Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)

This research aimed to evaluate the impact of atmospheric cold plasma (ACP) treatment on the fungal spores naturally present in sundried tomatoes, as well as their influence on the physicochemical properties and antioxidant activity. ACP was performed with a Surface Dielectric Barrier Discharge (SDB...

Full description

Autores:
Molina-Hernandez, Junior Bernardo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/958
Acceso en línea:
https://hdl.handle.net/20.500.12834/958
https://www.scopus.com/record/display.uri?eid=2-s2.0-85123160775&doi=10.3390%2ffoods11020210&origin=inward&txGid=bd108d2d59bab33586f39927b5470e8e
Palabra clave:
atmospheric cold plasma (ACP)
sporicidal activity
Aspergillus niger
Aspergillus rugulovalvus
lycopene
antioxidant activity
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_4ea0b0dce4ad9df61bcf3b54b2f1cf2c
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/958
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)
title Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)
spellingShingle Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)
atmospheric cold plasma (ACP)
sporicidal activity
Aspergillus niger
Aspergillus rugulovalvus
lycopene
antioxidant activity
title_short Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)
title_full Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)
title_fullStr Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)
title_full_unstemmed Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)
title_sort Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)
dc.creator.fl_str_mv Molina-Hernandez, Junior Bernardo
dc.contributor.author.none.fl_str_mv Molina-Hernandez, Junior Bernardo
dc.contributor.other.none.fl_str_mv Laika, Jessica
Peralta-Ruiz, Yeimmy
Kumar Palivala, Vinay
Tappi, Silvia
Cappelli, Filippo
Ricci, Antonella
Neri, Lilia
Chaves-López, Clemencia
dc.subject.keywords.spa.fl_str_mv atmospheric cold plasma (ACP)
sporicidal activity
Aspergillus niger
Aspergillus rugulovalvus
lycopene
antioxidant activity
topic atmospheric cold plasma (ACP)
sporicidal activity
Aspergillus niger
Aspergillus rugulovalvus
lycopene
antioxidant activity
description This research aimed to evaluate the impact of atmospheric cold plasma (ACP) treatment on the fungal spores naturally present in sundried tomatoes, as well as their influence on the physicochemical properties and antioxidant activity. ACP was performed with a Surface Dielectric Barrier Discharge (SDBD), applying 6 kV at 23 kHz and exposure times up to 30 min. The results showed a significant reduction of mesophilic aerobic bacteria population and of filamentous fungi after the longer ACP exposure. In particular, the effect of the treatment was assessed on Aspergillus rugulovalvus (as sensible strain) and Aspergillus niger (as resistant strain). The germination of the spores was observed to be reliant on the species, with nearly 88% and 32% of non-germinated spores for A. rugulovalvus and A. niger, respectively. Fluorescence probes revealed that ACP affects spore viability promoting strong damage to the wall and cellular membrane. For the first time, the sporicidal effect of ACP against A. rugulovalvus is reported. Physicochemical parameters of sundried tomatoes such as pH and water activity (aw) were not affected by the ACP treatment; on the contrary, the antioxidant activity was not affected while the lycopene content was significantly increased with the increase in ACP exposure time (p 0.05) probably due to increased extractability
publishDate 2021
dc.date.submitted.none.fl_str_mv 2021-12-02
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:14:54Z
dc.date.available.none.fl_str_mv 2022-11-15T21:14:54Z
dc.date.issued.none.fl_str_mv 2022-01-13
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Molina-Hernandez, J. B., Laika, J., Peralta-Ruiz, Y., Palivala, V. K., Tappi, S., Cappelli, F., Ricci, A., Neri, L., & Chaves-López, C. (2022). Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.). Foods (Basel, Switzerland), 11(2), 210. https://doi.org/10.3390/foods11020210
