Deep underground neutrino experiment (DUNE) near detector conceptual design report
The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over an...
- Autores:
-
A.A, Abud,
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/1161
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/1161
- Palabra clave:
- Deep Underground Neutrino Experiment, DUNEN, ear detector, Neutrino, Neutrino oscillations
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_56be20e58a0b92153bb9813cd122e45d |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/1161 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Deep underground neutrino experiment (DUNE) near detector conceptual design report |
title |
Deep underground neutrino experiment (DUNE) near detector conceptual design report |
spellingShingle |
Deep underground neutrino experiment (DUNE) near detector conceptual design report Deep Underground Neutrino Experiment, DUNEN, ear detector, Neutrino, Neutrino oscillations |
title_short |
Deep underground neutrino experiment (DUNE) near detector conceptual design report |
title_full |
Deep underground neutrino experiment (DUNE) near detector conceptual design report |
title_fullStr |
Deep underground neutrino experiment (DUNE) near detector conceptual design report |
title_full_unstemmed |
Deep underground neutrino experiment (DUNE) near detector conceptual design report |
title_sort |
Deep underground neutrino experiment (DUNE) near detector conceptual design report |
dc.creator.fl_str_mv |
A.A, Abud, |
dc.contributor.author.none.fl_str_mv |
A.A, Abud, |
dc.contributor.other.none.fl_str_mv |
B, Abi, R, Acciarri, M.A, Acero, G, Adamov, D, Adams, M, Adinolfi, A, Aduszkiewicz, Z, Ahmad, J, Ahmed, T, Alion, S.A, Monsalve, M, Alrashed, C, Alt, A, Alton, P, Amedo, J, Anderson, C, Andreopoulos, M.P, Andrews, F, Andrianala, S, Andringa, N, Anfimov, A, Ankowski, M, Antonova, S, Antusch, Fernandez, Aranda- A A, Ariga, L.O, Arnold, M.A, Arroyave, J, Asaadi, |
dc.subject.keywords.spa.fl_str_mv |
Deep Underground Neutrino Experiment, DUNEN, ear detector, Neutrino, Neutrino oscillations |
topic |
Deep Underground Neutrino Experiment, DUNEN, ear detector, Neutrino, Neutrino oscillations |
description |
The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-03-26 |
dc.date.submitted.none.fl_str_mv |
2021-01-14 |
dc.date.accessioned.none.fl_str_mv |
2022-12-20T23:05:46Z |
dc.date.available.none.fl_str_mv |
2022-12-20T23:05:46Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/1161 |
dc.identifier.doi.none.fl_str_mv |
10.48550/arXiv.2103.13910 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/1161 |
identifier_str_mv |
10.48550/arXiv.2103.13910 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
Instruments |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1161/1/2103.13910.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1161/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1161/3/license.txt |
bitstream.checksum.fl_str_mv |
f51c356f3d03f3a3e93b09bc35c6b9d8 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203415376429056 |
spelling |
A.A, Abud,e9e5ce73-d563-42a3-bbb6-88456d1af15fB, Abi,R, Acciarri,M.A, Acero,G, Adamov,D, Adams,M, Adinolfi,A, Aduszkiewicz,Z, Ahmad,J, Ahmed,T, Alion,S.A, Monsalve,M, Alrashed,C, Alt,A, Alton,P, Amedo,J, Anderson,C, Andreopoulos,M.P, Andrews,F, Andrianala,S, Andringa,N, Anfimov,A, Ankowski,M, Antonova,S, Antusch,Fernandez, Aranda- AA, Ariga,L.O, Arnold,M.A, Arroyave,J, Asaadi,2022-12-20T23:05:46Z2022-12-20T23:05:46Z2021-03-262021-01-14https://hdl.handle.net/20.500.12834/116110.48550/arXiv.2103.13910Universidad del AtlánticoRepositorio Universidad del AtlánticoThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2InstrumentsDeep underground neutrino experiment (DUNE) near detector conceptual design reportPúblico generalDeep Underground Neutrino Experiment, DUNEN, ear detector, Neutrino, Neutrino oscillationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede NorteDUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE,” JINST 15 no. 08, (2020) T08008, arXiv:2002.02967 [physics.ins-det].DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics,” arXiv:2002.03005 [hep-ex].DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV Far Detector Single-phase Technology,” JINST 15 no. 08, (2020) T08010, arXiv:2002.03010 [physics.ins-det].DUNE Collaboration, R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE),” arXiv:1601.05471 [physics.ins-det].DUNE Collaboration, R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE),” arXiv:1512.06148 [physics.ins-det].DUNE Collaboration, J. Strait et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE),” arXiv:1601.05823 [physics.ins-det].DUNE Collaboration, R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE),” arXiv:1601.02984 [physics.ins-det].HEPAP Subcommittee Collaboration, S. Ritz et al., “Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context,”.A. Friedland and S. W. Li, “Understanding the energy resolution of liquid argon neutrino detectors,” Phys. Rev. D99 no. 3, (2019) 036009, arXiv:1811.06159 [hep-ph].P. Franzini and M. Moulson, “The Physics of DAFNE and KLOE,” Ann. Rev. Nucl. Part. Sci. 56 (2006) 207–251, arXiv:hep-ex/0606033 [hep-ex].R. A. Smith and E. J. Moniz, “NEUTRINO REACTIONS ON NUCLEAR TARGETS,” Nucl. Phys. B43 (1972) 605. [Erratum: Nucl. Phys.B101,547(1975)].A. Bodek, M. E. Christy, and B. Coopersmith, “Effective spectral function for quasielastic scattering on nuclei from 21 H to 208 82 Pb,” AIP Conf. Proc. 1680 (2015) 020003, arXiv:1409.8545 [nucl-th].MINERvA Collaboration, D. Ruterbories et al., “Measurement of Quasielastic-Like Neutrino Scattering at hE i 3.5 GeV on a Hydrocarbon Target,” Phys. Rev. D99 no. 1, (2019) 012004, arXiv:1811.02774 [hep-ex].T2K Collaboration, K. Abe et al., “Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target,” Phys. Rev. Lett. 121 no. 17, (2018) 171802, arXiv:1807.07891 [hep-ex].NOvA Collaboration, M. A. Acero et al., “New constraints on oscillation parameters from e appearance and μ disappearance in the NOvA experiment,” Phys. Rev. D98 (2018) 032012, arXiv:1806.00096 [hep-ex].J. Wolcott, “Impact of cross section modeling on NOvA oscillation analyses.” https://indico.cern.ch/event/703880/contributions/3159021/attachments/ 1735451/2806895/2018-10-17_Wolcott_XS_unc_on_NOvA_osc_-_NuInt.pdf, 2018.D. Jena, “MINERvA adventures in flux determination,” in NuInt 2018, Fermilab. Oct., 2018. https://indico.cern.ch/event/703880/contributions/3159052/attachments/ 1735968/2817449/NuInt2018_DeepikaJena_Flux.pdf.MiniBooNE Collaboration, A. A. Aguilar-Arevalo et al., “Measurement of the Neutrino Neutral-Current Elastic Differential Cross Section on Mineral Oil at E 1 GeV,” Phys. Rev. D82 (2010) 092005, arXiv:1007.4730 [hep-ex].K2K Collaboration, R. Gran et al., “Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions,” Phys. Rev. D74 (2006) 052002, arXiv:hep-ex/0603034 [hep-ex].MINOS Collaboration, P. Adamson et al., “Study of quasielastic scattering using charged-current μ-iron interactions in the MINOS near