Wind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast

techniques for wind speed forecasting. However, although there are multiple studies, none are set up for the Colombia Caribbean coast. This is a disadvantage because the potential of wind resources in this region is greater than the hydroelectric potential of the whole country, but all this potentia...

Full description

Autores:
Palomino, Kevin
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/796
Acceso en línea:
https://hdl.handle.net/20.500.12834/796
Palabra clave:
wind speed prediction, ARIMA, OLS, Sustainable energy.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_6161309bb82d2279e6ad50b0cf300d58
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/796
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Wind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast
title Wind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast
spellingShingle Wind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast
wind speed prediction, ARIMA, OLS, Sustainable energy.
title_short Wind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast
title_full Wind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast
title_fullStr Wind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast
title_full_unstemmed Wind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast
title_sort Wind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast
dc.creator.fl_str_mv Palomino, Kevin
dc.contributor.author.none.fl_str_mv Palomino, Kevin
dc.contributor.other.none.fl_str_mv Reyes, Fabiola
Núñez, José
Valencia, Guillermo
Herrera Acosta, Roberto
dc.subject.keywords.spa.fl_str_mv wind speed prediction, ARIMA, OLS, Sustainable energy.
topic wind speed prediction, ARIMA, OLS, Sustainable energy.
description techniques for wind speed forecasting. However, although there are multiple studies, none are set up for the Colombia Caribbean coast. This is a disadvantage because the potential of wind resources in this region is greater than the hydroelectric potential of the whole country, but all this potential has yet to be developed. In this paper, based on time series, Autoregressive Integrated Moving Average (ARIMA), and Multiple Regression with Ordinary Least Squares (OLS) in the study, two models are proposed and their performance for wind speed prediction is compared. The data were collected in the meteorological station located in the experimental farm of the Atlantic University, in Barranquilla, Colombia, and variables analyzed included wind speed, wind direction, temperature, relative humidity, solar radiation, and pressure. The results of the two approaches indicated that among all the involved models, the ARIMA model has the best predicting performance. Also, it is essential to highlight that through this work, decision-makers would explore the local wind potential, allowing for the possibility of predicting future wind speed, and thus giving them the ability to plan the production and the interaction of other sources of energy.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-06-10
dc.date.submitted.none.fl_str_mv 2020-01-10
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:19:41Z
dc.date.available.none.fl_str_mv 2022-11-15T19:19:41Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/796
dc.identifier.doi.none.fl_str_mv 10.25103/jestr.133.22
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/796
identifier_str_mv 10.25103/jestr.133.22
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Industrial
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv jestr
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/796/1/fulltext221332020.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/796/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/796/3/license.txt
bitstream.checksum.fl_str_mv abd74ec9fabe1a093ad6fa65fc605b36
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203415484432384
spelling Palomino, Kevin51e6bf73-5bd7-4787-91cb-1cc7fb94f53eReyes, FabiolaNúñez, JoséValencia, GuillermoHerrera Acosta, Roberto2022-11-15T19:19:41Z2022-11-15T19:19:41Z2020-06-102020-01-10https://hdl.handle.net/20.500.12834/79610.25103/jestr.133.22Universidad del AtlánticoRepositorio Universidad del Atlánticotechniques for wind speed forecasting. However, although there are multiple studies, none are set up for the Colombia Caribbean coast. This is a disadvantage because the potential of wind resources in this region is greater than the hydroelectric potential of the whole country, but all this potential has yet to be developed. In this paper, based on time series, Autoregressive Integrated Moving Average (ARIMA), and Multiple Regression with Ordinary Least Squares (OLS) in the study, two models are proposed and their performance for wind speed prediction is compared. The data were collected in the meteorological station located in the experimental farm of the Atlantic University, in Barranquilla, Colombia, and variables analyzed included wind speed, wind direction, temperature, relative humidity, solar radiation, and pressure. The results of the two approaches indicated that among all the involved models, the ARIMA model has the best predicting performance. Also, it is essential to highlight that through this work, decision-makers would explore the local wind potential, allowing for the possibility of predicting future wind speed, and thus giving them the ability to plan the production and the interaction of other sources of energy.