl_str_mv 10.1016/j.heliyon.2020.e04136
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/991
identifier_str_mv 10.1016/j.heliyon.2020.e04136
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Elsevier Ltd
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/1/1-s2.0-S2405844020309804-main.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/3/license.txt
bitstream.checksum.fl_str_mv 0e1e617daba9643300cd05a872bb66fa
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203420592046080
spelling Valencia Ochoa, Guillermo1601011b-0fa9-473b-b829-dad629428f37Duarte Forero, JorgeRojas, Jhan Piero2022-11-15T21:23:47Z2022-11-15T21:23:47Z2020-06-012020-03-18https://hdl.handle.net/20.500.12834/99110.1016/j.heliyon.2020.e04136Universidad del AtlánticoRepositorio Universidad del AtlánticoThis article presents a multivariable optimization of the energy and exergetic performance of a power generation system, which is integrated by a supercritical Brayton Cycle using carbon dioxide, and a Simple Organic Rankine Cycle (SORC) using toluene, with reheater (S CORH 2 SORC), and without reheater (S CONRH 2 SORC) using the PSO algorithm. A thermodynamic model of the integrated system was developed from the application of mass, energy and exergy balances to each component, which allowed the calculation of the exergy destroyed a fraction of each equipment, the power generated, the thermal and exergetic efficiency of the system. In addition, through a sensitivity analysis, the effect of the main operational and design variables on thermal efficiency and total exergy destroyed was studied, which were the objective functions selected in the proposed optimization. The results show that the greatest exergy destruction occurs at the thermal source, with a value of 97 kW for the system without Reheater (NRH), but this is reduced by 92.28% for the system with Reheater (RH). In addition, by optimizing the integrated cycle for a particle number of 25, the maximum thermal efficiency of 55.53% (NRH) was achieved, and 56.95% in the RH system. Likewise, for a particle number of 15 and 20 in the PSO algorithm, exergy destruction was minimized to 60.72 kW (NRH) and 112.06 kW (RH), respectively. Comparative analyses of some swarm intelligence optimization algorithms were conducted for the integrated S-CO2-SORC system, evaluating performance indicators, where the PSO optimization algorithm was favorable in the analyses, guaranteeing that it is the ideal algorithm to solve this case study.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Elsevier LtdA comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithmsPúblico generalEnergy Mechanical engineering Thermodynamics Mathematical optimization Energy conservation Swarm intelligence algorithms Brayton supercritical CO2 cycle Organic Rankine cycle Exergetic analysis Energy analysisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede Norte[1] G. Valencia Ochoa, J. Nunez Alvarez, C. Acevedo, Research Evolution on Renewable Energies Resources from 2007 to 2017: a Comparative Study on Solar, Geothermal, Wind and Biomass Energy, 2019.[2] G.V. Ochoa, J.N. Alvarez, M.V. Chamorro, Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar-Colombia, Data Br. 27 (2019) 104753.[3] F.B. Budes, G.V. Ochoa, Y.C. Escorcia, An Economic Evaluation of Renewable and Conventional Electricity Generation Systems in a Shopping Center Using HOMER Pro®, 2017.[4] D. Milani, M.T. Luu, R. McNaughton, A. Abbas, A comparative study of solar heliostat assisted supercritical CO2 recompression Brayton cycles: dynamic modelling and control strategies, J. Supercrit. Fluids 120 (2017) 113–124.[5] G. Valencia, A. Fontalvo, Y. Cardenas Escorcia, J. Duarte, C. Isaza-Roldan, Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC, Energies 12 (2019) 2378.[6] G. Valencia Ochoa, C. Acevedo Pe~naloza, J. Duarte Forero, Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine, Energies 12 (21) (2019).[7] G. Valencia, C. Pe~naloza, J. Rojas, Thermoeconomic modelling and parametric study of a Simple ORC for the recovery of waste heat in a 2 MW gas engine under different working fluids, Appl. Sci. 9 (Oct. 2019) 4526.[8] S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort, Techno-economic survey of organic rankine cycle (ORC) systems, Renew. Sustain. Energy Rev. 22 (2013) 168–186.[9] J. Dyreby, S. Klein, G. Nellis, D. Reindl, Design considerations for supercritical carbon dioxide Brayton cycles with recompression, J. Eng. Gas Turbines Power 136 (10) (2014).[10] P. Garg, P. Kumar, K. Srinivasan, Supercritical carbon dioxide Brayton cycle for concentrated solar power, J. Supercrit. Fluids 76 (2013) 54–60.[11] J. Sarkar, Second law analysis of supercritical CO2 recompression Brayton cycle, Energy 34 (9) (2009) 1172–1178.[12] M.S. Khan, M. Abid, H.M. Ali, K.P. Amber, M.A. Bashir, S. Javed, Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids, Appl. Therm. Eng. 148 (2019) 295–306.[13] L. Coco-Enríquez, J. Mu~noz-Ant on, J.M. Martínez-Val, Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles, Int. J. Hydrogen Energy 40 (44) (2015) 15284–15300.