Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials

The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobeni...

Full description

Autores:
Urieles, Alejandro
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/894
Acceso en línea:
https://hdl.handle.net/20.500.12834/894
Palabra clave:
Generalized Apostol Frobenius–Euler polynomials; Hurwitz zeta function; Fourier expansion; Generalized Apostol Frobennius–Euler numbers
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_4c7dca173bd40e9294a5f6ea2f52c460
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/894
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
title Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
spellingShingle Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
Generalized Apostol Frobenius–Euler polynomials; Hurwitz zeta function; Fourier expansion; Generalized Apostol Frobennius–Euler numbers
title_short Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
title_full Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
title_fullStr Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
title_full_unstemmed Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
title_sort Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
dc.creator.fl_str_mv Urieles, Alejandro
dc.contributor.author.none.fl_str_mv Urieles, Alejandro
dc.contributor.other.none.fl_str_mv Ramírez, William
Ortega, María José
Bedoya, Daniel
dc.subject.keywords.spa.fl_str_mv Generalized Apostol Frobenius–Euler polynomials; Hurwitz zeta function; Fourier expansion; Generalized Apostol Frobennius–Euler numbers
topic Generalized Apostol Frobenius–Euler polynomials; Hurwitz zeta function; Fourier expansion; Generalized Apostol Frobennius–Euler numbers
description The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobenius–Genocchi and Apostol Genocchi polynomials, we obtain its integral representation. Furthermore, using the Hurwitz–Lerch zeta function we introduce the formula in rational arguments of the generalized Apostol-type Frobenius–Euler polynomials in terms of the Hurwitz zeta function. Finally, we show the representation of rational arguments of the Apostol Frobenius Euler polynomials and the Apostol Frobenius–Genocchi polynomials.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-09-29
dc.date.submitted.none.fl_str_mv 2020-04-16
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:50:24Z
dc.date.available.none.fl_str_mv 2022-11-15T20:50:24Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/894
dc.identifier.doi.none.fl_str_mv 10.1186/s13662-020-02988-0
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/894
identifier_str_mv 10.1186/s13662-020-02988-0
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Matemáticas
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv A springerOpern Journal
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/894/1/s13662-020-02988-0.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/894/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/894/3/license.txt
bitstream.checksum.fl_str_mv 7bcff39f2a974e7da3115aabdfd2d9df
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203414810198016
spelling Urieles, Alejandro0391d4c9-f0b6-40f2-9037-d06f46fb798bRamírez, WilliamOrtega, María JoséBedoya, Daniel2022-11-15T20:50:24Z2022-11-15T20:50:24Z2020-09-292020-04-16https://hdl.handle.net/20.500.12834/89410.1186/s13662-020-02988-0Universidad del AtlánticoRepositorio Universidad del AtlánticoThe main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobenius–Genocchi and Apostol Genocchi polynomials, we obtain its integral representation. Furthermore, using the Hurwitz–Lerch zeta function we introduce the formula in rational arguments of the generalized Apostol-type Frobenius–Euler polynomials in terms of the Hurwitz zeta function. Finally, we show the representation of rational arguments of the Apostol Frobenius Euler polynomials and the Apostol Frobenius–Genocchi polynomials.