FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate

Plant cell suspension culture of T. peruviana is a feasible biotechnological platform for the production of secondary metabolites with anti-proliferative/cytotoxic activity, as phenolic compounds (PC); however, different in in vitro growth conditions may affect the production, demanding strategies t...

Full description

Autores:
Mendoza, Dary
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/851
Acceso en línea:
https://hdl.handle.net/20.500.12834/851
Palabra clave:
Thevetia peruviana Plant cell culture FT-NIR RP-HPLC Multivariate analysis
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_4bef6c1ee55e7ff128358a3dd75a20d2
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/851
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate
title FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate
spellingShingle FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate
Thevetia peruviana Plant cell culture FT-NIR RP-HPLC Multivariate analysis
title_short FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate
title_full FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate
title_fullStr FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate
title_full_unstemmed FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate
title_sort FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate
dc.creator.fl_str_mv Mendoza, Dary
dc.contributor.author.none.fl_str_mv Mendoza, Dary
dc.contributor.other.none.fl_str_mv Arias, Juan Pablo
Cuaspud, Olmedo
Ruiz, Orlando
Arias, Mario
dc.subject.keywords.spa.fl_str_mv Thevetia peruviana Plant cell culture FT-NIR RP-HPLC Multivariate analysis
topic Thevetia peruviana Plant cell culture FT-NIR RP-HPLC Multivariate analysis
description Plant cell suspension culture of T. peruviana is a feasible biotechnological platform for the production of secondary metabolites with anti-proliferative/cytotoxic activity, as phenolic compounds (PC); however, different in in vitro growth conditions may affect the production, demanding strategies to increase the metabolite biosynthesis, as well as the development of sensitive and rapid analytical methods for metabolite monitoring. The Fourier transform near-infrared (FT-NIR) spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) combined with Multivariate analysis (MVA) were used to detect significant differences in the PC production in cultures treated with two elicitors. The results suggest that the FT-NIR-MVA is useful for discriminating samples according to the treatment, showed significant influence of the PC signal. RP-HPLC-MVA showed that the elicitor effect occurs at 72 h post-elicitation. Detection of dihydroquercetin (maximum concentration = 12.59 mg/L), a flavonoid with anti-cancer properties, is highlighted. Future studies will be aimed at scaling this culture to increase the productivity of dihydroquercetin.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-08-10
dc.date.submitted.none.fl_str_mv 2020-01-31
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:44:55Z
dc.date.available.none.fl_str_mv 2022-11-15T19:44:55Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/851
dc.identifier.doi.none.fl_str_mv 10.1016/j.btre.2020.e00519
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/851
identifier_str_mv 10.1016/j.btre.2020.e00519
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Biotechnology Reports