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/958
dc.identifier.doi.none.fl_str_mv 10.3390/foods11020210
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
dc.identifier.url.none.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85123160775&doi=10.3390%2ffoods11020210&origin=inward&txGid=bd108d2d59bab33586f39927b5470e8e
identifier_str_mv Molina-Hernandez, J. B., Laika, J., Peralta-Ruiz, Y., Palivala, V. K., Tappi, S., Cappelli, F., Ricci, A., Neri, L., & Chaves-López, C. (2022). Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.). Foods (Basel, Switzerland), 11(2), 210. https://doi.org/10.3390/foods11020210
10.3390/foods11020210
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/958
https://www.scopus.com/record/display.uri?eid=2-s2.0-85123160775&doi=10.3390%2ffoods11020210&origin=inward&txGid=bd108d2d59bab33586f39927b5470e8e
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Agroindustrial
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Foods
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/958/1/foods-11-00210.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/958/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/958/3/license.txt
bitstream.checksum.fl_str_mv 77f43dd3418f32365685b8eed50bc826
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203410586533888
spelling Molina-Hernandez, Junior Bernardod69c5a59-0b88-424c-a052-c3180288703bLaika, JessicaPeralta-Ruiz, YeimmyKumar Palivala, VinayTappi, SilviaCappelli, FilippoRicci, AntonellaNeri, LiliaChaves-López, Clemencia2022-11-15T21:14:54Z2022-11-15T21:14:54Z2022-01-132021-12-02Molina-Hernandez, J. B., Laika, J., Peralta-Ruiz, Y., Palivala, V. K., Tappi, S., Cappelli, F., Ricci, A., Neri, L., & Chaves-López, C. (2022). Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.). Foods (Basel, Switzerland), 11(2), 210. https://doi.org/10.3390/foods11020210https://hdl.handle.net/20.500.12834/95810.3390/foods11020210Universidad del AtlánticoRepositorio Universidad del Atlánticohttps://www.scopus.com/record/display.uri?eid=2-s2.0-85123160775&doi=10.3390%2ffoods11020210&origin=inward&txGid=bd108d2d59bab33586f39927b5470e8eThis research aimed to evaluate the impact of atmospheric cold plasma (ACP) treatment on the fungal spores naturally present in sundried tomatoes, as well as their influence on the physicochemical properties and antioxidant activity. ACP was performed with a Surface Dielectric Barrier Discharge (SDBD), applying 6 kV at 23 kHz and exposure times up to 30 min. The results showed a significant reduction of mesophilic aerobic bacteria population and of filamentous fungi after the longer ACP exposure. In particular, the effect of the treatment was assessed on Aspergillus rugulovalvus (as sensible strain) and Aspergillus niger (as resistant strain). The germination of the spores was observed to be reliant on the species, with nearly 88% and 32% of non-germinated spores for A. rugulovalvus and A. niger, respectively. Fluorescence probes revealed that ACP affects spore viability promoting strong damage to the wall and cellular membrane. For the first time, the sporicidal effect of ACP against A. rugulovalvus is reported. Physicochemical parameters of sundried tomatoes such as pH and water activity (aw) were not affected by the ACP treatment; on the contrary, the antioxidant activity was not affected while the lycopene content was significantly increased with the increase in ACP exposure time (p 0.05) probably due to increased extractabilityapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2FoodsInfluence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)Público generalatmospheric cold plasma (ACP)sporicidal activityAspergillus nigerAspergillus rugulovalvuslycopeneantioxidant activityinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería AgroindustrialSede NorteFAOSTAT. News Archive 2011. Available online: https://www.fao.org/news/archive/news-by-date/2011/en/ (accessed on 1 October 2021).Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [CrossRef]Hegazy, E.M. Mycotoxin and fungal contamination of fresh and dried tomato. Annu. Res. Rev. Biol. 2017, 17, 1–9. [CrossRef]FAOSTAT. Food and Agriculture Statistics. Available online: https://www.fao.org/food-agriculture-statistics/en/ (accessed on 15 October 2021).FAOSTAT. The State of Food and Agriculture. Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 15 October 2021).Sanzani, S.M.; Gallone, T.; Garganese, F.; Caruso, A.G.; Amenduni, M.; Ippolito, A. Contamination of fresh and dried tomato by Alternaria toxins in southern Italy. Food Addit. Contam. Part A 2019, 36, 789–799. [CrossRef] [PubMed]Doymaz, I. Air-drying characteristics of tomatoes. J. Food Eng. 2007, 78, 1291–1297. [CrossRef]Kakde, U.B.; Kakde, H.U. Incidence of post-harvest disease and airborne fungal spores in a vegetable market. Acta Bot. Croat. 2012, 71, 147–157. [CrossRef]Sephton-Clark, P.C.S.; Muñoz, J.F.; Ballou, E.R.; Cuomo, C.A.; Voelz, K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere 2018, 3, e00403-18. [CrossRef] [PubMed]Dwivedy, A.K.; Prakash, B.; Chanotiya, C.S.; Bisht, D.; Dubey, N.K. Chemically characterized Mentha cardiaca L. essential oil as plant based preservative in view of efficacy against biodeteriorating fungi of dry fruits, aflatoxin secretion, lipid peroxidation and safety profile assessment. Food Chem. Toxicol. 2017, 106, 175–184. [CrossRef]Ndagijimana, M.; Chaves-López, C.; Corsetti, A.; Tofalo, R.; Sergi, M.; Paparella, A.; Guerzoni, M.E.; Suzzi, G. Growth and metabolites production by Penicillium brevicompactum in yoghurt. Int. J. Food Microbiol. 2008, 127, 276–283. [CrossRef]Cappato, L.P.; Ferreira, M.V.S.; Guimaraes, J.T.; Portela, J.B.; Costa, A.L.R.; Freitas, M.Q.; Cunha, R.L.; Oliveira, C.A.F.; Mercali, G.D.; Marzack, L.D.F.; et al. Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends Food Sci. Technol. 2017, 62, 104–112. [CrossRef]Amaral, G.V.; Silva, E.K.; Cavalcanti, R.N.; Cappato, L.P.; Guimaraes, J.T.; Alvarenga, V.O.; Esmerino, E.A.; Portela, J.B.; Sant’ Ana, A.S.; Freitas, M.Q.; et al. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends Food Sci. Technol. 2017, 64, 94–101. [CrossRef]Alvarez, I.; Niemira, B.A.; Fan, X.; Sommers, C.H. Inactivation of Salmonella serovars in liquid whole egg by heat following irradiation treatments. J. Food Prot. 2006, 69, 2066–2074. [CrossRef] [PubMed]Olanya, O.M.; Niemira, B.A.; Phillips, J.G. Effects of gamma irradiation on the survival of Pseudomonas fluorescens inoculated on romaine lettuce and baby spinach. LWT 2015, 62, 55–61. [CrossRef]Berrios-Rodriguez, A.; Olanya, O.M.; Annous, B.A.; Cassidy, J.M.; Orellana, L.; Niemira, B.A. Survival of Salmonella Typhimurium on soybean sprouts following treatments with gaseous chlorine dioxide and biocontrol Pseudomonas bacteria. Food Sci. Biotechnol. 2017, 26, 513–520. [CrossRef]Misra, N.N.; Pankaj, S.K.; Segat, A.; Ishikawa, K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci. Technol. 2016, 55, 39–47. [CrossRef]Misra, N.N.; Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017, 64, 74–86. [CrossRef]Pankaj, S.K.; Keener, K.M. Cold plasma: Background, applications and current trends. Curr. Opin. Food Sci. 2017, 16, 49–52. [CrossRef]Munitz, M.S.; Garrido, C.E.; Gonzalez, H.H.L.; Resnik, S.L.; Salas, P.M.; Montti, M.I.T. Mycoflora and Potential Mycotoxin Production of Freshly Harvested Blueberry in Concordia, Entre Ríos Province, Argentina. Int. J. Fruit Sci. 2013, 13, 312–325. [CrossRef]Delgado-Ospina, J.; Molina-Hernandez, J.B.; Maggio, F.; Fernández-Daza, F.; Sciarra, P.; Paparella, A.; Chaves-López, C. Advances in understanding the enzymatic potential and production of ochratoxin A of moulds isolated from cocoa fermented beans. Food Microbiol. 2022, in press.Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [CrossRef]Makhlouf, J.; Carvajal-Campos, A.; Querin, A.; Tadrist, S.; Puel, O.; Lorber, S.; Oswald, I.P.; Hamze, M.; Bailly, J.D.; Bailly, S. Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices marketed in Lebanon. Sci. Rep. 2019, 9, 5263. [CrossRef]Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Potential of chitosan coating in delaying the postharvest anthracnose (Colletotrichum gloeosporioides Penz.) of Eksotika II papaya. Int. J. Food Sci. Technol. 2010, 45, 2134–2140. [CrossRef]Molina-Hernandez, J.B.; Aceto, A.; Bucciarelli, T.; Paludi, D.; Valbonetti, L.; Zilli, K.; Scotti, L.; Chaves-López, C. The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death. Sci. Rep. 2021, 11, 21557. [CrossRef]Horwitz, W. Official Methods of Analysis International, Agricultural Chemicals, Contaminants, Drugs, 15th ed.; AOAC 925.10; AOAC: Rockville, MD, USA, 1990.Salder, G.; Davis, J.; Dezman, D. Rapid Extraction of Lycopene and -Carotene from Reconstituted Tomato Paste and Pink Grapefruit Homogenates. J. Food Sci. 1990, 55, 1460–1461. [CrossRef]Souza, A.L.R.; Hidalgo-Chávez, D.W.; Pontes, S.M.; Gomes, F.S.; Cabral, L.M.C.; Tonon, R.V. Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT—Food Sci. Technol. 2018, 91, 286–292. [CrossRef]Singleton, V.L.; Rossi, J.A.J. Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vinic. 1965, 16, 144–158.Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Min Yang, A.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]Shimizu, T.; Sakiyama, Y.; Graves, D.B.; Zimmermann, J.L.; Morfill, G.E. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New J. Phys. 2012, 14, 103028. [CrossRef]Pavlovich, M.J.; Clarck, D.S.; Graves, D.B. Quantification of air plasma chemistry for surface disinfection. Plasma Sources Sci. Technol. 2014, 23, 065036. [CrossRef]Eliasson, B.; Hirth, M.; Kogelschatz1, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 1987, 20, 1421. [CrossRef]Kogelschatz, U.; Eliasson, B.; Hirth, M. Ozone generation from oxygen and air: Discharge physics and reactions mechanisms. Ozone Sci. Eng. 1987, 10, 367–368. [CrossRef]Finn, S.; Condell, O.; McClure, P.; Amézquita, A.; Fanning, S. Mechanisms of survival, responses, and sources of salmonella in low-moisture environments. Front. Microbiol. 2013, 4, 331. [CrossRef] [PubMed]Puligundla, P.; Mok, C. Inactivation of spores by nonthermal plasmas. World J. Microbiol. Biotechnol. 2018, 34, 143. [CrossRef]Dobrynin, D.; Fridman, G.; Mukhin, Y.V.; Wynosky-Dolfi, M.A.; Rieger, J.; Rest, R.F.; Gutsol, A.F.; Fridman, A. Cold plasma inactivation of Bacillus cereus and Bacillus anthracis (anthrax) spores. IEEE Trans. Plasma Sci. 2010, 38, 1878–1884. [CrossRef]Hertwig, C.; Reineke, K.; Rauh, C.; Schlüter, O. Factors involved in Bacillus spore’s resistance to cold atmospheric pressure plasma. Innov. Food Sci. Emerg. Technol. 2017, 43, 173–181. [CrossRef]Young, S.B.; Setlow, P. Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone. J. Appl. Microbiol. 2004, 96, 1133–1142. [CrossRef]Patil, S.; Moiseev, T.; Misra, N.N.; Cullen, P.J.; Mosnier, J.P.; Keener, K.M.; Bourke, P. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. J. Hosp. Infect. 2014, 88, 162–169. [CrossRef] [PubMed]Gavahian, M.; Peng, H.J.; Chu, Y.H. Efficacy of cold plasma in producing Salmonella-free duck eggs: Effects on physical characteristics, lipid oxidation, and fatty acid profile. J. Food Sci. Technol. 2019, 56, 5271–5281. [CrossRef] [PubMed]Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol. 2015, 46, 479–484. [CrossRef] [PubMed]Ulbin-Figlewicz, N.; Jarmoluk, A. Effect of low-pressure plasma treatment on the color and oxidative stability of raw pork during refrigerated storage. Food Sci. Technol. Int. 2016, 22, 313–324. [CrossRef]Ziuzina, D.; Patil, S.; Cullen, P.J.; Keener, K.M.; Bourke, P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 2014, 42, 109–116. [CrossRef] [PubMed]Butscher, D.; Zimmermann, D.; Schuppler, M.; von Rohr, P.R. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control 2016, 60, 636–645. [CrossRef]Kim, J.E.; Lee, D.U.; Min, S.C. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 2014, 38, 128–136. [CrossRef]Iseki, S.; Ohta, T.; Aomatsu, A.; Ito, M.; Kano, H.; Higashijima, Y.; Hori, M. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 2010, 96, 153704. [CrossRef]Yaguchi, T.; Horie, Y.; Tanaka, R.; Matsuzawa, T.; Ito, J.; Nishimura, K. Molecular phylogenetics of multiple genes on Aspergillus section Fumigati isolated from clinical specimens in Japan. Jpn. J. Med. Mycol. 2007, 48, 37–46. [CrossRef]Trompeter, F.J.; Neff, W.J.; Franken, O.; Heise, M.; Neiger, M.; Liu, S.; Pietsch, G.J.; Saveljew, A.B. Reduction of Bacillus Subtilis and Aspergillus Niger spores using nonthermal atmospheric gas discharges. IEEE Trans. Plasma Sci. 2002, 30, 1416–1423. [CrossRef]Ott, L.C.; Appleton, H.J.; Shi, H.; Keener, K.; Mellata, M. High voltage atmospheric cold plasma treatment inactivates Aspergillus flavus spores and deoxynivalenol toxin. Food Microbiol. 2021, 95, 103669. [CrossRef]Oliveira, B.R.; Marques, A.P.; Ressurreição, M.; Moreira, C.J.S.; Pereira, C.S.; Crespo, M.T.B.; Pereira, V.J. Inactivation of Aspergillus species in real water matrices using medium pressure mercury lamps. J. Photochem. Photobiol. B Biol. 2021, 221, 112242. [CrossRef] [PubMed]Misra, N.N.; Yadav, B.; Roopesh, M.S.; Jo, C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 106–120. [CrossRef] [PubMed]Cordero, R.J.B.; Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 2017, 31, 99–112. [CrossRef] [PubMed]Montie, T.C.; Kelly-Wintenberg, K.; Roth, J.R. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 2000, 28, 41–50. [CrossRef]Hopke, A.; Brown, A.J.P.; Hall, R.A.; Wheeler, R.T. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion. Trends Microbiol. 2018, 26, 284–295. [CrossRef]Ambrico, P.F.; Šimek, M.; Rotolo, C.; Morano, M.; Minafra, A.; Ambrico, M.; Pollastro, S.; Gerin, D.; Faretra, F.; De Miccolis Angelini, R.M. Surface Dielectric Barrier Discharge plasma: A suitable measure against fungal plant pathogens. Sci. Rep. 2020, 10, 3673. [CrossRef]Bao, Y.; Reddivari, L.; Huang, J.Y. Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innov. Food Sci. Emerg. Technol. 2020, 65, 102445. [CrossRef]Starek, A.; Pawłat, J.; Chudzik, B.; Kwiatkowski, M.; Terebun, P.; Sagan, A.; Andrejko, D. Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage. Sci. Rep. 2019, 9, 8407. [CrossRef]Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 2015, 107, 55–65. [CrossRef]Tappi, S.; Ramazzina, I.; Rizzi, F.; Sacchetti, G.; Ragni, L.; Rocculi, P. Effect of plasma exposure time on the polyphenolic profile and antioxidant activity of fresh-cut apples. Appl. Sci. 2018, 8, 1939. [CrossRef]Dasan, B.G.; Boyaci, I.H. Effect of Cold Atmospheric Plasma on Inactivation of Escherichia coli and Physicochemical Properties of Apple, Orange, Tomato Juices, and Sour Cherry Nectar. Food Bioprocess Technol. 2018, 11, 334–343. [CrossRef]Li, X.; Li, M.; Ji, N.; Jin, P.; Zhang, J.; Zheng, Y.; Zhang, X.; Li, F. Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. LWT 2019, 115, 108447. [CrossRef]Alothman, M.; Bhat, R.; Karim, A.A. UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. Technol. 2009, 10, 512–516. [CrossRef]Ozen, E.; Singh, R.K. Atmospheric cold plasma treatment of fruit juices: A review. Trends Food Sci. Technol. 2020, 103, 144–151. [CrossRef]Hoffmann, A.M.; Noga, G.; Hunsche, M. High blue light improves acclimation and photosynthetic recovery of pepper plants exposed to UV stress. Environ. Exp. Bot. 2015, 109, 254–263. [CrossRef]Sarangapani, C.; O’Toole, G.; Cullen, P.J.; Bourke, P. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov. Food Sci. Emerg. Technol. 2017, 44, 235–241. [CrossRef]http://purl.org/coar/resource_type/c_6501ORIGINALfoods-11-00210.pdffoods-11-00210.pdfapplication/pdf865467https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/958/1/foods-11-00210.pdf77f43dd3418f32365685b8eed50bc826MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/958/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/958/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/958oai:repositorio.uniatlantico.edu.co:20.500.12834/9582022-11-15 16:14:55.164DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==