detector,” Phys. Rev. D91 no. 1, (2015) 012005, arXiv:1410.8613 [hep-ex].M. Martini, M. Ericson, and G. Chanfray, “Energy reconstruction effects in neutrino oscillation experiments and implications for the analysis,” Phys. Rev. D87 no. 1, (2013) 013009, arXiv:1211.1523 [hep-ph].NOvA Collaboration, P. Adamson et al., “First measurement of muon-neutrino disappearance in NOvA,” Phys. Rev. D93 no. 5, (2016) 051104, arXiv:1601.05037 [hep-ex].C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,” Nucl. Instrum. Meth. A614 (2010) 87–104, arXiv:0905.2517 [hep-ph].A. Bodek and J. L. Ritchie, “Further Studies of Fermi Motion Effects in Lepton Scattering from Nuclear Targets,” Phys. Rev. D24 (1981) 1400.S. Dytman, “Neutrino event generators,” AIP Conf. Proc. 896 no. 1, (2007) 178–184.J. Nieves, J. E. Amaro, and M. Valverde, “Inclusive quasi-elastic neutrino reactions,” Phys. Rev. C70 (2004) 055503, arXiv:nucl-th/0408005 [nucl-th]. [Erratum: Phys. Rev.C72,019902(2005)].R. Gran, “Model Uncertainties for Valencia RPA Effect for MINERvA,” arXiv:1705.02932 [hep-ex].J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, “Inclusive Charged–Current Neutrino–Nucleus Reactions,” Phys. Rev. C83 (2011) 045501, arXiv:1102.2777 [hep-ph].R. Gran, J. Nieves, F. Sanchez, and M. J. Vicente Vacas, “Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV,” Phys. Rev. D88 no. 11, (2013) 113007, arXiv:1307.8105 [hep-ph].J. Schwehr, D. Cherdack, and R. Gran, “GENIE implementation of IFIC Valencia model for QE-like 2p2h neutrino-nucleus cross section,” arXiv:1601.02038 [hep-ph].M. Alam et al., “GENIE Production Release 2.10.0,” arXiv:1512.06882 [hep-ph].A. Bercellie, “Pion production at MINERvA.” https://indico.cern.ch/event/703880/contributions/3157434/attachments/ 1734544/2808228/Minerva_LE_Pions_NUINT2018.pdf, 2018.MINERvA Collaboration, O. Altinok et al., “Measurement of μ charged-current single 0 production on hydrocarbon in the few-GeV region using MINERvA,” Phys. Rev. D96 no. 7, (2017) 072003, arXiv:1708.03723 [hep-ex].L. Aliaga, O. Altinok, A. Bercellie, A. Bodek, A. Bravar, et al., “Single neutral pion production by charged-current ¯ μ interactions on hydrocarbon at hE i = 3.6 GeV.” 2015.MINERvA Collaboration, C. L. McGivern et al., “Cross sections for μ and ¯ μ induced pion production on hydrocarbon in the few-GeV region using MINERvA,” Phys. Rev. D94 no. 5, (2016) 052005, arXiv:1606.07127 [hep-ex].NOvA and MINOS collaborations, “Private communication.”.M. Day and K. S. McFarland, “Differences in quasielastic cross sections of muon and electron neutrinos,” Phys. Rev. D 86 (Sep, 2012) 053003. http://link.aps.org/doi/10.1103/PhysRevD.86.053003.X.-G. Lu, L. Pickering, S. Dolan, G. Barr, D. Coplowe, Y. Uchida, D. Wark, M. Wascko, A. Weber, and T. Yuan, “Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy,” Phys. Rev. C 94 no. 1, (2016) 015503, arXiv:1512.05748 [nucl-th].A. P. Furmanski and J. T. Sobczyk, “Neutrino energy reconstruction from one muon and one proton events,” Phys. Rev. C 95 no. 6, (2017) 065501, arXiv:1609.03530 [hep-ex].T2K Collaboration, K. Abe et al., “Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K,” Phys. Rev. D98 no. 3, (2018) 032003, arXiv:1802.05078 [hep-ex].S. Dolan, U. Mosel, K. Gallmeister, L. Pickering, and S. Bolognesi, “Sensitivity of Neutrino-Nucleus Interaction Measurements to 2p2h Excitations,” Phys. Rev. C 98 no. 4, (2018) 045502, arXiv:1804.09488 [hep-ex].MINERvA Collaboration, X. Lu et al., “Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at hE i = 3 GeV,” Phys. Rev. Lett. 121 no. 2, (2018) 022504, arXiv:1805.05486 [hep-ex].S. Dolan, “Exploring Nuclear Effects in Neutrino-Nucleus Interactions Using Measurements of Transverse Kinematic Imbalance from T2K and MINERvA,” arXiv:1810.06043 [hep-ex].X.-G. Lu and J. T. Sobczyk, “Identification of nuclear effects in neutrino and antineutrino interactions on nuclei using generalized final-state correlations,” Phys. Rev. C 99 no. 5, (2019) 055504, arXiv:1901.06411 [hep-ph].L. Harewood and R. Gran, “Elastic hadron-nucleus scattering in neutrino-nucleus reactions and transverse kinematics measurements,” arXiv:1906.10576 [hep-ex].T. Cai, X.-G. Lu, and D. Ruterbories, “Pion-proton correlation in neutrino interactions on nuclei,” Phys. Rev. D 100 (2019) 073010, arXiv:1907.11212 [hep-ex].MINERvA Collaboration, T. Cai et al., “Nucleon binding energy and transverse momentum imbalance in neutrino-nucleus reactions,” Phys. Rev. D 101 no. 9, (2020) 092001, arXiv:1910.08658 [hep-ex].MINERvA Collaboration, D. Coplowe et al., “Probing Nuclear Effects with Neutrino-induced Charged-Current Neutral Pion Production,” arXiv:2002.05812 [hep-ex].X.-G. Lu, D. Coplowe, R. Shah, G. Barr, D. Wark, and A. Weber, “Reconstruction of Energy Spectra of Neutrino Beams Independent of Nuclear Effects,” Phys. Rev. D 92 no. 5, (2015) 051302, arXiv:1507.00967 [hep-ex].H. Duyang, B. Guo, S. R. Mishra, and R. Petti, “A Novel Approach to Neutrino-Hydrogen Measurements,” arXiv:1809.08752 [hep-ph].H. Duyang, B. Guo, S. Mishra, and R. Petti, “A Precise Determination of (Anti)neutrino Fluxes with (Anti)neutrino-Hydrogen Interactions,” Phys. Lett. B 795 (2019) 424–431, arXiv:1902.09480 [hep-ph].L. Munteanu, S. Suvorov, S. Dolan, D. Sgalaberna, S. Bolognesi, S. Manly, G. Yang, C. Giganti, K. Iwamoto, and C. Jesús-Valls, “A new method for an improved anti-neutrino energy reconstruction with charged-current interactions in next-generation detectors,” arXiv:1912.01511 [physics.ins-det].P. Hamacher-Baumann, X.-G. Lu, and J. Martín-Albo, “Neutrino-hydrogen interactions with a high-pressure TPC,” arXiv:2005.05252 [physics.ins-det].C. M. Marshall, K. S. McFarland, and C. Wilkinson, “Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment,” arXiv:1910.10996 [hep-ex].S.R.Mishra, “Probing Hadron Structure with Neutrino Experiments.”. Review talk presented at Workshop on Hadron Structure Functions and Parton Distributions, Fermilab, April, 1990; World Scientific, 84-123 (1990), Ed. D. Geesaman et al.; Nevis Preprint # 1426, June 1990.MINERvA Collaboration, J. Devan et al., “Measurements of the Inclusive Neutrino and Antineutrino Charged Current Cross Sections in MINERvA Using the Low- Flux Method,” Phys. Rev. D 94 no. 11, (2016) 112007, arXiv:1610.04746 [hep-ex].ArgonCube Collaboration, C. Amsler et al., “ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors,” Tech. Rep. CERN-SPSC-2015-009. SPSC-I-243, CERN, Geneva, Feb, 2015. https://cds.cern.ch/record/1993255.J. Asaadi et al., “First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers,” arXiv:1801.08884 [physics.ins-det].A. Krieger, D. Dwyer, M. Garcia-Sciveres, D. Gnani, and C. Grace, “A micropower readout ASIC for pixelated liquid Ar TPCs,” in Topical Workshop on Electronics for Particle Physics. 