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/851/1/1-s2.0-S2215017X20300709-main.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/851/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/851/3/license.txt
bitstream.checksum.fl_str_mv 249dcf954011a176203c486a300ed343
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203415788519424
spelling Mendoza, Darya54e1cf7-9c6e-4762-b091-1be2d5a6a073Arias, Juan PabloCuaspud, OlmedoRuiz, OrlandoArias, Mario2022-11-15T19:44:55Z2022-11-15T19:44:55Z2020-08-102020-01-31https://hdl.handle.net/20.500.12834/85110.1016/j.btre.2020.e00519Universidad del AtlánticoRepositorio Universidad del AtlánticoPlant cell suspension culture of T. peruviana is a feasible biotechnological platform for the production of secondary metabolites with anti-proliferative/cytotoxic activity, as phenolic compounds (PC); however, different in in vitro growth conditions may affect the production, demanding strategies to increase the metabolite biosynthesis, as well as the development of sensitive and rapid analytical methods for metabolite monitoring. The Fourier transform near-infrared (FT-NIR) spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) combined with Multivariate analysis (MVA) were used to detect significant differences in the PC production in cultures treated with two elicitors. The results suggest that the FT-NIR-MVA is useful for discriminating samples according to the treatment, showed significant influence of the PC signal. RP-HPLC-MVA showed that the elicitor effect occurs at 72 h post-elicitation. Detection of dihydroquercetin (maximum concentration = 12.59 mg/L), a flavonoid with anti-cancer properties, is highlighted. Future studies will be aimed at scaling this culture to increase the productivity of dihydroquercetin.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Biotechnology ReportsFT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonatePúblico generalThevetia peruviana Plant cell culture FT-NIR RP-HPLC Multivariate analysisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede Norte[1] S. Ramachandra Rao, G.A. Ravishankar, Plant cell cultures: chemical factories of secondary metabolites, Biotechnol. Adv. 20 (2002) 101–153, doi:http://dx. doi.org/10.1016/S0734-9750(02)00007-1.[2] R.J. Whitaker, G.C. Hobbib, L.A. Steward, Production of secondary metabolites in plant cell cultures, Biogeneration of Aromas,(1986), pp. 347–362, doi:http:// dx.doi.org/10.1021/bk-1986-0317.ch026[3] V. Bandara, S.A. Weinstein, J. White, M. Eddleston, A review of the natural history, toxinology, diagnosis and clinical management of Nerium oleander (common oleander) and Thevetia peruviana (yellow oleander) poisoning, Toxicon 56 (2010) 273–281, doi:http://dx.doi.org/10.1016/j. toxicon.2010.03.026.[4] S. Kohls, B.M. Scholz-Böttcher, J. Teske, P. Zark, J. Rullkötter, Cardiac glycosides from Yellow Oleander (Thevetia peruviana) seeds, Phytochemistry 75 (2012) 114–127, doi:http://dx.doi.org/10.1016/j.phytochem.2011.11.019.[5] S. Haldar, I. Karmakar, M. Chakraborty, D. Ahmad, P.K. Haldar, Antitumor potential of Thevetia peruviana on Ehrlich’s ascites carcinoma-bearing mice, J. Environ. Pathol. Toxicol. Oncol. 34 (2015) 105–113, doi:http://dx.doi.org/ 10.1615/jenvironpatholtoxicoloncol.2015012017.