[14] J. Wang, Z. Sun, Y. Dai, S. Ma, Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network, Appl. Energy 87 (4) (2010) 1317–1324.[15] R. Chacartegui, J.M.M. De Escalona, D. S anchez, B. Monje, T. S anchez, Alternative cycles based on carbon dioxide for central receiver solar power plants, Appl. Therm. Eng. 31 (5) (2011) 872–879.[16] S.J. Bae, Y. Ahn, J. Lee, J.I. Lee, Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide rankine cycle combined fuel cell, in: In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 2014.[17] F. Alshammari, A. Pesyridis, A. Karvountzis-Kontakiotis, B. Franchetti, Y. Pesmazoglou, Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance, Appl. Energy 215 (2018) 543–555.[18] G. Valencia, J. Nú~nez, J. Duarte, Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines, Entropy 21 (7) (2019).[19] P. Song, M. Wei, L. Shi, S.N. Danish, C. Ma, A review of scroll expanders for organic rankine cycle systems, Appl. Therm. Eng. 75 (2015) 54–64.[20] S. Quoilin, S. Declaye, B.F. Tchanche, V. Lemort, Thermo-economic optimization of waste heat recovery Organic Rankine Cycles, Appl. Therm. Eng. 31 (14–15) (2011) 2885–2893.[21] G. Valencia, J. Duarte, C. Isaza-Roldan, Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC, Appl. Sci. 9 (19) (2019).[22] O. Badr, P.W. O’Callaghan, S.D. Probert, Rankine-cycle systems for harnessing power from low-grade energy sources, Appl. Energy 36 (4) (1990) 263–292.[23] A. Toffolo, A. Lazzaretto, G. Manente, M. Paci, A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems, Appl. Energy 121 (2014) 219–232.[24] V. Zare, A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants, Energy Convers. Manag. 105 (2015) 127–138.[25] K. Seshadri, Thermal design and optimization 21 (5) (1996).[26] R. Smith, Chemical Process: Design and Integration, John Wiley & Sons, 2005.[27] G. Towler, R. Sinnott, Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Elsevier, 2012.[28] B. Franchetti, A. Pesiridis, I. Pesmazoglou, E. Sciubba, L. Tocci, Thermodynamic and Technical Criteria for the Optimal Selection of the Working Fluid in a Mini- ORC, 2016.[29] S. Kelly, G. Tsatsaronis, T. Morosuk, Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts, Energy 34 (3) (2009) 384–391[30] M. Yürüsoy, A. Keçebas¸, Advanced exergo-environmental analyses and assessments of a real district heating system with geothermal energy, Appl. Therm. Eng. 113 (2017) 449–459.[31] L. Barrios Guzman, Y. C ardenas Escorcia, G. Valencia Ochoa, An alisis tendencial de las investigaciones de eficiencia energ etica en sistemas de refrigeraci on durante los a~nos 2013 a 2017, Espacios 38 (54) (2017).[32] H. Jouhara, M.A. Sayegh, Energy efficient thermal systems and processes, Therm. Sci. Eng. Prog. 7 (125–130) (2018) 1–5.[33] R.V. Padilla, Y.C. Soo Too, R. Benito, W. Stein, Exergetic analysis of supercritical CO 2 Brayton cycles integrated with solar central receivers, Appl. Energy 148 (2015) 348–365.[34] M. Aslam Siddiqi, B. Atakan, Alkanes as fluids in Rankine cycles in comparison to water and benzene, Proc. 24th Int. Conf. Effic. Cost Optim. Simul. Environ. Impact Energy Syst. ECOS 45 (1) (2011) 1544–1558[35] B.F. Tchanche, G. Lambrinos, A. Frangoudakis, G. Papadakis, Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system, Appl. Energy 87 (4) (2010) 1295–1306.[36] S. Kiranyaz, Particle swarm optimization, Adapt. Learn. Optim. 15 (2014) 45–82.[37] M. Lovay, G. Peretti, E. Romero, Aplicaci on del algoritmo Evoluci on Diferencial en un m etodo de dimensionamiento para filtros bicuadr aticos, in: 6th Argentine Symposium on Industrial Informatics, 46th Argentine Conference on Informatics, 2017, pp. 222–233.[38] X.-S. Yang, 1 - optimization and metaheuristic algorithms in engineering, in: X.- S. Yang, A.H. Gandomi, S. Talatahari, A.H. Alavi (Eds.), Metaheuristics in Water, Geotechnical and Transport Engineering, Elsevier, Oxford, 2013, pp. 1–23.[39] J. Kennedy, R. Eberhart, Particle swarm optimization, Int. Conf. Neural Networks 4 (1995) 1942–1948.[40] Y. Feng, Y. Zhang, B. Li, J. Yang, Y. Shi, Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC), Energy Convers. Manag. 96 (2015) 58–71.[41] G. Valencia Ochoa, J. C ardenas Gutierrez, J. Duarte Forero, Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine, Resources 9 (2020).[42] H. Qi, et al., Application of multi-phase particle swarm optimization technique to inverse radiation problem, J. Quant. Spectrosc. Radiat. Transf. 109 (3) (2008) 476–493.[43] G. Niu, B. Chen, J. Zeng, Repulsive particle swarm optimization based on new diversity, Chinese Contr. Decis. Conf. (2010) 815–819.http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S2405844020309804-main.pdf1-s2.0-S2405844020309804-main.pdfapplication/pdf2761519https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/1/1-s2.0-S2405844020309804-main.pdf0e1e617daba9643300cd05a872bb66faMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/991/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/991oai:repositorio.uniatlantico.edu.co:20.500.12834/9912022-11-15 16:23:48.183DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==