2017. https://pos.sissa.it/313.M. Auger, Y. Chen, A. Ereditato, D. Goeldi, I. Kreslo, D. Lorca, M. Luethi, T. Mettler, J. R. Sinclair, and M. S. Weber, “ArCLight-A Compact Dielectric Large-Area Photon Detector,” Instruments 2 no. 1, (2018) 3, arXiv:1711.11409 [physics.ins-det].M. Auger, R. Berner, Y. Chen, A. Ereditato, D. Goeldi, P. P. Koller, I. Kreslo, D. Lorca, T. Mettler, F. Piastra, J. R. Sinclair, M. Weber, , C. Wilkinson, D. A. Dwyer, S. Kohn, P. Madigan, C. M. Marshall, and J. Asaadi, “A Concept for the Fourth DUNE Far Detector Module,” DUNE doc 10419, 2018. https://docs.dunescience.org/cgi-bin/ private/ShowDocument?docid=10419&asof=2019-11-1.DUNE Collaboration, B. Abi et al., “The Single-Phase ProtoDUNE Technical Design Report,” arXiv:1706.07081 [physics.ins-det].A. Ereditato, C. C. Hsu, S. Janos, I. Kreslo, M. Messina, C. Rudolf von Rohr, B. Rossi, T. Strauss, M. S. Weber, and M. Zeller, “Design and operation of ARGONTUBE: a 5 m long drift liquid argon TPC,” JINST 8 (2013) P07002, arXiv:1304.6961 [physics.ins-det].M. Zeller et al., “First measurements with ARGONTUBE, a 5m long drift Liquid Argon TPC,” Nucl. Instrum. Meth. A718 (2013) 454–458.A. Ereditato et al., “Performance of cryogenic charge readout electronics with the ARGONTUBE LAr TPC,” JINST 9 no. 11, (2014) P11022, arXiv:1408.7046 [physics.ins-det].LArIAT Collaboration, F. Cavanna, M. Kordosky, J. Raaf, and B. Rebel, “LArIAT: Liquid Argon In A Testbeam.” arXiv:1406.5560, 2014.M. Auger et al., “ProtoDUNE-ND: proposal to place the ArgonCube 2x2 Demonstrator on-axis in NuMI,” DUNE doc 12571, 2019. https://docs.dunescience.org/cgi-bin/ private/ShowDocument?docid=12571N&asof=2019-11-1.P. Adamson et al., “Long-Baseline Neutrino Facility (LBNF)/DUNE Conceptual Design Report: Annex 3A_opt,” DUNE doc 4559, 2017. http://docs.dunescience.org/cgi-bin/ShowDocument?docid=4559&asof=2019-7-15.M. Convery et al., “Accelerator/Experiment Operations - FY 2017,”.K. Mahn, C. Marshall, and C. Wilkinson, “Progress in Measurements of 0.1-10 GeV Neutrino-Nucleus Scattering and Anticipated Results from Future Experiments,” Ann. Rev. Nucl. Part. Sci. 68 (2018) 105–129, arXiv:1803.08848 [hep-ex].C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,” Nucl. Instrum. Methods A no. 614, (2010) 87–104.R. Acciarri et al., “Design and construction of the microboone detector,” Journal of Instrumentation 12 no. 02, (2017) P02017. http://stacks.iop.org/1748-0221/12/i=02/a=P02017.ICARUS Collaboration, F. Varanini, “ICARUS detector: present and future,” EPJ Web Conf. 164 (2017) 07017.MicroBooNE Collaboration, R. Acciarri et al., “The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector,” Eur. Phys. J. C78 no. 1, (2018) 82, arXiv:1708.03135 [hep-ex].Particle Data Group Collaboration, M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D98 no. 3, (2018) 030001.D. Goeldi, “A Novel Liquid Argon Time Projection Chamber Detector: The ArgonCube Concept,” JINST Thesis TH002 (2018) .MINERvA Collaboration, L. Aliaga et al., “Design, Calibration, and Performance of the MINERvA Detector,” Nucl.Instrum.Meth. A743 (2014) 130–159, arXiv:1305.5199 [physics.ins-det].MicroBooNE Collaboration, P. Abratenko et al., “Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering,” JINST 12 no. 10, (2017) P10010, arXiv:1703.06187 [physics.ins-det].T. Heindl, T. Dandl, A. Fedenev, M. Hofmann, R. Krücken, L. Oberauer, W. Potzel, J. Wieser, and A. Ulrich, “Table-top setup for investigating the scintillation properties of liquid argon,” JINST 6 (2011) P02011, arXiv:1511.07720 [physics.ins-det].E. Grace and J. A. Nikkel, “Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon,” Nucl. Instrum. Meth. A867 (2017) 204–208, arXiv:1502.04213 [physics.ins-det].S. Kubota, M. Hishida, M. Suzuki, and J.-z. Ruan(Gen), “Dynamical behavior of free electrons in the recombination process in liquid argon, krypton, and xenon,” Phys. Rev. B 20 (Oct, 1979) 3486–3496. https://link.aps.org/doi/10.1103/PhysRevB.20.3486.A. Hitachi, T. Takahashi, N. Funayama, K. Masuda, J. Kikuchi, and T. Doke, “Effect of ionization density on the time dependence of luminescence from liquid argon and xenon,” Phys. Rev. B 27 (May, 1983) 5279–5285. https://link.aps.org/doi/10.1103/PhysRevB.27.5279.MINERvA Collaboration, J. Park et al., “Measurement of Neutrino Flux from Neutrino-Electron Elastic Scattering,” Phys. Rev. D93 no. 11, (2016) 112007, arXiv:1512.07699 [physics.ins-det].MINERvA Collaboration, E. Valencia et al., “Constraint of the MINER A medium energy neutrino flux using neutrino-electron elastic scattering,” Phys. Rev. D 100 no. 9, (2019) 092001, arXiv:1906.00111 [hep-ex].NA61/SHINE Collaboration, A. Laszlo, “The NA61/SHINE Experiment at the CERN SPS,” Nucl. Phys. A830 (2009) 559C–562C, arXiv:0907.4493 [nucl-ex].R. Belusevic and D. Rein, “Neutrino Reactions in the Low Y Region,” Phys. Rev. D 38 (1988) 2753–2757.W. G. Seligman, A Next-to-Leading Order QCD Analysis of Neutrino - Iron Structure Functions at the Tevatron. PhD thesis, Nevis Labs, Columbia U., 1997.NuTeV Collaboration, M. Tzanov et al., “Precise measurement of neutrino and anti-neutrino differential cross sections,” Phys. Rev. D 74 (2006) 012008, arXiv:hep-ex/0509010.MINOS Collaboration, P. Adamson et al., “Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector,” Phys.Rev. D81 (2010) 072002, arXiv:0910.2201 [hep-ex].A. Bodek, U. Sarica, D. Naples, and L. Ren, “Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low Method,” Eur.Phys.J. C72 (2012) 1973, arXiv:1201.3025 [hep-ex].J. Nieves, M. Valverde, and M. J. Vicente Vacas, “Inclusive nucleon emission induced by quasi-elastic neutrino-nucleus interactions,” Phys. Rev. C73 (2006) 025504, arXiv:hep-ph/0511204 [hep-ph].O. Lalakulich, K. Gallmeister, and U. Mosel, “Neutrino- and antineutrino-induced reactions with nuclei between 1 and 50 GeV,” Phys. Rev. C86 (2012) 014607, arXiv:1205.1061 [nucl-th].U. Mosel, O. Lalakulich, and K. Gallmeister, “Energy reconstruction in the long-baseline neutrino experiment,” Phys. Rev. Lett. 112 (Apr, 2014) 151802. http://link.aps.org/doi/10.1103/PhysRevLett.112.151802U. Mosel, O. Lalakulich, and K. Gallmeister, “Reaction mechanisms at MINERvA,” Phys. Rev. D89 no. 9, (2014) 093003, arXiv:1402.0297 [nucl-th].ALICE Collaboration, G. Dellacasa et al., “ALICE: Technical design report of the time projection chamber,”.J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events,” Nucl. Instrum. Meth. A622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].D. A. Dwyer et al., “LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers,” JINST 13 no. 10, (2018) P10007, arXiv:1808.02969 [physics.ins-det].D. Gonzalez-Diaz, F. Monrabal, and S. Murphy, “Gaseous and dual-phase time projection chambers for imaging rare processes,” Nucl. Instrum. Meth. A878 (2018) 200–255, arXiv:1710.01018 [physics.ins-det].R. Chandrasekharan, A. Knecht, M. Messina, C. Regenfus, and A. Rubbia, “High efficiency detection of argon scintillation light of 128 nm using LAAPDs,” in Proceedings, 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference: El Conquistador Resort, Puerto Rico, October 23-29, 2005, no. 1, pp. 181–185. 