[6] A. Ramos-Silva, F. Tavares-Carreón, M. Figueroa, S. De la Torre-Zavala, A. Gastelum-Arellanez, A. Rodríguez-García, L.J. Galán-Wong, H. Avilés-Arnaut, Anticancer potential of Thevetia peruviana fruit methanolic extract, BMC Complement. Altern. Med. 17 (1) (2017) 241, doi:http://dx.doi.org/10.1186/ s12906-017-1727-y[7] M.M. Hassan, A.K. Saha, S.A. Khan, A. Islam, M. Mahabub-Uz-Zaman, S.S.U. Ahmed, Studies on the antidiarrhoeal, antimicrobial and cytotoxic activities of ethanol-extracted leaves of yellow oleander (Thevetia peruviana), Open Vet. J.1 (1) (2011) 28–31[8] A. Dixit, H. Singh, R.A. Sharma, A. Sharma, Estimation of antioxidant and antibacterial activity of crude extracts of Thevetia peruviana (Pers.) K. Schum, Int. J. Pharm. 7 (2015) 55–59.[9] S. Tewtrakul, N. Nakamura, M. Hattori, T. Fujiwara, T. Supavita, Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory activities, Chem. Pharm. Bull. (Tokyo) 50 (2002) 630–635, doi:http://dx.doi.org/10.1248/cpb.50.630[10] M. Arias, M. Angarita, J.M. Restrepo, L.A. Caicedo, M. Perea, Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana, Vitr. Cell. Dev. Biol. – Plant 46 (2010) 233–238, doi:http://dx.doi.org/10.1007/s11627-009-9249-z.[11] A.P. Villegas-Quiceño, J.P. Arias-Echeverri, D. Aragón-Mena, S. Ochoa-Cáceres, M.E. Arias-Zabala, Multi-objective optimization in biotechnological processes: application to plant cell suspension cultures of Thevetia peruviana, Rev. Fac. Ing. Univ. Antioquia (2018) 35–40, doi:http://dx.doi.org/10.17533/udea.redin. n87a05.[12] P. Reymond, E.E. Farmer, Jasmonate and salicylate as global signals for defense gene expression, Curr. Opin. Plant Biol. 1 (1998) 404–411, doi:http://dx.doi.org/ 10.1016/S1369-5266(98)80264-1.[13] M.I.R. Khan, N.A. Khan, Salicylic acid and Jasmonates: approaches in abiotic stress tolerance, J. Plant Biochem. Physiol.1 (2013) e113, doi:http://dx.doi.org/ 10.4172/2329-9029.1000e113.[14] I. Rejeb, V. Pastor, B. Mauch-Mani, Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms, Plants 3 (2014) 458–475, doi:http://dx. doi.org/10.3390/plants3040458.[15] D. Mendoza, O. Cuaspud, J.P. Arias, O. Ruiz, M. Arias, Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana, Biotechnol. Rep. 19 (2018)e00273, doi:http://dx.doi.org/10.1016/j.btre.2018.e00273[16] D. Granato, P. Putnik, D.B. Kovacevi 9 c, J.S. Santos, V. Calado, R.S. Rocha, A.G. Cruz, B. Jarvis, O.Y. Rodionova, A.L. Pomerantsev, Trends in chemometrics: food authentication, microbiology, and effects of processing, Compr. Rev. Food Sci. Food Saf. 17 (2018) 663–677, doi:http://dx.doi.org/10.1111/1541-4337.12341[17] K.J. Siebert, Chemometrics in brewing—a review, J. Am. Soc. Brew. Chem. 59 (2001) 147–156, doi:http://dx.doi.org/10.1094/ASBCJ-59-0147.[18] J. Li, J. Zhang, Y.L. Zhao, H.Y. Huang, Y.Z. Wang, Comprehensive quality assessment based specific chemical profiles for geographic and tissue variation in Gentiana rigescens using HPLC and FTIR method combined with principal component analysis, Front. Chem. 22 (5) (2017) 125, doi:http://dx. doi.org/10.3389/fchem.2017.00125.[19] X. Chen, N. Gu, C. Xue, B. Li, Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells, Mol. Med. Rep. 17 (2) (2017) 3239–3245, doi:http://dx.doi.org/10.3892/mmr.2017.8271.[20] Y. Guo, X. Ding, Y. Ni, The combination of NIR spectroscopy and HPLC chromatography for differentiating lotus seed cultivars and quantitative prediction of four main constituents in lotus with the aid of chemometrics, Anal. Methods 9 (2017) 6420–6429, doi:http://dx.doi.org/10.1039/ C7AY02021J.