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2jestrWind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean CoastPúblico generalwind speed prediction, ARIMA, OLS, Sustainable energy.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería IndustrialSede Norte[1] Taner, T. and Demirci, K.O., “Energy and economic analysis of the wind turbine plant’s draft for the Aksaray City”, Applied Ecology and Environmental Sciences, Vol. 2, No. 3, (2015), 82–85.[2] Boutoubat, M., Mokrani, L., Machmoum, M., “Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement”, Renewable Energy, Vol. 50, (2013), 378–386.[3] Brown, S.P.A. and Huntington, H.G., “Energy security and climate change protection: Complementarity or tradeoff?” Energy Policy, Vol. 36, No. 9, (2008), 3510– 3513.[4] Congress of the Republic of Colombia: Law 1715 - 2014.[5] Valencia, G., Vanegas, M. and Polo, J., "Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe colombiana con énfasis en La Guajira”, Vol. 1, 1st ed., Universidad del Atlántico, Barranquilla, (2016), 150.[6] Valencia, G. and Vanegas, M., “Atlas Eólico de la Región Caribe Colombiana”, Vol. 1, 1st ed., Universidad del Atlántico, Barranquilla, (2016), 1-45.[7] Ouyang, T., Zha, X., Qin, L., Xiong, Y. and Xia, T., “Wind power prediction method based on regime of switching kernel functions”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 153, (2016), 26–33.[8] Cadenas, E. and Rivera, W., “Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model”, Renewable Energy, Vol. 35, No. 12, (2010), 2732–2738.[9] Lawrie, L.K. al., “ENERGYPLUS, a new-generation building energy simulation program”. Proceedings of Building Simulation 1999, Kyoto, Japan, (Aug. 1999), 1999.[10] Liu, H., Erdem, E. and Shi, J., “Comprehensive evaluation of ARMA–GARCH(-M) approach hes for modeling the mean and volatility of wind speed”, Applied Energy, Vol. 88, No. 3, (2011), 724–732.[11] Kavasseri, R.G. and Seetharaman, K., “Day-ahead wind speed forecasting using f-ARIMA models”, Renewable Energy, Vol. 34, No. 5, (2009), 1388–1393.[12] Ariza, A.M., “Métodos utilizados para el pronóstico de demanda de energía eléctrica en sistemas de distribución”, Vol. 1, 1st ed., Universidad Tecnológica de Pereira, Pereira, (2013), 15-145.[13] Wang, X., Guo, P. and Huang, X., “A Review of Wind Power Forecasting Models”, Energy Procedia, Vol. 12, (2011), 770–778.[14] Barrozo, F., Valencia, G. and Escorcia, Y.C., “Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost”, Contemporary Engineering Sciences, Vol. 10, No. 26, (2017), 1269-1278.[15] Haque, A.U., Mandal, P., Meng, J. and Negnevitsky, M., “Wind speed forecast model for wind farm based on a hybrid machine learning algorithm”, International Journal of Sustainable Energy, Vol. 34, No. 1, (2015), 38–51.[16] Cassola, F. and Burlando, M., “Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output”, Applied Energy, Vol. 99, (2012), 154–166.[17] Torres, J. L., García, A., De Blas, M. and De Francisco, A., “Forecast of hourly average wind speed with ARMA models in Navarre (Spain)”, Solar Energy, Vol. 79, No. 1, (2005), 65–77.[18] Box, G.E.P and Jenkins, G. M “Time Series Analysis Time series Analysis: Forecasting and control”, Vol. 1, 3rd ed., Prentice-Hall, New Jersey, (1994), 614[19] Box, G.E.P, Jenkins, G. M. and Reinsel, G., “Time series Analysis: Forecasting and control”, Vol. 1, 2nd ed., Holden-Day, New Jersey, (1976), 586[20] Makridakis, S. G., Wheelwright, S. C. and Hyndman, R. J., “Forecasting: Methods and Applications”, Vol. 1, 3rd ed., John Wiley & Sons, New York, (1998), 656[21] Aguado, J., Quevedo, A., Castro, M., Arteaga, R., Vázquez, M.A, and Zamora, B.P., “Meteorological variables prediction through ARIMA models”, Agrociencia, Vol. 50, No. 1, (2016), 1-13.[22] Rojo, J. M., “Regresión lineal multiple”, Instituto de Economía y Geografía Madrid, Madrid, (2007), 32.[23] Herrera, R., Palomino, K., Reyes, F. and Valencia, G., "Análisis Estadístico Descriptivo e Inferencial de la Velocidad y Dirección del viento en la Costa Caribe Colombiana", Revista Espacios, Vol. 39, No. 19, (2018), 3-15.http://purl.org/coar/resource_type/c_6501ORIGINALfulltext221332020.pdffulltext221332020.pdfapplication/pdf576790https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/796/1/fulltext221332020.pdfabd74ec9fabe1a093ad6fa65fc605b36MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/796/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/796/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/796oai:repositorio.uniatlantico.edu.co:20.500.12834/7962022-11-15 14:19:42.769DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==