2005. arXiv:physics/0511093 [physics.ins-det].A. Neumeier et al., “Intense infrared scintillation of liquid Ar-Xe mixtures,” EPL 106 no. 3, (2014) 32001, arXiv:1511.07722 [physics.ins-det].F. Simon, C. Soldner, and L. Weuste, “T3B — an experiment to measure the time structure of hadronic showers,” JINST 8 (2013) P12001, arXiv:1309.6143 [physics.ins-det].CALICE Collaboration, C. Adloff et al., “Construction and Commissioning of the CALICE Analog Hadron Calorimeter Prototype,” JINST 5 (2010) P05004, arXiv:1003.2662 [physics.ins-det].T2K UK Collaboration, D. Allan et al., “The Electromagnetic Calorimeter for the T2K Near Detector ND280,” JINST 8 (2013) P10019, arXiv:1308.3445 [physics.ins-det].L. Emberger and F. Simon, “A highly granular calorimeter concept for long baseline near detectors,” J. Phys. Conf. Ser. 1162 no. 1, (2019) 012033, arXiv:1810.03677 [physics.ins-det].J. Kvasnicka, “Data acquisition system for the CALICE AHCAL calorimeter,” Journal of Instrumentation 12 no. 03, (Mar, 2017) C03043–C03043. https://doi.org/10.1088%2F1748-0221%2F12%2F03%2Fc03043.H. Abramowicz et al., “The International Linear Collider Technical Design Report - Volume 4: Detectors,” arXiv:1306.6329 [physics.ins-det].S. C. D. Lorenzo, S. Callier, J. Fleury, F. Dulucq, C. D. la Taille, G. M. Chassard, L. Raux, and N. Seguin-Moreau, “SPIROC: design and performances of a dedicated very front-end electronics for an ILC analog hadronic CALorimeter (AHCAL) prototype with SiPM read-out,” Journal of Instrumentation 8 no. 01, (Jan, 2013) C01027–C01027. https://doi.org/10.1088%2F1748-0221%2F8%2F01%2Fc01027.MPD-Collaboration, “Multi Purpose Detector Solenoidal Magnet Technical Design Report,” tech. rep., ASG Superconductors, 2019. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved= 2ahUKEwiW4o-lvOHrAhVPoHIEHUSIAlEQFjAAegQIAhAB&url=http%3A%2F%2Fmpd.jinr.ru% 2Fwp-content%2Fuploads%2F2019%2F09%2FMAGNET-TDR-aug_2019.pdf&usg= AOvVaw11oXj6JBDExkKou3bidaay.J. Layter, “Results from pep-4 tpc,” in Electroweak Effects at High Energies, pp. 201–213.PEP4 Collaboration, D. H. Stork, “First Operation of the TPC Facility at PEP,” J. Phys. Colloq. 43 no. C3, (1982) 42.TPC/Two Gamma Collaboration, R. J. Madaras et al., “SPATIAL RESOLUTION OF THE PEP-4 TIME PROJECTION CHAMBER,” IEEE Trans. Nucl. Sci. 30 (1983) 76–81.ALICE Collaboration, C. W. Fabjan et al., “ALICE: Physics performance report, volume II,” J. Phys. G32 (2006) 1295–2040.NA49 Collaboration, M. Makariev, “Pion production in p + C collisions at 158-GeV/c beam momentum.,” AIP Conf.Proc. 899 (2007) 203.C. Grupen, “Physics of particle detection,” AIP Conf. Proc. 536 no. 1, (2000) 3–34, arXiv:physics/9906063 [physics].C. Lippmann, “Performance of the ALICE Time Projection Chamber,” Phys. Procedia 37 (2012) 434–441.ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC,” Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].DUNE Collaboration, C. Vilela, “Generating Mock Data,” tech. rep., 2019. https://indico.fnal.gov/event/21568/contribution/1/material/slides/0.pdf.MINERvA Collaboration, P. A. Rodrigues et al., “Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer,” Phys. Rev. Lett. 116 (2016) 071802, arXiv:1511.05944 [hep-ex].GEANT4 Collaboration, S. Agostinelli et al., “GEANT4: A Simulation toolkit,” Nucl. Instrum. Meth. A 506 (2003) 250–303.“Garsoft redmine repository.” https://cdcvs.fnal.gov/redmine/projects/garsoft. Accessed Feb. 19, 2019.C. Marshall, “Neutron reconstruction from time of flight in the MPD calorimeter,” DUNE doc 19033, 2020. https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=19033.A. Rogozhnikov, “Reweighting with Boosted Decision Trees,” J. Phys. Conf. Ser. 762 no. 1, (2016) 012036, arXiv:1608.05806 [physics.data-an].A. N. Tikhonov and V. I. Arsenin, Solutions of ill-posed problems / Andrey N. Tikhonov and Vasiliy Y. Arsenin ; translation editor, Fritz John. Winston ; distributed solely by Halsted Press Washington : New York, 1977.P. Hansen, The L-Curve and Its Use in the Numerical Treatment of Inverse Problems, vol. 4, pp. 119–142. WIT Press, 01, 2001.K. Smith, A. Broadbent, M. Greenslade, S. Harrison, D. Jenkins, J. Ross, A. Street, M. Townsend, J. Wiatrzyk, and J. Franzini, “Progress in the design and manufacture of the KLOE solenoid for the DAPHNE ring at Frascati,” IEEE Trans. Appl. Supercond. 7 no. 2, (1997) 630–632.M. Modena, “The DAPHNE cryogenic system,”.M. Adinolfi et al., “The KLOE electromagnetic calorimeter,” Nucl. Instrum. Meth. A482 (2002) 364–386.KLOE Collaboration, A. Ceccarelli, S. Dell’Agnello, A. Di Virgilio, and S. Moccia, “Survey and alignment of the KLOE experiment at DAPHNE,” eConf C971013 (1997) 025.M. Anelli et al., “Measurement and simulation of the neutron response and detection efficiency of a Pb-scintillating fiber calorimeter,” IEEE Trans. Nucl. Sci. 55 (2008) 1409–1412.G. A. et al., “A Proposal to Enhance the DUNE Near Detector Complex,” DUNE doc 13262, 2019. https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13262.A. Blondel et al., “A fully active fine grained detector with three readout views,” JINST 13 no. 02, (2018) P02006, arXiv:1707.01785 [physics.ins-det].K. Wood, G. Yang, and J. Palomino, “Studies of muon and electron angular resolution and pi-zero containment in the 3DST,” DUNE doc 19972, 2018. https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=19972.J. Park, Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux. PhD thesis, U. Rochester, 2013.T2K Collaboration, K. Abe et al., “T2K ND280 Upgrade - Technical Design Report,” arXiv:1901.03750 [physics.ins-det].O. Mineev et al., “Beam test results of 3D fine-grained scintillator detector prototype for a T2K ND280 neutrino active target,” Nucl. Instrum. Meth. A923 (2019) 134–138, arXiv:1808.08829 [physics.ins-det].O. Basille et al., “Baby MIND Readout Electronics Architecture for Accelerator Neutrino Particle Physics Detectors Employing Silicon Photomultipliers,” JPS Conf. Proc. 27 (2019) 011011.CALICE Collaboration, J. Kvasnicka and I. Polak, “LED Calibration Systems for CALICE Hadron Calorimeter,” Phys. Procedia 37 (2012) 402–409.H. B. et al., “Study of neutron interaction in a scintillator tracker using LANL neutron beam,” DUNE doc 15763, 2019. https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=15763.R. Petti, “Precision Measurements of Fundamental Interactions with (Anti)Neutrinos,” in Proceedings, 27th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2019): Torino, Italy, April 8-12, 2019. 2019. arXiv:1910.05995 [hep-ex].A. Sergi, “NA62 Spectrometer: A Low Mass Straw Tracker,” Phys. Procedia 37 (2012) 530–534.SHiP Collaboration, M. Anelli et al., “A facility to Search for Hidden Particles (SHiP) at the CERN SPS,” arXiv:1504.04956 [physics.ins-det].H. Nishiguchi et al., “Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system,” Nucl. Instrum. Meth. A845 (2017) 269–272.Mu2e Collaboration, M. Lee, “The Straw-tube Tracker for the Mu2e Experiment,” Nucl. Part. Phys. Proc. 273-275 (2016) 2530–2532.P. Gianotti et al., “The Straw Tube Trackers of the PANDA Experiment,” in Proceedings, 3rd International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA 2013): Marseille, France, June 23-27, 2013. 