[21] I. Moreira, I.S. Scarminio, Chemometric discrimination of genetically modified Coffea arabica cultivars using spectroscopic and chromatographic fingerprints, Talanta 107 (2013) 416–422, doi:http://dx.doi.org/10.1016/j. talanta.2013.01.053[22] M. Zareef, Q. Chen, Q. Ouyang, F.Y.H. Kutsanedzie, M.M. Hassan, A. Viswadevarayalu, A. Wang, Prediction of amino acids, caffeine, theaflavins and water extract in black tea using FT-NIR spectroscopy coupled chemometrics algorithms, Anal. Methods 10 (2018) 3023–3031, doi:http://dx. doi.org/10.1039/C8AY00731D[23] S. Diabaté, H. De Franqueville, B. Adon, O. Coulibaly, S. Ake, The role of phenolic compounds in the determination of wilt disease tolerance of oil palm (Elaeis guineensis JACQ), Afr. J. Biotechnol. 8 (2009) 5679–5690[24] Z. Liu, D. Wang, D. Li, S. Zhang, Quality evaluation of Juniperus rigida Sieb. et Zucc. based on phenolic profiles, bioactivity, and HPLC fingerprint combined with chemometrics, Front. Pharmacol. 8 (2017) 198, doi:http://dx.doi.org/ 10.3389/fphar.2017.00198.[25] B.T. Borille, M.C.A. Marcelo, R.S. Ortiz, K.C. Mariotti, M.F. Ferrão, R.P. Limberger, Near infrared spectroscopy combined with chemometrics for growth stage classification of cannabis cultivated in a greenhouse from seized seeds, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173 (2017) 318–323, doi: http://dx.doi.org/10.1016/j.saa.2016.09.040[26] C. Christou, A. Agapiou, R. Kokkinofta, Use of FTIR spectroscopy and chemometrics for the classification of carobs origin, J. Adv. Res. 10 (2018) 1–8, doi:http://dx.doi.org/10.1016/j.jare.2017.12.001[27] A. Hashimoto, A. Yamanaka, M. Kanou, K. Nakanishi, T. Kameoka, Simple and rapid determination of metabolite content in plant cell culture medium using an FT-IR/ATR method, Bioprocess Biosyst. Eng. 27 (2) (2005) 115–123, doi: http://dx.doi.org/10.1007/s00449-004-0388-7.[28] A. Hashimoto, K. Nakanishi, Y. Motonaga, T. Kameoka, Sugar metabolic analysis of suspensions of plant cells using an FT-IR/ATR method, Biotechnol. Prog. 17 (3) (2001) 560–564, doi:http://dx.doi.org/10.1021/bp010013w.[29] R.U. Schenk, A.C. Hildebrandt, Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures, Can. J. Bot. 50 (1972) 199–204, doi:http://dx.doi.org/10.1139/b72-026[30] Y. Bi, K. Yuan, W. Xiao, J. Wu, C. Shi, J. Xia, G. Chu, G. Zhang, G. Zhou, A local preprocessing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation, Anal. Chim. Acta 909 (2016) 30–40, doi:http://dx.doi.org/10.1016/j.aca.2016.01.010.[31] J. Bartel, J. Krumsiek, F.J. Theis, Statistical methods for the analysis of highthroughput metabolomics data, Comput. Struct. Biotechnol. J. 4 (2013) e201301009, doi:http://dx.doi.org/10.5936/csbj.201301009.[32] A. Khoddami, M.A. Wilkes, T.H. Roberts, Techniques for analysis of plant phenolic compounds, Molecules 18 (2) (2013) 2328–2375, doi:http://dx.doi. org/10.3390/molecules18022328[33] M. Rusilowicz, M. Dickinson, A. Charlton, S. O’Keefe, J. Wilson, A batch correction method for liquid chromatography–mass spectrometry data that does not depend on quality control samples, Metabolomics 12 (3) (2016) 56, doi:http://dx.doi.org/10.1007/s11306-016-0972-2[34] G. Tomasi, T. Skov, F. Van den Berg, Dynamic time warping (DTW) and correlation optimized warping (COW) [WWW document], Spectrosc. Chemom. Sect. (2004). (accessed 10.1.19) http://www.models.life.ku.dk/ dtw_cow_more[35] Department of Agriculture, Dr. Duke’s phytochemical and ethnobotanical databases [WWW document], Agric. Res. Serv. (1992), doi:http://dx.doi.org/ 10.15482/USDA.ADC/1239279 (accessed 12.6.18).[36] Å. Rinnan, F. Berg, S.B. Engelsen, Å. Rinnan, F.V.D. Berg, Review of the most common pre-processing techniques for near-infrared spectra, TrAC Trends Anal. Chem. 28 (2009) 1201–1222, doi:http://dx.doi.org/10.1016/j. trac.2009.07.007[37] R. Iwamoto, Infrared and Near-Infrared study of the interaction of amide C¼O with water in ideally inert medium, J. Phys. Chem. A 114 (2010) 7398–7407, doi:http://dx.doi.org/10.1021/jp102479t.[38] W. Li, H. Qu, Rapid quantification of phenolic acids in Radix Salvia Miltrorrhiza extract solutions by FT-NIR spectroscopy in transflective mode, J. Pharm. Biomed. Anal. 52 (2010) 425–431, doi:http://dx.doi.org/10.1016/j. jpba.2010.01.009[39] B. Worley, R. Powers, PCA as a practical indicator of OPLS-DA model reliability, Curr. Metabolomics 4 (2) (2016) 97–103, doi:http://dx.doi.org/10.2174/ 2213235X04666160613122429.[40] C. Cordella, I. Moussa, A.-C. Martel, N. Sbirrazzuoli, L. Lizzani-Cuvelier, Recent developments in food characterization and adulteration detection: techniqueoriented perspectives, J. Agric. Food Chem. 50 (7) (2002) 1751–1764, doi: http://dx.doi.org/10.1021/jf011096z[41] D. Cozzolino, Near infrared spectroscopy in natural products analysis, Planta Med. 75 (7) (2009) 746–756, doi:http://dx.doi.org/10.1055/s-0028-1112220.[42] M. Blanco, I. Villarroya, NIR spectroscopy: a rapid-response analytical tool, TrAC Trends Anal. Chem. 21 (4) (2002) 240–250, doi:http://dx.doi.org/10.1016/ S0165-9936(02)00404-1[43] D. Cozzolino, L. Flood, J. Bellon, M. Gishen, M. De Barros Lopes, Combining near infrared spectroscopy and multivariate analysis as a tool to differentiate different strains of Saccharomyces cerevisiae: a metabolomic study, Yeast 23 (14–15) (2016) 1089–1096, doi:http://dx.doi.org/10.1002/yea.1418.[44] D. Cozzolino, M. Parker, R.G. Dambergs, M. Herderich, M. Gishen, Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale, Biotechnol. Bioeng. 95 (6) (2016) 1101–1107, doi:http://dx.doi.org/10.1002/bit.21067.[45] C.N.T. Frizon, G.A. Oliveira, C.A. Perussello, P.G. Peralta-Zamora, A.M.O. Camlofski, Ü.B. Rossa, R. Hoffmann-Ribani, Determination of total phenolic compounds in yerba mate (Ilex paraguariensis) combining near infrared spectroscopy (NIR) and multivariate analysis, LWT - Food Sci. Technol. 60 (2015) 795–801, doi:http://dx.doi.org/10.1016/j.lwt.2014.10.030.[46] H. Hassan, M. Fan, T. Zhang, K. Yang, Prediction of Total phenolics and flavonoids contents in chinese wild rice (Zizania latifolia) Using FT-NIR Spectroscopy, Am. J. Food Technol. 10 (2015) 109–117, doi:http://dx.doi.org/ 10.3923/ajft.2015.109.117[47] L. Baiyi, C. Jianyang, H. Weisu, W. Di, X. Wei, X. Qing, Y. Xiao, L. Lanjuan, Determination of flavonoids and phenolic acids in the extract of bamboo leaves using near-infrared spectroscopy and multivariate calibration, Afr. J. Biotechnol. 10 (2011) 8448–8455, doi:http://dx.doi.org/10.5897/AJB11.320[48] C. Sunil, B. Xu, An insight into the health-promoting effects of taxifolin (dihydroquercetin), Phytochemistry 166 (2019)112066, doi:http://dx.doi.org/ 10.1016/j.phytochem.2019.112066[49] F. Topal, M. Nar, H. Gocer, P. Kalin, U.M. Kocyigit, _ I. Gülçin, S.H. Alwasel, Antioxidant activity of taxifolin: an activity–structure relationship, J. Enzyme Inhib. Med. Chem. 31 (2016) 674–683, doi:http://dx.doi.org/10.3109/ 14756366.2015.1057723[50] X. Xie, J. Feng, Z. Kang, S. Zhang, L. Zhang, Y. Zhang, X. Li, Y. Tang, Taxifolin protects RPE cells against oxidative stress-induced apoptosis, Mol. Vis. 23 (2017) 520–528[51] P. Chen, D. Luthriau, Pde B. Harringtonohio, J.M. Harnly, Discrimination among Panax species using spectral fingerprinting, J. AOAC Int. 94 (2011) 1411–1421, doi:http://dx.doi.org/10.5740/jaoacint.10-291.