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A springerOpern JournalFourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomialsPúblico generalGeneralized Apostol Frobenius–Euler polynomials; Hurwitz zeta function; Fourier expansion; Generalized Apostol Frobennius–Euler numbersinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaMatemáticasSede Norte1. Alkan, M., Simsek, Y.: Generating function for q-Eulerian polynomials and their decomposition and applications. Fixed Point Theory Appl. 2013(72), 1 (2013). https://doi.org/10.1186/1687-1812-2013-722. Araci, S., Acikgoz, M.: Construction of Fourier expansion of Apostol Frobenius–Euler polynomials and its applications. Adv. Differ. Equ. 2018, 67 (2018). https://doi.org/10.1186/s13662-018-1526-x3. Bayad, A.: Fourier expansion for Apostol Bernoulli, Apostol Euler and Apostol Genocchi polynomials. Math. Comput. 80, 2219–2221 (2011). https://doi.org/10.1090/S0025-5718-2011-02476-24. Bayad, A., Kim, T.: Identities for Apostol-type Frobenius–Euler polynomiasl resulting from the study of a nonlinear operator. Russ. J. Math. Phys. 23, 164–171 (2016). https://doi.org/10.1134/S10619208160200235. Cangul, I.N., Cevik, A.S., Simsek, Y.: Generalization of q-Apostol-type Eulerian numbers and polynomials, and their interpolation functions. Adv. Stud. Contemp. Math. 25(2), 211–220 (2015)6. Carlitz, L.: Eulerian numbers and polynomials. Math. Mag. 32, 247–260 (1959). https://doi.org/10.2307/30292257. Conway, J.B.: Functions of One Complex Variables. Springer, Berlin (1978)8. Cristina, B., Roberto, B.: Fourier expansions for higher-order Apostol–Genocchi, Apostol–Bernoulli and Apostol–Euler polynomialsv. Adv. Differ. Equ. 2020, 346 (2020). https://doi.org/10.1186/s13662-020-02802-x9. Follan, G.: Fourier Analysis and Its Applications (1992)10. Kim, T.: An identity of the symmetry for the Frobenius–Euler polynomials associated with the fermionic p-adic invariant q-integrals on Zp. Rocky Mt. J. Math. 41, 239–247 (2011)11. Kucukoglu, I., Simsek, Y.: Identities and relations on the q-Apostol type Frobenius–Euler numbers and polynomials. J. Korean Math. Soc. 56(1), 265–284 (2019). https://doi.org/10.4134/JKMS.j18018512. Kucukoglu, I., Simsek, Y., Srivastava, H.M.: A new family of Lerch-type zeta functions interpolating a certain class of higher-order Apostol-type numbers and Apostol-type polynomials. Quaest. Math. 42 465–478 (2019). https://doi.org/10.2989/16073606.2018.145992513. Kurt, B., Simsek, Y.: On the generalized Apostol-type Frobenius–Euler polynomials. Adv. Differ. Equ. 2013, 1 (2013). https://doi.org/10.1186/1687-1847-2013-114. Luo, Q.: Fourier expansion and integral representations for the Apostol Bernoulli and Apostol Euler polynomials. Math. Comput. 78, 2193–2208 (2009)15. Luo, Q.-M.: Extensions of the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48, 291–309 (2011)16. Quintana, Y., Ramírez, W., Urieles, A.: Euler matrices and their algebraic properties revisited. Appl. Math. Inf. Sci. 14(4), 583–596 (2020). https://doi.org/10.18576/amis/14040717. Ramírez, W., Ortega, M., Urieles, A.: New generalized Apostol Frobenius–Euler polynomials and their matrix approach. Kragujev. J. Math. 45(3), 393–407 (2021)18. Simsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application. Fixed Point Theory Appl. 2013(87), 1 (2013). https://doi.org/10.1186/1687-1812-2013-8719. Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)20. Srivastava, H.M., Kurt, B., Simsek, Y.: Some families of Genocchi type polynomials and their interpolation functions. Integral Transforms Spec. Funct. 23(12), 919–938 (2012). https://doi.org/10.1080/10652469.2011.64362721. Yilmaz, S.: Generating functions for q-Apostol type Frobenius–Euler numbers and polynomials. Axioms 1(3), 395–403 (2012). https://doi.org/10.3390/axioms1030395http://purl.org/coar/resource_type/c_6501ORIGINALs13662-020-02988-0.pdfs13662-020-02988-0.pdfapplication/pdf1509460https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/894/1/s13662-020-02988-0.pdf7bcff39f2a974e7da3115aabdfd2d9dfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/894/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/894/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/894oai:repositorio.uniatlantico.edu.co:20.500.12834/8942022-11-15 15:50:25.472DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==