2013. arXiv:1307.4537 [physics.ins-det].G. De Geronimo, J. Fried, S. Li, J. Metcalfe, N. Nambiar, E. Vernon, and V. Polychronakos, “VMM1 - An ASIC for Micropattern Detectors,” IEEE Trans. Nucl. Sci. 60 (2013) 2314–2321.T2K Collaboration, K. Abe et al., “The T2K Experiment,” Nucl. Instrum. Meth. A659 (2011) 106–135, arXiv:1106.1238 [physics.ins-det].M. S. Dixit, J. Dubeau, J. P. Martin, and K. Sachs, “Position sensing from charge dispersion in micropattern gas detectors with a resistive anode,” Nucl. Instrum. Meth. A518 (2004) 721–727, arXiv:physics/0307152 [physics].D. Attié et al., “Performances of a resistive MicroMegas module for the Time Projection Chambers of the T2K Near Detector upgrade,” arXiv:1907.07060 [physics.ins-det].T2K ND280 TPC Collaboration, N. Abgrall et al., “Time Projection Chambers for the T2K Near Detectors,” Nucl. Instrum. Meth. A637 (2011) 25–46, arXiv:1012.0865 [physics.ins-det].I. Giomataris, R. De Oliveira, S. Andriamonje, S. Aune, G. Charpak, P. Colas, A. Giganon, P. Rebourgeard, and P. Salin, “Micromegas in a bulk,” Nucl. Instrum. Meth. A560 (2006) 405–408, arXiv:physics/0501003 [physics].T2K Collaboration, K. Abe et al., “Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector,” Phys. Rev. D89 (2014) 092003, arXiv:1403.2552 [hep-ex]. [Phys. Rev.D89,099902(2014)].P. Baron, D. Calvet, E. Delagnes, X. de la Broise, A. Delbart, F. Druillole, E. Monmarthe, E. Mazzucato, F. Pierre, and M. Zito, “AFTER, an ASIC for the readout of the large T2K time projection chambers,” IEEE Trans. Nucl. Sci. 55 (2008) 1744–1752.NOMAD Collaboration, J. Altegoer et al., “The NOMAD experiment at the CERN SPS,” Nucl. Instrum. Meth. A404 (1998) 96–128.NOMAD Collaboration, Q. Wu et al., “A Precise measurement of the muon neutrino-nucleon inclusive charged current cross-section off an isoscalar target in the energy range 2.5 < E(nu) < 40-GeV by NOMAD,” Phys.Lett. B660 (2008) 19–25, arXiv:0711.1183 [hep-ex].C. Jung, S. Manly, C. Mauger, D. Sgalaberna, and G. Yang, “3DST-S White Paper,” DUNE doc 16103, 2019. https://docs.dunescience.org/cgi-bin/private/ RetrieveFile?docid=16103&filename=3DST_S__white_paper-v1.pdf&version=1.Holin, A., “NUMI beam lessons and work in progress MINOS/MINOS+,” 2017. https://indico.cern.ch/event/674901/contributions/2799260/attachments/ 1565380/2466505/beam_27Nov2017CERN-CENF-NDmeeting.pdf.N. Collaboration, “"three-neutrino fit based on data available in november 2018",” 2018. http://www.nu-fit.org/?q=node/177.R. Gluckstern, “Uncertainties in track momentum and direction, due to multiple scattering and measurement errors,” Nucl. Instrum. Meth. 24 (1963) 381–389.MINERvA Collaboration, M. Elkins et al., “Neutron measurements from anti-neutrino hydrocarbon reactions,” arXiv:1901.04892 [hep-ex].S. Dolan, “Talk at ect* modeling neutrino-nucleus interacrtions, “transverse variables, qe and 2p2h”,” 2018. https://indico.ectstar.eu/event/19/contributions/409/ attachments/313/414/sdolanTalk.pdf.NOMAD Collaboration, P. Astier et al., “Final NOMAD results on muon-neutrino —> tau-neutrino and electron-neutrino —> tau-neutrino oscillations including a new search for tau-neutrino appearance using hadronic tau decays,” Nucl. Phys. B611 (2001) 3–39, arXiv:hep-ex/0106102 [hep-ex].NOMAD Collaboration, D. Naumov et al., “A Study of strange particles produced in neutrino neutral current interactions in the NOMAD experiment,” Nucl. Phys. B700 (2004) 51–68, arXiv:hep-ex/0409037 [hep-ex].NuSTEC Collaboration, L. Alvarez-Ruso et al., “NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering,” Prog. Part. Nucl. Phys. 100 (2018) 1–68, arXiv:1706.03621 [hep-ph].J. Amaro, M. Barbaro, J. Caballero, R. González-Jiménez, G. Megias, and I. Ruiz Simo, “Electron- versus neutrino-nucleus scattering,” arXiv:1912.10612 [nucl-th].S. Dolan, S. Bolognesi, D. Sgalaberna, G. Megias, M. Barbaro, and J. Caballero, “Constraining neutrino interactions on an argon target using carbon data in modern nuclear models,” DUNE doc 16058, 2019. https://docs.dunescience.org/cgi-bin/private/RetrieveFile?docid=16058& filename=Carbon_to_Argon_Extrapolation_160919_DUNEDocDBSubmit.pdf&version=1.P. B. et al., “Enhancing the LBNF/DUNE Physics Program,” European Particle Physics Strategy Update 2018-2020 131, 2019. https://indico.cern.ch/event/765096/contributions/3295805/.M. Bishai, “Determining the Neutrino Flux from Accelerator Neutrino Beams,” Nucl. Phys. B Proc. Suppl. 229-232 (2012) 210–214.MINERvA Collaboration, L. Aliaga et al., “Neutrino Flux Predictions for the NuMI Beam,” Phys. Rev. D94 no. 9, (2016) 092005, arXiv:1607.00704 [hep-ex]. [Addendum: Phys. Rev.D95,no.3,039903(2017)].T2K Collaboration, K. Abe et al., “T2K neutrino flux prediction,” Phys.Rev. D87 no. 1, (2013) 012001, arXiv:1211.0469 [hep-ex].T. Vladisavljevic, “Constraining the T2K Neutrino Flux Prediction with 2009 NA61/SHINE Replica-Target Data,” in Proceedings, Prospects in Neutrino Physics (NuPhys2017): London, UK, December 20-22, 2017, pp. 189–193. 2018. arXiv:1804.00272 [physics.ins-det].MIPP Collaboration, J. Paley et al., “Measurement of Charged Pion Production Yields off the NuMI Target,” Phys. Rev. D 90 no. 3, (2014) 032001, arXiv:1404.5882 [hep-ex].NOvA Collaboration, M. Acero et al., “First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA,” Phys. Rev. Lett. 123 no. 15, (2019) 151803, arXiv:1906.04907 [hep-ex].R. Belusevic and D. Rein, “Neutrino Reactions in the Low Y Region,” Phys. Rev. D38 (1988) 2753–2757.A. Bodek, U. Sarica, D. Naples, and L. Ren, “Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low Method,” Eur. Phys. J. C72 (2012) 1973, arXiv:1201.3025 [hep-ex].LAr1-ND, ICARUS-WA104, MicroBooNE Collaboration, M. Antonello et al., “A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam,” arXiv:1503.01520 [physics.ins-det].C. Anderson, M. Antonello, B. Baller, T. Bolton, C. Bromberg, et al., “The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab,” JINST 7 (2012) P10019, arXiv:1205.6747 [physics.ins-det].T. Cai et al., “Nuclear binding energy and transverse momentum imbalance in neutrino-nucleus reaction,” 2019.MINERvA Collaboration, B. Tice et al., “Measurement of Ratios of μ Charged-Current Cross Sections on C, Fe, and Pb to CH at Neutrino Energies 2-20 GeV,” Phys.Rev.Lett. 112 no. 23, (2014) 231801, arXiv:1403.2103 [hep-ex].MINERvA Collaboration, P. Stowell et al., “Tuning the GENIE Pion Production Model with MINER A Data,” Phys. Rev. D 100 no. 7, (2019) 072005, arXiv:1903.01558 [hep-ex].L. Fields, K. McFarland, and M. Betancourt, “Generator Tools Workshop,” 2020. https://indico.fnal.gov/event/22294/overview.C. Llewellyn Smith, “Neutrino reactions at accelerator energies,” Physics Reports 3 no. 5, (1972) 261 – 379, http://www.sciencedirect.com/science/article/pii/0370157372900105.R. Bradford, A. Bodek, H. S. Budd, and J. Arrington, “A New parameterization of the nucleon elastic form-factors,” Nucl. Phys. B Proc. Suppl. 