[52] X. Sun, R.C. Chen, Z.H. Yang, G.B. Sun, M. Wang, X.J. Ma, L.J. Yang, X.B. Sun, Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis, Food Chem. Toxicol. 63 (2014) 221–232, doi:http://dx.doi.org/10.1016/j.fct.2013.11.013.[53] N. Vargas-Mendoza, E. Madrigal-Santillán, A. Morales-Gonzales, J. EsquivelSoto, C. Esquivel-Chirino, M. Garcia-Luna, M. Gonzales-Rubio, J.A. Gayosso-deLucio, J.A. Morales-Gonzales, Hepatoprotective effect of silymarin, World J. Hepatol. 6 (2014) 144, doi:http://dx.doi.org/10.4254/wjh.v6.i3.144.[54] H. Guo, X. Zhang, Y. Cui, H. Zhou, D. Xu, T. Shan, F. Zhang, Y. Guo, Y. Chen, D. Wu, Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload, Toxicol. Appl. Pharmacol. 287 (2015) 168–177, doi:http://dx.doi.org/10.1016/j.taap.2015.06.002.[55] S.Y. Park, H.Y. Kim, H.J. Park, H.K. Shin, K.W. Hong, C.D. Kim, Concurrent treatment with taxifolin and cilostazol on the lowering of β-amyloid accumulation and neurotoxicity via the suppression of P-JAK2/P-STAT3/NFkB/BACE1 signaling pathways, PLoS One 11 (2016)e0168286, doi:http://dx.doi. org/10.1371/journal.pone.0168286[56] S. Saito, Y. Yamamoto, T. Maki, Y. Hattori, H. Ito, K. Mizuno, M. Harada-Shiba, R. N. Kalaria, M. Fukushima, R. Takahashi, M. Ihara, Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy, Acta Neuropathol. Commun. 5 (1) (2017) 26, doi: http://dx.doi.org/10.1186/s40478-017-0429-5[57] A.E. Weidmann, Dihydroquercetin: more than just an impurity? Eur. J. Pharmacol. 684 (1-3) (2012) 19–26, doi:http://dx.doi.org/10.1016/j. ejphar.2012.03.035[58] A. Farah, T. de Paulis, L.C. Trugo, P.R. Martin, Effect of roasting on the formation of chlorogenic acid lactones in Coffee, J. Agric. Food Chem. 53 (2005) 1505– 1513, doi:http://dx.doi.org/10.1021/jf048701t.[59] M.H. Kweon, H.J. Hwang, H.C. Sung, Identification and antioxidant activity of novel Chlorogenic acid derivatives from Bamboo (Phyllostachys edulis), J. Agric. Food Chem. 49 (2001) 4646–4655, doi:http://dx.doi.org/10.1021/jf010514x.[60] Y.J. Liu, C.Y. Zhou, C.H. Qiu, X.M. Lu, Y.T. Wang, Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL-60 cells, Mol. Med. Rep. 8 (2013) 1106–1110, doi:http://dx.doi. org/10.3892/mmr.2013.1652.[61] H.C. Kwon, C.M. Jung, C.G. Shin, J.K. Lee, S.U. Choi, S.Y. Kim, K.R. Lee, A new caffeoyl quinic acid from Aaster scaber and its inhibitory activity against Human Immunodeficiency Virus-1(HIV-1) Integrase, Chem. Pharm. Bull. (Tokyo) 48 (11) (2000) 1796–1798, doi:http://dx.doi.org/10.1248/cpb.48.1796.[62] A.S. Cho, S.M. Jeon, M.J. Kim, J. Yeo, K.I. Seo, M.S. Choi, M.K. Lee, Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice, Food Chem. Toxicol. 48 (3) (2010) 937–943, doi: http://dx.doi.org/10.1016/j.fct.2010.01.003http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S2215017X20300709-main.pdf1-s2.0-S2215017X20300709-main.pdfapplication/pdf2410789https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/851/1/1-s2.0-S2215017X20300709-main.pdf249dcf954011a176203c486a300ed343MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/851/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/851/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/851oai:repositorio.uniatlantico.edu.co:20.500.12834/8512022-11-15 14:44:56.776DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==