159 (2006) 127–132, arXiv:hep-ex/0602017.A. S. Meyer, M. Betancourt, R. Gran, and R. J. Hill, “Deuterium target data for precision neutrino-nucleus cross sections,” Phys. Rev. D93 no. 11, (2016) 113015, arXiv:1603.03048 [hep-ph].D. Rein and L. M. Sehgal, “Neutrino Excitation of Baryon Resonances and Single Pion Production,” Annals Phys. 133 (1981) 79–153.MINERvA Collaboration, T. Le et al., “Measurement of ¯ μ Charged-Current Single − Production on Hydrocarbon in the Few-GeV Region using MINERvA,” Phys. Rev. D 100 no. 5, (2019) 052008, arXiv:1906.08300 [hep-ex].MINERvA Collaboration, B. Eberly et al., “Charged pion production in μ interactions on hydrocarbon at hE i= 4.0 GeV,” Phys. Rev. D92 no. 9, (2015) 092008, arXiv:1406.6415 [hep-ex].MiniBooNE Collaboration, A. Aguilar-Arevalo et al., “Measurement of Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at E 1 GeV,” Phys. Rev. D 83 (2011) 052007, arXiv:1011.3572 [hep-ex].T2K Collaboration, K. Abe et al., “First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector,” Phys. Rev. D 95 no. 1, (2017) 012010, arXiv:1605.07964 [hep-ex].T2K Collaboration, K. Abe et al., “Measurement of the muon neutrino charged-current single + production on hydrocarbon using the T2K off-axis near detector ND280,” Phys. Rev. D 101 no. 1, (2020) 012007, arXiv:1909.03936 [hep-ex].S. A. Kulagin and R. Petti, “Global study of nuclear structure functions,” Nucl. Phys. A 765 (2006) 126–187, arXiv:hep-ph/0412425.A. Bodek and U. K. Yang, “Higher twist, xi(omega) scaling, and effective LO PDFs for lepton scattering in the few GeV region,” J. Phys. G29 (2003) 1899–1906, arXiv:hep-ex/0210024 [hep-ex].B. Andersson, “The Lund model,” Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7 (1997) 1–471.T. Yang, C. Andreopoulos, H. Gallagher, K. Hoffmann, and P. Kehayias, “A Hadronization Model for Few-GeV Neutrino Interactions,” Eur. Phys. J. C63 (2009) 1–10, arXiv:0904.4043 [hep-ph].DUNE Collaboration, “TDR Volume 2: The Physics Program for DUNE at LBNF,” tech. rep., 2018. http://docs.dunescience.org/cgi-bin/ShowDocument?docid=.C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, and J. Yarba, “The GENIE Neutrino Monte Carlo Generator: Physics and User Manual,” arXiv:1510.05494 [hep-ph].K. S. Kuzmin and V. A. Naumov, “Mean charged multiplicities in charged-current neutrino scattering on hydrogen and deuterium,” Phys. Rev. C88 (2013) 065501, arXiv:1311.4047 [hep-ph].T2K Collaboration, K. Abe et al., “Observation of Electron Neutrino Appearance in a Muon Neutrino Beam,” Phys. Rev. Lett. 112 (2014) 061802, arXiv:1311.4750 [hep-ex].MINERvA Collaboration, J. Wolcott et al., “Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at hE i = 3.6 GeV,” Phys. Rev. Lett. 116 no. 8, (2016) 081802, arXiv:1509.05729 [hep-ex].D. Rein and L. M. Sehgal, “Coherent pizero production in neutrino reactions,” Nuclear Physics B 223 no. 1, (1983) 29 – 44. http://www.sciencedirect.com/science/article/pii/0550321383900901.E. Hernández, J. Nieves, and M. J. V. Vacas, “Neutrino induced coherent pion production off nuclei and the partial conservation of the axial current,” Phys. Rev. D 80 (Jul, 2009) 013003. https://link.aps.org/doi/10.1103/PhysRevD.80.013003.C. Berger and L. M. Sehgal, “Partially conserved axial vector current and coherent pion production by low energy neutrinos,” Phys. Rev. D 79 (Mar, 2009) 053003. https://link.aps.org/doi/10.1103/PhysRevD.79.053003.E. A. Paschos and D. Schalla, “Coherent pion production by neutrinos,” Phys. Rev. D 80 (Aug, 2009) 033005. https://link.aps.org/doi/10.1103/PhysRevD.80.033005.J. E. Amaro, E. Hernández, J. Nieves, and M. Valverde, “Theoretical study of neutrino-induced coherent pion production off nuclei at t2k and miniboone energies,” Phys. Rev. D 79 (Jan, 2009) 013002. https://link.aps.org/doi/10.1103/PhysRevD.79.013002.X. Zhang and B. D. Serot, “Coherent neutrinoproduction of photons and pions in a chiral effective field theory for nuclei,” Phys. Rev. C 86 (Sep, 2012) 035504. https://link.aps.org/doi/10.1103/PhysRevC.86.035504.N. G. Kelkar, E. Oset, and P. Fernández de Córdoba, “Coherent pion production in neutrino nucleus collision in the 1 gev region,” Phys. Rev. C 55 (Apr, 1997) 1964–1971. https://link.aps.org/doi/10.1103/PhysRevC.55.1964.S. K. Singh, M. S. Athar, and S. Ahmad, “Nuclear effects in neutrino induced coherent pion production at k2k and miniboone,” Phys. Rev. Lett. 96 (Jun, 2006) 241801. https://link.aps.org/doi/10.1103/PhysRevLett.96.241801.L. Alvarez-Ruso, L. Geng, S. Hirenzaki, and M. Vicente Vacas, “Charged current neutrino induced coherent pion production,” Phys. Rev. C 75 (2007) 055501, arXiv:nucl-th/0701098. [Erratum: Phys.Rev.C 80, 019906 (2009)].L. Alvarez-Ruso, L. Geng, and M. Vicente Vacas, “Neutral current coherent pion production,” Phys. Rev. C 76 (2007) 068501, arXiv:0707.2172 [nucl-th]. [Erratum: Phys.Rev.C 80, 029904 (2009)].T. Leitner, U. Mosel, and S. Winkelmann, “Neutrino-induced coherent pion production off nuclei reexamined,” Phys. Rev. C 79 (May, 2009) 057601. https://link.aps.org/doi/10.1103/PhysRevC.79.057601.S. X. Nakamura, T. Sato, T.-S. H. Lee, B. Szczerbinska, and K. Kubodera, “Dynamical model of coherent pion production in neutrino-nucleus scattering,” Phys. Rev. C 81 (Mar, 2010) 035502. https://link.aps.org/doi/10.1103/PhysRevC.81.035502.E. Wang, L. Alvarez-Ruso, and J. Nieves, “Photon emission in neutral-current interactions at intermediate energies,” Phys. Rev. C 89 (Jan, 2014) 015503. https://link.aps.org/doi/10.1103/PhysRevC.89.015503.T2K Collaboration, K. Abe et al., “Measurement of Coherent + Production in Low Energy Neutrino-Carbon Scattering,” Phys. Rev. Lett. 117 no. 19, (2016) 192501, arXiv:1604.04406 [hep-ex].C. Berger and L. M. Sehgal, “PCAC and coherent pion production by low energy neutrinos,” Phys. Rev. D79 (2009) 053003, arXiv:0812.2653 [hep-ph].MINERvA Collaboration, A. Mislivec et al., “Measurement of total and differential cross sections of neutrino and antineutrino coherent ± production on carbon,” Phys. Rev. D97 no. 3, (2018) 032014, arXiv:1711.01178 [hep-ex].O. Benhar, S. Fantoni, G. Lykasov, and N. Slavin, “Multiple hadron production in electron scattering off nuclear targets,” Phys. Rev. C 55 (1997) 244–252.O. Benhar, S. Fantoni, and G. Lykasov, “Backward hadron production in neutrino nucleus interactions,” Eur. Phys. J. A 7 (2000) 415–419, arXiv:nucl-th/9901053.A. M. Ankowski and J. T. Sobczyk, “Construction of spectral functions for medium-mass nuclei,” Phys. Rev. C 77 (Apr, 2008) 044311. https://link.aps.org/doi/10.1103/PhysRevC.77.044311.O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, “Spectral function of finite nuclei and scattering of GeV electrons,” Nucl. Phys. A579 (1994) 493–517.J. W. Negele, “Structure of Finite Nuclei in the Local-Density Approximation,” Phys. Rev. C1 (1970) 1260–1321.Y. Hayato, “A neutrino interaction simulation program library NEUT,” Acta Phys. Polon. B 40 (2009) 2477–2489.S. Singh, “The Effect of final state interactions and deuteron binding in neutrino d –> Mup p,” Nucl. Phys. B 36 (1972) 419–435.T. Golan, J. T. Sobczyk, and J. Zmuda, “NuWro: the Wroclaw Monte Carlo Generator of Neutrino Interactions,” Nucl. Phys. Proc. Suppl. 229-232 (2012) 499.R. Subedi et al., “Probing Cold Dense Nuclear Matter,” Science 320 (2008) 1476–1478, arXiv:0908.1514 [nucl-ex].J. G. Morfin, J. Nieves, and J. T. Sobczyk, “Recent Developments in Neutrino/Antineutrino - Nucleus Interactions,” Adv. High Energy Phys. 2012 (2012) 934597, arXiv:1209.6586 [hep-ex].S. Dolan, G. Megias, and S. Bolognesi, “Implementation of the susav2-mec 1p1h and 2p2h models in genie and analysis of nuclear effects in t2k measurements,” Phys.Rev. D101 (2020) 033003, arXiv:1905.08556 [hep-ex].M. F. Carneiro et al., “High-statistics measurement of neutrino quasielastic-like scattering at hE i= 6 GeV on a hydrocarbon target,” 2019.A. Nikolakopoulos, M. Martini, M. Ericson, N. Van Dessel, R. González-Jiménez, and N. Jachowicz, “Mean field approach to reconstructed neutrino energy distributions in accelerator-based experiments,” Phys. Rev. C 98 no. 5, (2018) 054603, arXiv:1808.07520 [nucl-th].A. M. Ankowski, “Effect of the charged-lepton’s mass on the quasielastic neutrino cross sections,” Phys. Rev. C 96 no. 3, (2017) 035501, arXiv:1707.01014 [nucl-th].J. Weil and U. Mosel, “The GiBUU transport model,” EPJ Web Conf. 52 (2013) 06007.J. Amaro, M. Barbaro, J. Caballero, T. Donnelly, and J. Udias, “Relativistic analyses of quasielastic neutrino cross sections at MiniBooNE kinematics,” Phys. Rev. D 84 (2011) 033004, arXiv:1104.5446 [nucl-th].G. D. Megias, M. V. Ivanov, R. González-Jiménez, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and J. M. Udías, “Nuclear effects in neutrino and antineutrino charged-current quasielastic scattering at MINER A kinematics,” Phys. Rev. D 89 no. 9, (2014) 093002, arXiv:1402.1611 [nucl-th]. [Erratum: Phys.Rev.D 91, 039903 (2015)].CLAS Collaboration, B. A. Mecking et al., “The CEBAF Large Acceptance Spectrometer (CLAS),” Nucl. Instrum. Meth. A503 (2003) 513–553.CLAS Collaboration, D. S. Carman, “Excited Nucleon Spectrum and Structure Studies with CLAS and CLAS12,” in 15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2019) Pittsburgh, Pennsylvania, USA, June 2-7, 2019. 2019. arXiv:1907.02407 [nucl-ex]. https://misportal.jlab.org/ul/publications/view_pub.cfm?pub_id=16009.CLAS Collaboration, E. O. Cohen et al., “Center of Mass Motion of Short-Range Correlated Nucleon Pairs studied via the A(e, e0pp) Reaction,” Phys. Rev. Lett. 121 no. 9, (2018) 092501, arXiv:1805.01981 [nucl-ex].CLAS Collaboration, M. Duer et al., “Measurement of Nuclear Transparency Ratios for Protons and Neutrons,” Phys. Lett. B797 (2019) 134792, arXiv:1811.01823 [nucl-ex].CLAS Collaboration, V. I. Mokeev, “Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS,” Few Body Syst. 59 no. 4, (2018) 46, arXiv:1801.09750 [nucl-ex].A. M. Ankowski, A. Friedland, S. W. Li, O. Moreno, P. Schuster, N. Toro, and N. Tran, “Lepton-nucleus cross section measurements for dune with the ldmx detector,” 2019.L. S. Kisslinger and D. Das, “A brief review of dark matter,” Int. J. Mod. Phys. A 34 no. 27, (2019) 1930013, arXiv:1908.00612 [physics.gen-ph].V. De Romeri, K. J. Kelly, and P. A. N. Machado, “Hunting On- and Off-Axis for Light Dark Matter with DUNE-PRISM,” arXiv:1903.10505 [hep-ph].LDMX Collaboration, T. Åkesson et al., “Light Dark Matter eXperiment (LDMX),” arXiv:1808.05219 [hep-ex].P. deNiverville and C. Frugiuele, “Hunting sub-GeV dark matter with the NO A near detector,” Phys. Rev. D99 no. 5, (2019) 051701, arXiv:1807.06501 [hep-ph].MiniBooNE DM Collaboration, A. A. Aguilar-Arevalo et al., “Dark Matter Search in Nucleon, Pion, and Electron Channels from a Proton Beam Dump with MiniBooNE,” Phys. Rev. D98 no. 11, (2018) 112004, arXiv:1807.06137 [hep-ex].BaBar Collaboration, J. P. Lees et al., “Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar,” Phys. Rev. Lett. 119 no. 13, (2017) 131804, arXiv:1702.03327 [hep-ex].M. Davier and H. Nguyen Ngoc, “An Unambiguous Search for a Light Higgs Boson,” Phys. Lett. B229 (1989) 150–155.NA48/2 Collaboration, J. R. Batley et al., “Search for the dark photon in 0 decays,” Phys. Lett. B746 (2015) 178–185, arXiv:1504.00607 [hep-ex].J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu, L. W. Mo, T. A. Nunamaker, and P. Rassmann, “Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump,” Phys. Rev. D38 (1988) 3375.E. M. Riordan et al., “A Search for Short Lived Axions in an Electron Beam Dump Experiment,” Phys. Rev. Lett. 59 (1987) 755.J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, “New Fixed-Target Experiments to Search for Dark Gauge Forces,” Phys. Rev. D80 (2009) 075018, arXiv:0906.0580 [hep-ph].A. Bross, M. Crisler, S. H. Pordes, J. Volk, S. Errede, and J. Wrbanek, “A Search for Shortlived Particles Produced in an Electron Beam Dump,” Phys. Rev. Lett. 67 (1991) 2942–2945.CHARM-II Collaboration, D. Geiregat et al., “First observation of neutrino trident production,” Phys. Lett. B245 (1990) 271–275.CCFR Collaboration, S. R. Mishra et al., “Neutrino tridents and W Z interference,” Phys. Rev. Lett. 66 (1991) 3117–3120.NuTeV Collaboration, T. Adams et al., “Evidence for diffractive charm production in muon-neutrino Fe and anti-muon-neutrino Fe scattering at the Tevatron,” Phys. Rev. D 61 (2000) 092001, arXiv:hep-ex/9909041 [hep-ex].CMS Collaboration, A. M. Sirunyan et al., “Search for an Lμ − L gauge boson using Z! 4μ events in proton-proton collisions at p s = 13 TeV,” Submitted to: Phys. Lett.CMS Collaboration, A. M. Sirunyan et al., “Search for an Lμ − L gauge boson using Z! 4μ events in proton-proton collisions at p s = 13 TeV,” Submitted to: Phys. Lett. (2018) , arXiv:1808.03684 [hep-ex].BaBar Collaboration, J. P. Lees et al., “Search for a muonic dark force at BABAR,” Phys. Rev. D 94 no. 1, (2016) 011102, arXiv:1606.03501 [hep-ex].W. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, “Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams,” Phys. Rev. Lett. 113 (2014) 091801, arXiv:1406.2332 [hep-ph].G. Bellini et al., “Precision measurement of the 7Be solar neutrino interaction rate in Borexino,” Phys. Rev. Lett. 107 (2011) 141302, arXiv:1104.1816 [hep-ex].R. Harnik, J. Kopp, and P. A. N. Machado, “Exploring nu Signals in Dark Matter Detectors,” JCAP 1207 (2012) 026, arXiv:1202.6073 [hep-ph].Borexino Collaboration, M. Agostini et al., “First Simultaneous Precision Spectroscopy of pp, 7Be, and pep Solar Neutrinos with Borexino Phase-II,” arXiv:1707.09279 [hep-ex].B. Ahlgren, T. Ohlsson, and S. Zhou, “Comment on ‘Is Dark Matter with Long-Range Interactions a Solution to All Small-Scale Problems of Cold Dark Matter Cosmology?’,” Phys. Rev. Lett. 111 no. 19, (2013) 199001, arXiv:1309.0991 [hep-ph].A. Kamada and H.-B. Yu, “Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube,” Phys. Rev. D 92 no. 11, (2015) 113004, arXiv:1504.00711 [hep-ph].SHiP Collaboration, C. Ahdida et al., “Sensitivity of the SHiP experiment to Heavy Neutral Leptons,” JHEP 04 (2019) 077, arXiv:1811.00930 [hep-ph].A. B. Balantekin, A. de Gouvêa, and B. Kayser, “Addressing the Majorana vs. Dirac Question with Neutrino Decays,” Phys. Lett. B789 (2019) 488–495, arXiv:1808.10518 [hep-ph].P. Ballett, T. Boschi, and S. Pascoli, “Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector,” arXiv:1905.00284 [hep-ph].W. Bonivento et al., “Proposal to Search for Heavy Neutral Leptons at the SPS,” arXiv:1310.1762 [hep-ex].MINOS+, Daya Bay Collaboration, P. Adamson et al., “Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments,” Phys. Rev. Lett. 125 no. 7, (2020) 071801, arXiv:2002.00301 [hep-ex].IceCube Collaboration, M. G. Aartsen et al., “Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope,” Phys. Rev. D 102 no. 5, (2020) 052009, arXiv:2005.12943 [hep-ex].W. Altmannshofer, M. Tammaro, and J. Zupan, “Non-standard neutrino interactions and low energy experiments,” JHEP 09 (2019) 083, arXiv:1812.02778 [hep-ph].V. A. Kostelecký and S. Samuel, “Spontaneous Breaking of Lorentz Symmetry in String Theory,” Phys. Rev. D39 (1989) 683.V. A. Kostelecký and R. Potting, “CPT and strings,” Nucl. Phys. B359 (1991) 545–570.V. A. Kostelecký and N. Russell, “Data Tables for Lorentz and CPT Violation,” Rev. Mod. Phys. 83 (2011) 11–31, arXiv:0801.0287 [hep-ph].A. Kostelecký and M. Mewes, “Neutrinos with Lorentz-violating operators of arbitrary dimension,” Phys.Rev. D85 (2012) 096005, arXiv:1112.6395 [hep-ph].V. A. Kostelecký and M. Mewes, “Lorentz violation and short-baseline neutrino experiments,” Phys. Rev. D70 (2004) 076002, arXiv:hep-ph/0406255 [hep-ph].J. S. Diaz, V. A. Kostelecký, and M. Mewes, “Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations,” Phys.Rev. D80 (2009) 076007, arXiv:0908.1401 [hep-ph].MINOS Collaboration, P. Adamson et al., “Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector,” Phys. Rev. Lett. 101 (2008) 151601, arXiv:0806.4945 [hep-ex].MINOS Collaboration, P. Adamson et al., “Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector,” Phys. Rev. D 85 (2012) 031101, arXiv:1201.2631 [hep-ex].T2K Collaboration, K. Abe et al., “Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline,” Phys. Rev. D 95 no. 11, (2017) 111101, arXiv:1703.01361 [hep-ex].CHARM Collaboration, J. Allaby et al., “A Precise Determination of the Electroweak Mixing Angle from Semileptonic Neutrino Scattering,” Z. Phys. C 36 (1987) 611.CCFR, E744, E770 Collaboration, K. S. McFarland et al., “A Precision measurement of electroweak parameters in neutrino - nucleon scattering,” Eur. Phys. J. C 1 (1998) 509–513, arXiv:hep-ex/9701010.NuTeV Collaboration, G. Zeller et al., “A Precise Determination of Electroweak Parameters in Neutrino Nucleon Scattering,” Phys. Rev. Lett. 88 (2002) 091802, arXiv:hep-ex/0110059. [Erratum: Phys.Rev.Lett. 90, 239902 (2003)].Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.CHARM Collaboration, J. Dorenbosch et al., “EXPERIMENTAL RESULTS ON NEUTRINO - ELECTRON SCATTERING,” Z. Phys. C 41 (1989) 567. [Erratum: Z.Phys.C 51, 142 (1991)].L. Ahrens et al., “Determination of electroweak parameters from the elastic scattering of muon-neutrinos and anti-neutrinos on electrons,” Phys. Rev. D 41 (1990) 3297–3316.CHARM-II Collaboration, P. Vilain et al., “Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons,” Phys. Lett. B 335 (1994) 246–252.NOMAD Collaboration, P. Astier et al., “A Study of strange particle production in muon-neutrino charged current interactions in the NOMAD experiment,” Nucl. Phys. B 621 (2002) 3–34, arXiv:hep-ex/0111057.MINERvA Collaboration, C. Marshall et al., “Measurement of neutral-current K+ production by neutrinos using MINERvA,” Phys. Rev. Lett. 119 no. 1, (2017) 011802, arXiv:1611.02224 [hep-ex].F. Akbar, M. Rafi Alam, M. Sajjad Athar, and S. Singh, “Quasielastic production of polarized hyperons in antineutrino–nucleon reactions,” Phys. Rev. D 94 no. 11, (2016) 114031, arXiv:1608.02103 [hep-ph].O. Erriquez et al., “Production of Strange Particles in anti-neutrino Interactions at the CERN PS,” Nucl. Phys. B 140 (1978) 123–140.M. Sajjad Athar and J. G. Morfin, “Neutrino(Antineutrino)-Nucleus Interactions in the Shallow- and Deep-Inelastic Scattering Regions,” arXiv:2006.08603 [hep-ph].NuSTEC Collaboration, C. Andreopoulos et al., “Summary of the NuSTEC Workshop on Shallow- and Deep-Inelastic Scattering,” in NuSTEC Workshop on Shallow- and Deep-Inelastic Scattering. 7, 2019. arXiv:1907.13252 [hep-ph].B. Kopeliovich, J. Morfin, and I. Schmidt, “Nuclear Shadowing in Electro-Weak Interactions,” Prog. Part. Nucl. Phys. 68 (2013) 314–372, arXiv:1208.6541 [hep-ph].S. Alekhin, J. Blümlein, S. Kulagin, S.-O. Moch, and R. Petti, “Strange and non-strange distributions from the collider data,” PoS DIS2018 (2018) 008, arXiv:1808.06871 [hep-ph].NOMAD Collaboration, O. Samoylov et al., “A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment,” Nucl. Phys. B 876 (2013) 339–375, arXiv:1308.4750 [hep-ex].S. Alekhin, S. Kulagin, and R. Petti, “Nuclear Effects in the Deuteron and Constraints on the d/u Ratio,” Phys. Rev. D 96 no. 5, (2017) 054005, arXiv:1704.00204 [nucl-th].A. Accardi, L. Brady, W. Melnitchouk, J. Owens, and N. Sato, “Constraints on large-x parton distributions from new weak boson production and deep-inelastic scattering data,” Phys. Rev. D 93 no. 11, (2016) 114017, arXiv:1602.03154 [hep-ph].S. L. Adler, “Tests of the Conserved Vector Current and Partially Conserved Axial-Vector Current Hypotheses in High-Energy Neutrino Reactions,” Phys. Rev. 135 (1964) B963–B966.D. Allasia et al., “Q**2 Dependence of the Proton and Neutron Structure Functions from Neutrino and anti-neutrinos Scattering in Deuterium,” Z. Phys. C28 (1985) 321.S. A. Kulagin and R. Petti, “Neutrino inelastic scattering off nuclei,” Phys. Rev. D 76 (2007) 094023, arXiv:hep-ph/0703033.D. J. Gross and C. H. Llewellyn Smith, “High-energy neutrino - nucleon scattering, current algebra and partons,” Nucl. Phys. B14 (1969) 337–347.J. Kim et al., “A Measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule,” Phys. Rev. Lett. 81 (1998) 3595–3598, arXiv:hep-ex/9808015.S. Larin and J. Vermaseren, “The alpha-s**3 corrections to the Bjorken sum rule for polarized electroproduction and to the Gross-Llewellyn Smith sum rule,” Phys. Lett. B 259 (1991) 345–352A. L. Kataev and A. V. Sidorov, “The Jacobi polynomials QCD analysis of the CCFR data for xF3 and the Q**2 dependence of the Gross-Llewellyn-Smith sum rule,” Phys. Lett. B 331 (1994) 179–186, arXiv:hep-ph/9402342.DUNE Collaboration, “TDR Volume 1: The LBNF and DUNE Projects,” tech. rep., 2019. http://docs.dunescience.org/cgi-bin/ShowDocument?docid=nnnn.DUNE Collaboration, B. Abi et al., “The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module,” arXiv:1807.10340 [physics.ins-det].http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL2103.13910.pdf2103.13910.pdfapplication/pdf86397787https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1161/1/2103.13910.pdff51c356f3d03f3a3e93b09bc35c6b9d8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1161/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1161/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1161oai:repositorio.uniatlantico.edu.co:20.500.12834/11612022-12-20 18:05:47.204DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |